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In this paper, we study a retrial queueing model with the server subject to starting 
failures. We first present the necessary and sufficient condition for the system to be 
stable and derive analytical results for the queue length distribution as well as some 
performance measures of the system in steady state. We show that the general stochas- 
tic decomposition law for M/G/1 vacation models also holds for the present system. 
Finally, we demonstrate that a few well known queueing models are special cases of the 
present model and discuss various interpretations of the stochastic decomposition law 
when applied to each of these special cases. 

Keywords: Probability generating functions, retrial queues, steady state, server vaca- 
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1. Introduction 

W e  s tudy  a single-server queue ing  system with the server subject  to s tar t ing 
failures. N e w  cus tomers  arr ive accord ing  to a Poisson  process  with rate  A. W e  
assume tha t  there  is no  wai t ing space and  therefore  i f  an  arr iving cus tomer  finds 
the server busy  or  down,  the cus tomer  makes  a retr ial  at  a la ter  time. Re tu rn ing  
cus tomers  behave  independen t ly  o f  each o the r  and  are pers is tent  in the sense tha t  
they  keep m a k ing  retrials unti l  they  receive their  reques ted  service, af ter  which 
they  have no  fu r the r  effects on  the system. Successive inter-retr ial  t imes o f  any  
cus tomer  are independent ly ,  exponent ia l ly  d is t r ibuted with a c o m m o n  m e a n  1/0. 
I f  the server is idle, an  arr iving (new or  re turning)  cus tomer  mus t  s tar t  or  tu rn  on  
the server, which takes zero time. I f  the server is s tar ted successfully (with a cer ta in  
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probability), the customer gets service immediately. Otherwise, the server undergoes 
"repair" immediately and the customer must leave and make a retrial at a later time. 
Successive service times and successive repairing times are independently, 
identically distributed with common distribution functions B1 ( . )  and B 2 ( . ) ,  respec- 
tively. We assume that the success probability is ~ for a new customer who finds the 
server idle and sees no other customers in the system (the counterpart of a customer 
who starts a busy period in the standard M/G~1 system) and is a for all other new 
and returning customers. 

The above model is a generalization of a few well known queues. For 
example, when ~ = a = 1 it reduces to the M/G~1 retrial queue (Keilson et al. 
[12]) and when 6 = 0, a = 1, and 0 ~ c~ it becomes the M/G/1 queueing system 
with setup times (Welch [25]) in which customers are served in random order. 
Queueing systems with customer retrials have attracted considerable attention in 
recent years. For related literature, interested readers may refer to two recent 
survey papers on the subject (Falin [8] and Yang and Templeton [26]). Here, we 
would like to point out, in particular, two related works: Kulkarni and Choi [16] 
and Choi et al. [2]. In the former, the authors derived analytical results for the 
M/G~ 1 retrial queue with server subject to repairs and breakdowns (during service 
or idle period) while in the latter, the authors studied the M/G~1 retrial queue with 
customer collisions. Queueing systems with setup times have also received consider- 
able attention (Doshi [6], Lemoine [17, 18], Levy and Kleinrock [19], and Minh [21]). 
These models fall into the category of  queues with server vacations on which a recent 
paper by Doshi [7] provides a comprehensive survey. 

The paper is organized as follows. In the next section, we introduce necessary 
notations and assumptions, discuss the necessary and sufficient condition for system 
stability, and derive analytical results for the steady-state distribution of the number 
of customers in the system as well as formulas for some system performance 
measures. In section 3, we show that a general stochastic decomposition law for 
M/G~1 vacation systems also holds for the above system and discuss its interpreta- 
tions when applied to various interesting special cases. 

2. The analysis 

We assume that both the service time distribution and the repair time dis- 
tribution have finite first two moments, i.e. 
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We define, for j =  1 , 2 , B ] ( s ) =  ~ e - X S d B j ( x )  and F j ( z ) - B ] ( A - A z ) ,  and let 
F(z) = aB~(A - Az) + 6~zB~(A - Az), where ~ - 1 - a. Furthermore,  for conveni- 
ence of  presentation, we shall use the following notations: ~ -  1 - ~5, Pl - A2, 
and P2 = Ap. 

Let N(t) be the number  of  customers in the process of  returning at time t. Let 
S(t) be a random variable such that 

0, if the server is idle at time t, 

S(t) = 1, if the server is busy at time t, 

2, if the server is down at time t, 

and X(t) be the expended service time of  the customer being served at time t if 
S(t) = 1 or the expended repair time at time t if S(t) = 2. X(t) = 0 if S(t) = O. 
Assuming that S(0) = 0, N(0) = 0, and X(0) = 0, we define ~n, n = 0, 1 , . . . ,  to be 
the instant at which the server starts its nth idle period, where ~0 = 0, and let 
On =- N(~+n) �9 We note that (n (n >_ 1) is either a service completion epoch or a repair 
completion epoch and On is the number of  customers present in the system immedi- 
ately after a service period or a repair period. 

It can be easily seen that {Qn; n > 0} is a discrete-time Markov chain; 
{(Qn, ~n); n ~ 0} is a Markov  renewal process (~inlar [3]); and 
{ (S ( t ) ,N ( t ) ,X ( t ) ) , t>O}  is a continuous-time Markov process. Note that 
{(S(t), N(t), X(t)), t > 0} is also a semi-regenerative process with {(Qn, ~n); n _> 0} 
being its embedded Markov  renewal process (~inlar [3]). 

We first study the necessary and sufficient condition for the system to be 
stable. We consider an arbitrary returning customer and assume that, at a 
particular visit, it finds the server idle and causes the server to undergo repair. 
Since its success probability is always a, the total number  of  such visits to the 
server before receiving service has a geometric distribution with mean ~ / a .  
Recall that y is the mean repairing time. Thus, 6~y/a is the expected total repair- 
ing time triggered by this particular customer. Since customers are persistent, the 
server must also spend on average 2 units of  time serving the customer. Hence, in 
order to complete the service of  one returning customer, the server must  spend on 
average 2 + ~ y / a  units of  time during which A2 + 6&y/a more returning custo- 
mers will arrive on average. Therefore, for the system to be stable, we must  have 
A2 + ~Ay /a  < 1. 

The inequality A2 + ~Xy/a  < 1 is also a sufficient condition for the system 
to be stable. To see this, we first prove that the embedded Markov chain 
{Qn, n >_ 0} is ergodic if A2 + ~Ay /a  < 1. It is not  diffficult to see that {Qn, n _> 0} 
is irreducible and aperiodic. To prove it is also positive recurrent, we shall use 
theorem 2 in Pakes [23] which states that an irreducible and aperiodic Markov 
chain {Qn, n > 0} is positive recurrent if lTkl < o~ for all k and limk__+~ sup 7k < 0, 
where 7k = E(Qn+I - QnlQn = k). In our case, we have 70 = dSA2 + ~(1 + Ay) and 
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f o r k =  1,2,.. .  

akO (~kO aA 
"Yk -- A + kO (k - 1 + AX - k) + ~ - - ~ ( k  + A~ - k) + ~----~-~(k + AX - k) 

~A 
+ A----+--~(k + 1 + A y -  k) 

= - a + aA2 + 6Af~ + - -  
A 

A +kO" 

Clearly, if A 2 + & ~ f / a <  1, then we have 17kl < o c  for all k and 
l i m k ~  sup 3'k < 0. Therefore, the embedded Markov chain {Qn; n _> 0} is 
ergodic. Since {(Qn, ~n); n > 0} is an embedded Markov renewal process of the 
semi-regenerative process {(S(t) ,N(t) ,X(t)); t>_ 0}, it can be shown from the 
results in (~inlar [3, pp. 343-350], that the limiting probabilities of 
{(S(t) ,N(t) ,X(t));  t > 0} exist and are positive if A2 + 6D~y/a < 1 and BI(. ) and 
B2(. ) satisfy regular conditions (e.g., the existence of the first two moments or 
both 1 -Bl (X)  and 1 -B2(x)  being Riemann integrable over [0, ec)). 

To summarize the above, we present 

THEOREM 1 

The inequality A2 + 6~A~/a < 1 is the necessary and sufficient condition for 
the system to be stable. 

We will consider only the system in steady state and therefore we assume that 
A 2 + g D ~ / a  < 1 throughout this paper. For convenience, we denote p -  
A2+ ~Ay/a.  For the Markov process {(S(t) ,N(t) ,X(t)); t>_ 0}, we define the 
unconditional probabilities Po,k(t) =- P{S(t) = O, N(t) = k} for t >_ 0, 
k = 0, 1, . . . ,  and the unconditional probability densities Pj,k(X, t ) -  P { S ( t ) = j ,  
N ( t ) = k ,  x < _ X ( t ) < x + d x }  for t_>0, j = l , 2 ,  and k = 0 , 1 ,  . . . .  Following 
routine procedures (see, for example, Cox and Miller [5, pp. 262-266]), we obtain 
the equations that govern the dynamics of the system: 

o o  

P~o,k(t) = --(A + kO)Po,k(t) + I rl(X)Pl,k(X,t)dx 

o 

+ 

o o  

I r2(x)P2,k(X t) dx,  

0 

k = O ,  1, . . . ,  (1) 
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O--TtPl,k(X, t) "{- Pl ,k(X,  t) = --[/~ -}- r 1 ( x ) lP l , k (X  , t) -'}- )kPl, k_  l (X, t),  

k = O ,  1 , . . . ,  (2) 

0 P2,k(x, t) + 0 P2,k(X, t) = - [A § r2(x)]P2,~(x, t) § AP2,k-1 (x, t), 

k =  1 , 2 , . . . ,  (3) 

PI,o(O, t) = 6APo,o(t) + aOPo,l(t), (4) 

el,k(O,t) = aAPo,k(t) + a ( k +  1)OPo,k+l(t), k = 1,2, . . . ,  (5) 

P2,1(0, t) = 8APo,o(t) + 6LOPo,I(t), and (6) 

P2,k(O, t) = 6tAPo, k_ l(t) + 6~kOeo,k(t), k = 2, 3 , . . . ,  (7) 

where rj(x)= Bjj(x)/[1-Bj(x)], j =  1,2, and  P l , _ l ( X , t ) =  P 2 , 0 ( x , t ) = O  for any 
fixed x and t. 

For  the limiting probabilities P0,k------limt~ Po,k(t) and limiting densities 
Pj, k(X) -- limt--+~ Pj, k(x, t), we define the generating functions (g.f.): 

o o  

Oo(z) - ~_~Po,kz k, ~j(x,z) -- ~_,Pj,k(X)Z k, and q~j(z) _= ~j(x,z)dx,  j =  1,2. 
k=O k=O 0 

The main  result is then given by 

T H E O R E M  2 

If  p < 1, then 

1 + (6 - 
O0(z) = a(1 - p) o~ + i~--- ~ ) - ~ ~ - -  P2] qo(z), 

~1(z) = a(1 - p)[1 - Fl(z)] 
F ( z ) - z  

a~(z) + (6 - a)~o(O)[aew(z)(p(z) - z(1 - F2(z) ) / (1 - z)] 
x 

+ ( 6 -  - 

02(z) = a(1 - p)z[1 - F2(z)] 
r ( z ) - z  

6L~(z) + ( 6 -  a)~(O)[6ecw(z)~o(z)- ( r l  ( z ) -  z)/  (1 - z)] • 

(8 )  

(9) 

a + ((5 - a)~(0)[aew(1)  - P2] , (10) 
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where  

{ il u) } c = A / O , ~ ( z ) = e x p  - c  du 
u F(u) 

1 

and 

~(z) = j ~- l (u)  F~(u) - uF2(u) 
u Z - F - ~  du. 

0 

Proof  

Lett ing t ~ ~ in (1)-(7) and applying z- transform, we obta in  

oo o~ 

)~)o(Z) ~-Oz~)tO(Z)= I Ol(X'Z)r l (X)dx "-~ J ~)2(x'z)r2(x)dx'  
0 0 

o~j(x,z) 
Ox 

-- [A(1 - z) + rj(x)]~bj(x,z), j =  1,2, 

~1 (0, Z) -~- O~)~q~O(Z ) -4- (6 -- OL))~Po, 0 -~- oLO~)to(Z), 

and 

~:(O,z) = ~AzOo(z) - (6 - ~)AzPo,o + ~Oz~'o(z). 

Solving (12), we have 

qSj(x,z) = ~bj(0,z)[1 - Bj(x)]e -~(1-z)x, j =  1,2. 

Substi tut ing the right hand  sides of  both  (13) and  (14) into (15), we obtain  

~b 1 (x, z) = [aAq~o(Z) + (6 - c~)APo,o + a0~b~(z)] [1 - B 1 (X)] e -~(1 -z)x, 

~b2(x, z) = z[~A~bo(Z ) - (6 - a)APo,o + ~0q~(z)] [1 - Bz(x)] e -A(1 -z)x 

Applying the above to (11) and  integrating, we have after rearrangement :  

1 - F ( z )  qYo(Z) + c (%(z) = (6 - ~)cPo,o r l  (z) - zFz(z) 
z -  V(z) z -  r (z )  

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Solving the above equa t ion  gives 

qgo(Z ) = [4~o(1) + (6 - oOcPo,o(W(z ) - co(1))]~,(z), (19) 

where  qg(z) and  w(z) are defined in the theorem.  To determine q~o(1) and Po,o, 
we set z = 0 in (19) and  obta in  eo,o = [~bo(1) - (6 - a)cPo,oW(1)]~(O) which in turn  
gives 

~o(0)~bo(1) 
Po,o = 1 + (6-a)cw(1)~p(O)"  

Replacing P0,o in (19) with the above, we obta in  after algebraic manipula t ion:  

1 + (6 - a)c~p(O)w(z) ~p(z). 
qg~ = q~~ 1 + ~ - 7  a)cw(O)~(1) (20) 

Substi tut ing (20) back into (16) and  (17), we have 

z - - 1  
$ l ( x , z ) =  a A z _ F ( z ) $ O ( Z ) +  

(6 - a)A~o(O)q~o(1) z - zF2(z) ] 
1 + (6 -a )c~p (O)w (1 )  z - F ( z )  .] 

• [(1 - Bl(X)]e -*x(1-z)x, (21) 

z - 1 (6 - a)Aw(O)q~o(1) Fl(z  ) - z]  
~bz(X,Z) = z 6~A z 7__-~z) q~o(Z) -~ 1 7 ~  Z ~ ( ] )  zZ~W-~) 

• [(1 - B2(x)]e -~(1-z)x. (22) 

Integrat ing the above f rom 0 to oo with respect to x, we obta in  

O0 

I 1 - F1 (z) 
Ckl (z) = ok, (x, z) dx  = - a  z - F(z) 

0 

,~o(z) -~ 
(6 - a)w(O)~0(1) 

1 + (6 - a )cw(O)w(1)  

• 
z -  zF2(z) 1 - F1 (z) 

1 -  z z -  F(z) ' 
(23) 

o o  

42 (2) = J q~2 (X, Z) dx 
0 

1 - F2 (z) 
: z - a  ) = F--(7 r  + 

(6 - a)w(O)~b0(1 ) 
1 + (6 - a ) c w ( O ) ~ ( 1 )  

F~ (z) - z 1 - F2(z) 
1 - z z -  F ( z )  " (24) 
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At this point,  the only unknown  is 050(1) which can be determined using the 
normalizing equation 050(1) + 051(1) + 052(1) = 1. Thus, setting z = 1 in the above 
and applying l 'H6pital 's  rule whenever necessary, we obtain after rearragement 

1=050(1)+051(1)+052(1) 

cePl ~P2 PlP2 (6 - o.,)qo(O)050 (1) 
= 050(1) + a(1 - p) 050(1) + c~(1 -- p) 050(1) ce(1 - p) 1 + (6 - o~)cw(O)co(1) 

(1 - pl)p 2 (6 - oz)q9(0)050(1) 
1 + ( 6 -  

Solving the above equat ion for 050(1) yields 

1 + (6 - o.0cqD(0)~(1 ) (25) 
050(1) = ~ ( 1  - p) ce + ( 6 -  o~)~(0)(c~cco(1)- P2)" 

Substituting 050(1) into (20), (23), and (24), we obtain equations (8), (9), and 
(10). [] 

Remark 

Define P(z) = 05o(Z) + z051 (z) + 052(z). Then, P(z) can be considered as the 
probability generating function (p.g.f.) of  the number  of  customers in the system 
(including the one in service if any) in steady state. As a direct consequence of  
theorem 2, we have 

~ ( 1  - p ) ( 1  - z)F,(z) 
P(z) = r(z)  - z 

x a 0 5 ( z ) + ( 6 - a ) 0 5 ( O ) [ a e 0 5 ( z ) w ( z ) - z ( 1 - r 2 ( z ) ) / ( 1 - z ) ]  (26) 

c~ + (6 - a)05(0)(~ca)(1) - P2) 

We now derive formulas for some performance measures for the system in 
steady state. Let U be the server utilization (or the steady-state probability that  
the server is serving a customer), D be the steady state probabili ty that  the server 
is down, L be the average number  of  customers in the system in steady state, W 
be the average time a customer spends in the system in steady state, and R be the 
average number  of  retrials made  by a customer.  In the following, we present formu- 
las only for U, D, and L since we have: W = L / A  and R = ( W -  ~)0 due to Little's 
formula. F r o m  theorem 2, we obtain: 

U = 051(1 ) = Pl, (27) 

c~ + (6 - oL)~(O)[~c~(1) - (1 -/91) ] (28) 
D = 052(1) = p2 + ( 6 -  - p2] ' 
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and 

L - -  P'(1) 

c~A222 + ~A2~ 2 + 2~p2 + 2c(~ + p) 
= P l  -~ 2c~(1 - p) 

C(~ -- Ot)~(O) (p2 --}- 1) + P2 -}-/~2.f2/2 

c~ + ( 5 -  ce)qo(O)[c~cw(1) - P2] 
(29) 

3. Stochastic decomposition and special cases 

Stochastic decomposition has been widely observed among M/G/1 type 
queues with server vacations (see, for example, Cooper [4], Levy and Yechiali 
[20], Fuhrmann [9], Heyman [11], Scholl and Kleinrock [24], and Doshi [6]). A 
key result in these analyses is that the number of customers in the system in steady 
state at a random point in time is distributed as the sum of two independent random 
variables, one of which is the number of customers in the corresponding standard 
queueing system in steady state at a random point in time. The other random 
variable may have different probabilistic interpretations in specific cases depending 
on how the vacations are scheduled. Stochastic decomposition has also been 
observed to hold for some M/G/1 retrial queues (Yang and Templeton [26]). A 
similar observation was made by Fuhrmann and Cooper [10] for a model which 
is technically the same as the standard M/G/1 retrial queue but arises in a different 
context (Neuts and Ramalhoto [22]). 

For M/G/1 based vacation models, Fuhrmann and Cooper [10] reported a 
general stochastic decomposition law which states that the number of customers 
in any vacation system in steady state at a random point in time is distributed as 
the sum of two independent random variables: one being the number of customers 
in the corresponding standard M/G/1 system in steady state at a random point in 
time and the other being the number of customers in the vacation system at a ran- 
dom point in time given that the server is on vacation. Let re(z) and ;g(z) be the p.g.f.s 
of the first and the second random variables in the decomposition, respectively, and 
((z) be the p.g.f, of the random variable being decomposed. Then, the mathematical 
version of the stochastic decomposition law is: 

r = re(z)x(z). ( 30 )  

We now verify that the decomposition law applies to the retrial model 
analyzed in the previous section. For the basic M/G/1 queue, we have: 

re(z)  = (1 - p a ) ( 1  - Z)Fl(Z) ( 31 )  
e l ( z )  - z 
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To derive a formula for X(Z), we first define vacation in our context. We say that the 
server is on vacation if it is either under repair or idle. (Note that in retrial queues, 
there may be customers in the system even when the server is idle!) Under  this 
definition, we have X(z)= [00(z)+ q~2(z)]/[q~0(l)+02(1)]. Using the results of  
theorem 2, we obtain, 

x(z) - 
c~(1 - p) F l ( z )  - z 

l - p 1  F ( z ) - z  

aqo(z) + ( 6 -  a)~o(O)[ac~(z)w(z) - z(a - Fz(z))/(1 - z)] 
• 

a + ( 6 -  a)qo(0)(acw(1) - P2) 
(32) 

From (26), we can see that P(z) = 7r(z)x(z), which confirms that the decomposition 
law of  Fuhrmann  and Cooper [10] is also valid for this special vacation system. 
However, we must point out that if the idle periods were not  considered as vaca- 
tions, the decomposition law would not apply here (even if one use the M/G/1 
retrial queue as the base system) due to interference between customer retrials 
and server vacations. 

We now examine some special cases and discuss the corresponding implica- 
tions of  the stochastic decomposition law. 

Case 1 (a = 6 = 1). Here, the system reduces to the standard M/G/1 retrial queue 
(Keilson et al. [12]). F rom (26), the p.g.f. P(z) becomes 

e(z)  = (1 - / 9 1 ) ( 1  - -  Z)Fl(Z ) qo(z), (33) 
r l ( z )  - z 

where 

1 - FI (u) 
~p(z) = e x p  - c  du . 

U F l ( U  ) 
1 

This is consistent with the results in Keilson et al. [12]. F rom theorem 2, we have 
00(z) = ( 1 -  pl)~o(z) and 02 (z )=  0 for this case and hence X(z)= ~o(z) is the 
p.g.f, of  the number  of  customers in the system in steady state at a random point 
in time given that the server is idle (Fuhrmann and Cooper [10]). 

Case 2 (a = 1, 6 = 0, and 0 --+ c~). The system reduces to the M/G~1 queue with 
setup times (Welch [25]). Since the retrial rate 0 tends to infinity, customers in the 
system will be always available for service and therefore when the server is idle 
there must be no customers in the system. Since 6 = 0 and a = 1, the customer 
who starts a busy period always causes the server to warm up or to undergo repair 
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with probability 1, after which all customers arrived in the busy period (including 
those, if any, arrived during the setup period) are served in random order. In this 
case, the generating function P(z) becomes 

P(z) = (1 -pa ) (1  -z)Fl(z) 1 -zF2(z) (34) 
F l ( z ) - z  ( l+p2 ) (1  - z ) '  

which is consistent with the results in Welch [25]. According to the decomposition 
law, we have that 

1 - zF2(z) (35) 
x(z)  = (1 + ;2)(1 - z) 

is the generating function of the number of customers present in the system in steady 
state at a random point in time given that the server is warming up. However, a 
more insightful interpretation follows from the observation that ~(z) - zF2(z )  is 
the p.g.f, of the number of  customers (including the one who starts the busy 
period) present in the system when the server returns from warming-up. From 
(35), we can rewrite X(z) as 

1 - ~ ( z )  (36)  
X(z) - ~'(1)(1 - z) '  

which implies that X(z) is also the p.g.f, of the number of customers arrived during a 
time interval that is distributed as the equilibrium backward recurrence (expended) 
time of  a warming-up period (Fuhrmann [9]). 

Case 3 (a = ~ < 1). This is the M/G/1 retrial queue in which the server is subject 
to starting failures. This model arose as a simplification of a situation where an 
equipment (the server) is shared by a large population of customers. Normally, 
the equipment is in the "off"  state and must be turned on before it can be used 
by a customer, after which it is turned off again. There is a probability (= c~) that 
the equipment may not  be started successfully, in which case it undergoes repair 
immediately. For  this system, P(z) reduces to the following: 

P(z) = a(1 - p)(1 - Z)Fl(Z) ~(z), (37) 
F ( z ) - z  

where q)(z) is defined as in theorem 2. Decomposition can be carried out in two 
different ways depending on how we define vacation. If both repair periods and 
idle periods are considered as vacations, then the base system is the standard 
M/G~1 queue and 7r(z) is given as in (31). The p.g.f, of  the other random variable 
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in the decomposition is then given by 

x ( z )  - - p )  F l ( Z )  - z ( z ) .  

l-p1 F(z)-z 

We now consider only the idle periods as vacations and the "repair" 
periods are treated as service sessions for customers who have triggered them. 
To appreciate this, we assume that when a (new or returning) customer arrives 
and finds the server idle, it requests either a preparatory service session (with 
probability ~) or a final service session (with probability a). After each prepara- 
tory session, the customer leaves the server temporarily but makes retrials at 
later times for the rest of its service. After the final session, the customer leaves 
the system forever. The durations of preparatory sessions are independently, 
identically distributed with CDF B2(. ) and those of the final sessions are also 
independently, identically distributed but with CDF B 1 ( . ) .  This is a queueing 
model with interrupted service times. It can be easily seen that this model is 
equivalent to the one with starting failures as far as the queue length distribution 
is concerned. 

The total service requested by a customer consists of M preparatory sessions 
and one final session, where the random variable M is geometrically distributed 
with parameter ~. Thus, the total service time has CDF B(.  ) whose Laplace 
transform is given as aB*l(S)/[1 - ~B~(s)]. Let r/(z) be the p.g.f, of the number 
of customers arriving during the total service time of a customer. Then, 
~(z) = aF1/[1 - ~Fz(z)]. In light of these, we can rewrite (37) as 

P(z) = ( 1  - - z) l(z) ( 3 8 )  

- z 

where the first fraction is the well known formula for a standard M/G~ 1 queue. 
From the above equation, we can conclude that, for the M/G/1  retrial queue 
with interrupted service times, the number of  customers in the system at a random 
point in time is distributed as the sum of two independent random variables: one 
being the number of customers at a random point in time in a standard M/G/1  
queue in which the service times are not interrupted and the other being the number 
of  customers in the system at a random point in time given that the server is idle. 
However, for the M/G[I  retrial queue with starting failures (the original system), 
we can also conclude that the number of customers in the system can be considered 
as the sum of  the number of customers in the standard M/G~ 1 queue (with service 
time distribution B(.  ) rather than BI(- )) and the number in the system given that 
the server is idle. Here, we note that for the same system stochastic decomposition 
can be interpreted differently depending on the definition of a vacation or the choice 
of  the base system. 
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Case 4 (o~ = 6 and BI(" ) = B2(" )). In this case, the system is in fact a "retrial" 
version of the M/G/1 queue with Bernoulli feedback (see, for example, Burke [1] 
and Kleinrock [13, 14]). Here, we assume instead that the setup period is a service 
period for the customer who triggers the server setup. After service completion, 
the customer may leave the system forever with probability c~ or may join the queue 
(the retrial group) again with probability ~. From (26), we have the p.g.f, of the 
number of customers in the system: 

P(z) -- a(1 - p l ) ( 1  - z)Fl(z ) 
-(-o~+-~-~-)F;(~ Z z ~(z), (39) 

where 

{ j l - ( c t + 6 ~ U ) F l ( U ) }  
~ ( z ) = e x p  -c  u -  (c~ + g~u)Fl(u) dU . 

1 

It can be shown that the fraction on the right hand side is the p.g.f, of the M/G/1 
queue with Bernoulli feedback (Kleinrock [15, p. 239]). Hence, we conclude that 
the number of customers in the M/G/1 retrial queue with Bernoulli feedback at 
a random point in time is distributed as the sum of two random variables: one 
being the number of customers at a random point in time in the corresponding 
M/G/1 queue with Bernoulli feedback and the other being the number of 
customers in the retrial system at a random point in time given that the server 
is idle. 

In summary, we have investigated a retrial queueing model with the server 
subject to starting failures. We have presented the necessary and sufficient condi- 
tion for the system to be stable and derived analytical results for the queue length 
distribution as well as some performance measures of a system in steady state. 
We have shown that the general stochastic decomposition law for M/G/1 vacation 
models also holds for the system. Finally, we have demonstrated that a few well 
known queueing models are special cases of the present model and discussed 
various interpretations of the stochastic decomposition law when applied to each 
of these special cases. 
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