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1. Introduction 

A network  of  queues can serve as a useful model  for systems arising in many  con- 
texts, including manufacturing,  distributed computer  systems, voice and data  com- 
municat ions,  and vehicular traffic flow. Descriptive models  can help to evaluate 
and predict  the performance of  existing and proposed  systems, and thus improve 
the design of  a system. Control  models  take into account  the possibility of  dynami-  
cally varying some of  the parameters  of  the system, such as the arrival or service 
rates, or the rules used to determine the routing of  jobs  or the order in which they 
are processed at various nodes. In principle, dynamic (that is, s tate-dependent)  
rules for setting such parameters  offer the possibility of  significantly improved per- 
formance,  as compared  to static (state-independent) rules. The performance 
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improvement can take the form of reduced congestion, as measured by the num- 
bers of jobs in the buffers at the various nodes or by the time spent by jobs waiting 
to be served, for a given load (throughput). Alternatively, it can be reflected in 
increased throughput for a given level of congestion. 

The importance of dynamic control has received increasing recognition in 
recent years in a variety of applications involving large-scale systems of interacting 
components. At the same time, the introduction of automation has made sophisti- 
cated control rules feasible to implement for the first time. Computer-controlled 
manufacturing facilities offer an example, as do communication systems with auto- 
mated, digital switches. 

As an illustration of how optimal control models can be used in applications of 
networks of queues, consider a data communication network. Whether operating 
under packet switching or virtual-circuit switching, such a network can often be 
modelled as a network of queues. The messages or packets generated by a session 
are the customers. Each channel in a link between an adjacent pair of nodes of the 
communication network is a server. The buffer at a node containing the packets 
waiting for transmission on a particular link (consisting of one or more channels) 
constitutes a queue. For any given routing and flow-control policy, the resulting 
network of queues can be analyzed with the help of analytical, numerical, and/or  
simulation models. Moreover, the problem of determining a routing and flow con- 
trol policy that is optimal (with respect to performance measures such as through- 
put and/or  congestion) can sometimes be formulated as a Markov decision 
process. The techniques of dynamic programming can then (in principle) be used to 
characterize the structure of an optimal policy and/or numerically solve for its 
parameters. For communication networks of realistic size, solving for optimal con- 
trol policies in this way is typically computationally intractable. Examining the 
structure of optimal policies for smaller networks, however, can lead to insights 
that are useful for the development of heuristic rules for larger networks. (For a 
review of both static and dynamic models specifically relevant to control of routing 
in data communication networks, see Hariharan et al. [32].) 

This paper summarises a large number of models and results for the control of 
networks of queues. We shall focus our attention on the use of Markov decision 
models to examine the structure of optimal control rules. We shall not discuss com- 
putational issues, nor shall we consider, except in passing, the use of other techni- 
ques, such as sample-path analysis, for determining the structure of optimal 
policies. We assume that the reader is familiar with the basic theory of Markov deci- 
sion processes, as contained for example in Bertsekas [6], Whittle [72,73], or Wal- 
rand [65]. The last-named reference is an excellent introduction to the general topic 
of networks of queues, including descriptive as well as control models. 

We shall concentrate on discounted-cost problems. Often the structural proper- 
ties of optimal control policies for an average-cost problem are the same as those 
for the corresponding discounted-cost problem. Techniques for deriving the for- 
mer from the latter are now well developed. Recent results specifically motivated 
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by control of queues may be found in Borkar [8-10], Weber and Stidham [67], 
Cavazos-Cadena [12,13], Sennott [54,55]. For a survey, see Arapostathis et al. [2]. 

The paper starts in section 2, with a description of a general model for control 
of transition rates in Markov processes and a proof of a characterization of the 
optimal control. In the remainder of the paper we review of a large number of mod- 
els and results. Our review is organised by categories of control: namely, service 
rates (section 3), admission (section 4), routing (section 5), and scheduling (section 
6). Although most results are reviewed without proofs, there is in each section at 
least one result for which the proof is given: in sections 3, 4, and 5 this is by applica- 
tion of the general ideas introduced in section 2; in section 6 there is a solution for 
a scheduling problem in a series of queues. 

2. Control  o f  transitions in a Markov  process: A general mode l  

In this section we present a general model for control of the transition rates in a 
continuous-time Markov chain. This model is essentially the same as that devel- 
oped by Weber and Stidham [67] and applied there to control of service rates in 
cycles and series of queues. We also mention recent extensions by Veatch and Wein 
[62] and Glasserman and Yao [28]. 

We consider a continuous-time Markov decision process with countable state 
space X ~ Z m. That is, the state is an m-vector of non-negative integers, 
x = (Xl , . . . ,  Xm). In the context of networks of queues, xt typically denotes the 
number of customers at node (queue) l. There are two varieties of transition, con- 
trolled and uncontrolled. Uncontrolled transitions of type r (r = 1 , . . .  ,p) are 
defined in terms of an operator At: X--+ X. They occur at fixed rate Ar and move the 
system from state x e X  to state A r x e X .  Controlled transitions of type i 
(i = 1 , . . . ,  q) are defined in terms of an operator T/: X - - * Z  m. They move the sys- 
tem from state x to Tix and occur at rate #i, which is subject to control, with 
#i ~ [0, #;], 0 </2i < c~. It is understood that the system controller must select rate 
#i = 0 whenever the system is in a state x such that Tix q~ X .  (Infeasible controlled 
transitions are forbidden.) 

An application that we shall come to in the next section is a network consisting 
ofm infinite-capacity queues arranged in a cycle, with a single exponential server at 
each node i, performing services at controllable rate #i (of. Weber and Stidham 
[67]). Each node i receives external input of customers according to an uncontrolled 
Poisson arrival process with rate A~, i =  1 , . . . ,m .  With state variable 
X = ( X l ,  �9 � 9  Xm), AiX :m_ X q- ei, and T/x := x - ei + ei+l, i = 1 , . . . ,  m, (and identi- 
fying m + 1 as 1), this is an example within the general framework above. 

The cost rate is a combination of transition-rate costs and holding costs. While 
the rate for type-/controllable transitions is #i, a cost is incurred at rate ci(Izi) per 
unit time, where ci is continuous (i = 1 , . . . ,  q). While in state x the system incurs a 
(holding) cost at rate h(x) ,  where h is non-negative. Future costs are continuously 
discounted at rate c~ >i 0 and the objective of the system controller is to minimize the 
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expected total a-discounted cost over an infinite horizon. 
Let V(x) denote the minimum total expected a-discounted cost over an infinite 

horizon, starting from state x. Then V satisfies the dynamic-programming optimal- 
ity equation 

P 

v(x) = h(x) +  ,V(Arx) 
r=l 

q 

+ Z v,~n]{c,(#i) + #,V(Tix) + ( f i , -  # , )V(x)} ,  (1) 
i=l  

where we have assumed that a + ~-~'~Pr--1/~r q- ~q=112i ---- 1, without loss of general- 
ity. Moreover, an optimal control rule chooses, whenever the system is in state x, a 
rate #f(x) for type-i transitions that achieves the minimum in the ith term of the sec- 
ond summation in (1), where again it is understood that the minimization operator 
selects #i(x) = 0 if Tix6 X. The arguments for the validity of this optimality equa- 
tion and the optimality of the (stationary, deterministic) control rule, 
#(x) := (/Zl(X),... ,#q(X)), are based on the principle of optimality and special 
properties of the exponential distribution. For detailed discussion of this optimal- 
ity equation and those for other problems in the control of queues, see Weber and 
Stidham [67], Stidham [57,58]. 

We can rewrite eq. (1) in the equivalent form 

P- q 

V(x) =h(x) +  ,V(Arx) + 
r--1 i=I  

q 

+ y ~  rain {ci(lz,)- # i [V(x ) -  V(T,x)]}. (2) 
i=1 /~i E [0fii] 

The quantity V(x) - V(Tix) can be interpreted as the benefit of a transition of 
type i that occurs in state x. Thus we should be willing to choose a faster rate for this 
type of transition as this benefit increases. 

The model of Weber and Stidham [67] provides a general framework in which 
an optimal control rule for this problem is transition monotone, that is, 

#i(x)<~#i(Tjx) for all x e X  such that T j x e X ,  for a l l j  # i. 

In words, a control rule exhibits transition monotonicity if 

the rate for transitions of  type i does not decrease as a transition typej occurs 

for allj 7 A i. 
One can establish this property by showing that the benefit, V(x) - V(Tix), of a 
type-/ transition in state x is no greater than the corresponding benefit, 
V(Tjx) - V(T/Tjx), in state Tjx, that is, V satisfies the functional inequality 

f ( x )  - f (Tix)  - f (T jx)  + f (T iT jx  ) <~ 0, (3) 
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for allj  ~ i and all x e X such that T/x e X, Tjx E X, and Ti Tyx ~ X. 
We say that a funct ionf  satisfying (3) is (X, T)-multimodular, following Hajek 

[30] who introduced a special case of the concept in a different context. To prove 
that V is (X, T)-multimodular requires additional conditions on the holding cost 
h(x) and on the relationship between the state space X and the sets of transition 
operators A := {A,,r = 1, . . .  ,p} and T := {T/,i = 1,. . .  ,q}. In particular, we 
shall need the following definition. 

D E F I N I T I O N  

The set T of controlled transition operators is said to be compatible with the 
state space X if for all i ~ j and all x ~ Z m such that T/x e X and Tjx ~ X, the states x 
and TiTjx are also in X. 

T H E O R E M  1 

Suppose the set T of controlled transition operators is commutative and compat- 
ible with X. Suppose also that Ar commutes with Ti for all r = 1,. . .  ,p and 
i = 1 , . . . ,  q. If h(x) is (X, T)-multimodular, then the optimal value function V is 
also (X, T)-multimodular and an optimal control policy is transition monotone. 

R e m a r k  
Weber and Stidham [67] actually reformulate and prove the transition-monoto- 

nicity property in terms of submodularity (Topkis [60]) of the optimal value func- 
tion V with respect to a partial ordering based on set inclusion, but the proof 
sketched below is essentially equivalent and perhaps somewhat easier to follow. 

The proof of theorem 1 uses induction on a sequence of finite-horizon pro- 
blems. The key step is to show that (X, T)-multimodularity is preserved by trans- 
formations of the form 

f k ( x )  = rain {Ck(]Zk) "4- f lkg(Tkx) + (lZk -- pk)g(x)}  , (4)  
ak E [0,ak] 

when T is commutative and compatible with X. To prove this result, assume that 
g: X-.+ R is (X, T)-multimodular, let x e X ,  TixeX,  TjxeX,  TiTyx~X,j  ~ i, and 
let 

A :=fk(x) - fk(Tix)  -fk(T]x) +f(TiT]x). 

Our goal is to show that A ~< 0. To this end let #k and tt~, achieve the minimum in 
(4) with x replaced by Tix and Tix , respectively. Note that A is symmetric in i and j, 
since the operators Ti and Tj commute. Hence, without loss of generality we can 
assume that ~ I> #k. (Otherwise reverse the roles of i and j.) We distinguish two 
cases k # i and k = i. ,, 

Case 1: k ~ i. First we observe that #k is a feasible control in state x. If#k = 0, 
this is trivially true. On the other hand, if #k > 0 then #~ > 0 and hence both TkTix 
and TkTjx are in X, from which it follows by commutativity and compatibility that 
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T k x ~ X .  Hence #k is feasible for state x. Similarly,/z~ is feasible in state TiTjx. 
Again, if #~ = 0, this is trivially true. Suppose #~: > 0. Since g is (X, T)-multimodu- 
lar and k r i, the minimizing control in state TiTjx is at least as great as that in state 
Tyx, namely #~. Hence the minimizing control in state TiTjx is positive, which 
implies that T~TiTjx  ~ X ,  and hence #~ is feasible for TiTjx.  

Thus we can use control #k in state x and control #~ in state TiTyx to get the fol- 
lowing upper bound on A. 

A<<.Ck(#k) + #kg(TkX) + (~k - #k)g(x)  

- Ck(#k) - #kg(rkTiX)  - (#k - #k)g(Tix)  

- C k ( # ~ k ) -  # ~ k g ( r k T j x ) -  ( fZk -  #tk)g(Tjx ) 

+ + dkg(rkT Tjx) + (Pk -- dk)g(r,  Tjx) 

=(fZk -- #k)[g(x) -- g(Tix)  - g(Tjx)  + g(TiTjx)] 

+ (#t k - #k)[g(Tjx) -- g (T iTjx)  - g (TkTjx )  + g(TkTiTjx)]  

+ #k[g(TkX) -- g ( rkTiX)  -- g (TkTjx )  + g ( rk r iT j x ) ]  

=(/2k -- #k)[g(x) -- g(Tix)  - g(Tjx)  + g(TiTjx)] 

+ (#~k -- #k)[g(Tjx) -- g ( r i T j x )  - g ( r k T j x )  + g ( rk r iT j x ) ]  

+ #k[g(rkX) - g ( T i r k x )  - g ( T j r k x )  + g (T iTyrkx)] ,  

where we have used commutativity to derive the second equality. Since k r i r j ,  
each of the last three terms is non-positive, by the assumption that g is (X, T)-multi- 
modular. Thus A ~< 0. 

Case 2: k = i. First note that #~, is a feasible control for state x, since 
TkX = T i x ~ X  by assumption. Also, #k is feasible in state TiTyx. If #k = 0, this is 
trivially true. If #k>0, then TkTkX = T k T i x ~ X .  Moreover, #~>#k>0 ,  SO that 
TyTkx = T k T y x ~ X  (using commutativity). Then, since k = i C j, it follows from 
commutativity and compatibility that Tk T iT jx  = Tk Tk Tjx  = Tk TyTkxe  X ,  and 
hence #k is feasible in state TiTyx. 

Thus we can use control #~ in state x and control #k in state TiTjx  to get the fol- 
lowing upper bound on A. 

A <,ck(dk) + dkg(rkx )  + (~k -- u~)g(x) 

- c k ( U k )  - -  ukg(rkr x) - - u k ) g ( r i x )  

-Ck(P~k) -- #~kg(TkTjX) -- ( # k -  #~k)g( Tjx) 

+ Ck(#k) + #kg(TaTiTjx)  + (pk - #k)g(TiTjx)  

=(/2k - #~)[g(x) - g(TkX) - g(Tjx)  + g(TkTjx)]  

+ Uk[g(TkX) - g ( r k r k x )  - g ( r k T j x )  + g (rkrkT jX)]  

=(/2k -- #~) [g(x) -- g(Tkx)  -- g(Tjx)  + g(Tk Tjx)] 

+ #k[g(rkX) - g (TkrkX)  - g(TjTkX) + g (T i rkTkX)] ,  
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where we have used the fact that k = i to derive the first equality and commutativ- 
ity to derive the second equality. Since k = i ~ j,  each of the last two terms is non- 
positive, by the assumption that g is (X, T)-multimodular. Thus A <~ 0. 

This completes the proof that (X, T)-multimodularity is preserved by transfor- 
mations of the form (4). 

Remark  
Veatch and Wein [62] have extended these results to prove transition monoto- 

nicity with respect to uncontrolled as well as controlled transitions and to the case 
where a controlled transition of type i may include a routing decision- specifically, 
a choice between moving from state x to state Tilx at rate #i and to state Tiox at 
rate ~i - Pi. Glasserman and Yao [28] have developed a general model for con- 
trolled discrete-state Markov processes in the framework of a generalized semi- 
Markov process (GSMP). They show that an optimal control policy is monotonic, 
under structural conditions of non-interruption and strongpermutability of events 
and submodularity and supermodularity conditions on the one-step cost function. 
These conditions are in the same spirit as those in Weber and Stidham [67], as is 
the method of analysis, which uses ideas from Topkis [60] and induction on a 
sequence of finite-horizon problems. 

3. C o n t r o l  o f  service rates in a n e t w o r k  o f  q u e u e s  

The model of the previous section can be applied to control of the service rates 
at the nodes of a network of queues, for networks with special structure. In each 
potential application, the crucial question is whether or not the compatibility and 
commutability conditions are satisfied. We shall illustrate these issues in the con- 
text of the two applications given prominence in Weber and Stidham [67]. Through- 
out, we assume that there is cost rate hj(xj) per unit time while xy jobs are at queue 
j ,  where h: is convex (but not necessarily non-decreasing). 

CYCLE OF QUEUES 

Consider the cycle of m queues, labeled i = 1 ,2 , . . . ,  m, that was introduced in 
the previous section. A job that completes service at node (queue) i goes to node 
i + 1. (We identify node m + 1 as node 1.) Jobs from outside the system enter node i 
at mean rate Ai according to a Poisson process which is not subject to control. 
There is a single exponential server at node i who performs potential services at 
mean rate #i, where Pi is to be chosen from the feasible set [0, #i]. The number of 
jobs in node i is denoted by xi and the state of the system by the vector 
x = ( x l , . . . ,  Xm). While in state x, the system incurs a holding cost per unit time, 
h(x) ----)-'~im=l hi(xi). Future costs are continuously discounted at rate a > 0  and 
the objective is to minimize the expected total discounted cost over an infinite 
horizon. 
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The two types of state transitions will be denoted x ~ Aix  := x + ei, correspond- 
ing to an arrival at node i, and x ~ T/x := x - ei + ei+l, corresponding to a service 
completion at node i and resulting transfer to node i + 1. (Here ei denotes the unit 
m-vector with a one in the ith component.) 

It is easily verified that the conditions of commutativity and compatibility are 
satisfied for this problem with these operators. Transition monotonicity in this case 
implies that 

the optimal service rate at node i does not decrease as a job is moved f rom node 

j to nodej + 1 , j  ~ i. 

By moving a job all the way around the cycle, from node i + 1 to i + 2 to . . .  to 
i - 1 to i, it follows that the optimal service rate at node i does not decrease as a cus- 
tomer is moved from node i + 1 to node i, or, equivalently, 

the optimal service rate at node i does not increase as a job is moved f rom node i 

to node i + 1. 

SERIES OF QUEUES 

The results for a cycle of queues can be applied to a series of queues 
(i = 1 ,2 , . . . ,  m - 1), with a Poisson arrival process with controllable arrival rate 
A e [0, A] at the first node and a reward earned at rate r(A) while the arrival rate is ),. 
This is done by adding to the series a dummy node m, with no holding cost and an 
infinite supply of jobs, and letting that node receive all output from node m - 1 and 
generate all input to node 1. With #m := A, serving at rate )Zm at the dummy node 
corresponds to selecting arrival rate A at the first node in the series. The service-cost 
rate Cm (#m) at the dummy node is the negative of the reward rate r(A). 

The monotonicity results referred to above apply to the series of queues, so that 
the optimal service rate at node i does not decrease as a job is transferred from 
any nodej  to j  + 1,j ~ i, and does not increase as a job is transferred from node i to 
i + 1. In addition, by moving a job from node j >  i t o j  + 1 t o j  + 2, and so forth, 
until it reaches the dummy node m representing the external world, one can deduce 
that the optimal service rate at node i does not decrease as a job is removed from a 
downstream node (or, equivalently, does not increase as a job is added to a down- 
stream node). In the setting of a series-of-queues model for a production line, this 
corroborates the pull effect. Similarly, it corroborates thepush effect, in that if a job 
is added to an upstream node, the optimal service rate at node i does not decrease. 

OPTIMALITY OF BANG-BANG CONTROLS 

Consider the special case in which the service-cost-rate function at node i, 
ci(#i), has the following economy-of-scale property. 

C(~i)/~i~C(fZi)/~i, ~i~ [0, ]~i]- 
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This property holds, for example, if c(.) is concave - in particular, linear. Then it 
can be shown (of. Crabill [17]) that the optimal service rate at node i in any state x is 
either 0 or #i; that is, an extremal or bang-bang policy is optimal for node i. 

KANBAN POLICIES 

Now consider a control model in which the service rate #i at node i can assume 
only two values, 0 and/2i, with associated cost rates, 0 and c~, respectively. This cor- 
responds to the case of a single server at node i with fixed rate #~, which can be 
turned on or off. We can apply the monotonicity results for our model to this situa- 
tion by extending the range of feasible values of/z/to the interval [0,/2i] and choos- 
ing as the service-cost-rate function, c(/zi):= (/zi/#i)ci, that is, the linear 
interpolation between the points (0, 0) and (#i, ci). Then, since a bang-bang policy 
is optimal, the only values of/zi that will be used in an optimal policy for our model 
are 0 and #i, so that an optimal policy will be feasible, and hence optimal, for the 
problem in which the server at node i is controlled by turning it on and off. 

The monotonicity results for our model now imply that it will be optimal to 
turn an off server at node i on as the numbers of jobs at the downstream nodes 
decrease, or as the numbers of jobs at upstream nodes increase. In the context of a 
model for a production line, we have therefore a justification for use of a kanban 
policy to avoid starving and blocking of nodes. 

SYSTEMS WITH FINITE BUFFERS AND BLOCKING 

A Series system with finite buffers between the successive nodes can also be 
accommodated by the model of Weber and Stidham [67]. This is done by modifying 
the (convex) holding-cost function hi(xi) by adding a sufficiently large increment 
whenever the number of jobs at node i exceeds the buffer capacity so that an opti- 
mal policy will always set the service rate at the immediately preceding node to zero 
when the buffer is full. Thus, one may derive a generalization of the monotonicity 
results in Chao and Chen [15], who study two queues in series with a finite inter- 
mediate buffer. They also derive conditions under which it is optimal to serve at the 
maximal possible rate when the buffer is not full. 

4. C o n t r o l  o f  a d m i s s i o n  to  a series o f  q u e u e s  

CONTROL OF ADMISSION TO THE FIRST QUEUE 

The model of Weber and Stidham [67] can also be used to examine the structure 
of an optimal policy for control of arrivals to the first node of a series of queues. 
Recall that, in the application of [67] to a series of queues, the external Poisson arri- 
val process at node 1 is modelled as a service process at node m, which represents 
the external world, thus reducing the series system to an eqnivalent cycle system. 
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The monotonicity results for the cycle-of-queues model then apply. 
In particular, suppose customers arrive to node 1 at rate A and an arriving custo- 

mer can be accepted, earning a reward r, or rejected with no reward earned. This 
model is equivalent to the series-of-queues model of the previous section, with con- 
trollable arrival rate A ~ [0, A] and r(A) = r .  A, since a bang-bang control is optimal 
for the latter problem. We therefore deduce that the benefit of accepting an arriv- 
ing job does not decrease as another job is transferred from any nodej  in the series 
to node j + 1, or (by combining a sequence of such moves) as a job is removed 
from any node j in the series. Thus an optimal admission-control policy will be 
more likely to accept if either of these two types of state change is made. 

Although the present model implicitly assumes that the service rate at each of 
the nodes in series is also controllable, the results apply to a system with fixed ser- 
vice rates, as long as the marginal holding costs do not increase from node i to node 
i + 1, i = 1 ,2 , . . . ,  m - 1. For in this case the problem with fixed service rates is 
equivalent to one in which service rates are controllable but the service-cost rate 
function is identically zero at each node; in the latter problem it will always be opti- 
mal to serve at the maximal rate and hence accelerate the movement of a job to a 
cheaper node at no cost. Note that this ordering of the marginal holding costs 
implies that each holding cost function hi(xi) is non-decreasing, since the marginal 
holding cost at node m is identically zero. See Weber and Stidham [67] for further 
discussion of this point. As noted in section 3, by introducing a holding cost that is 
sufficiently large when more than a certain number of jobs are present at a particu- 
lar node, one can model nodes in series with finite intermediate buffers. (See also 
Chao and Chen [15].) 

CONTROL OF ARRIVALS TO EACH OF TWO QUEUES IN SERIES 

Ghoneim [25] (see also Ghoneim and Stidham [26]) study two exponential ser- 
vers in series (with mean service rates/Zl and #2), each with an infinite-capacity 
queue. Arrivals to queue j are from a Poisson process with mean rate Aj, j  = 1, 2. 
Jobs arriving to queue 1 must go on to queue 2 after finishing service at server 1. 
Jobs arriving to queue 2 leave the system after finishing service at server 2. The 
model thus describes, for example, a simple communication system consisting of 
two channels in series with a combination of local and long-distance traffic. 

With the reward and cost structure described at the start of this section, an induc- 
tion based on value iteration establishes that the optimal value function is concave 
in each argument, submodular, and satisfies a third condition. The three condi- 
tions taken together constitute the analogue of multimodularity for maximization 
problems in two dimensions, and they imply that it is optimal to accept a job to 
node 1 (node 2) i na  particular state, then it is still optimal if a job is removed from 
node 1 or node 2 or moved from node 1 to node 2 (from node 2 to node 1). These 
properties also rule out certain increasing sets as candidates for the optimal rejec- 
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tion region, namely those whose boundaries have horizontal segments of length 
greater than one. 

Note that this model is not a special case of the series-of-queues model of Weber 
and Stidham [67] since the latter allowed control of arrivals to the first node only. 

5. Control of  admission, routing and server allocation in parallel queues 

Davis [18] considers two exponential servers (with mean rate s/~1 and #2) in paral- 
lel, each with its own queue, and a renewal arrival process - that is, i.i.d, interarri- 
val times distributed as a random variable T. The system controller may reject an 
arriving job, admit it to queue 1, or admit it to queue 2, based on the state 
x = (Xl, x2) at the instant of arrival, where xj is the number of jobs at queue j 
(including the one in service, if any), j = 1,2. Davis [18] considers the symmetric 
ease: ]Z 1 = ~ 2 ,  hi(') = h2(.). Abdel-Gawad [1] considers the general case. 

An inductive proof based on value iteration shows that the optimal value func- 
tion satisfies the same three properties (equivalent to multimodularity) as in the ser- 
ies-of-queues model discussed in the previous subsection. These properties imply 
that an optimal policy is admission monotonic: if it is optimal to reject in state x, 
then it is also optimal to reject in states x + e j , j  = 1, 2; in other words, the rejection 
region R := {x : a(x) = 0} is an increasing set. Moreover, an optimal policy is rout- 
ing monotonic: if admitting to queue 2 (queue 1) is preferable to admitting to queue 
1 (queue 2) in state x, then it will remain so in state x + el (x + e2). In other words, 
an optimal routing policy is characterized by a monotonic "switching curve". 
Finally, an additional property of the rejection region is demonstrated by the induc- 
tion: if it is optimal to admit a job to queue 1 (queue 2) in state x, then it is also opti- 
mal to do so in state x - el + e2(x - e2 q- el).  

Attempts to generalize these structural results to more than two queues in paral- 
lel have not met with much success, except in the symmetric case (see below), in 
which the service rates and holding costs at the different queues are the same. Beut- 
ler and Teneketsis [7] have shown that the monotoniciiy properties of optimal rout- 
ing policies extend to partially observable queues, but they have also been 
unsuccessful in handling systems with more than two parallel nodes. 

Hariharan et al. [31] have extended the monotonicity properties derived by 
Davis [18] and Hajek [29] to control of admission and routing to two parallel 
queues, each with an infinite number of servers serving at the same rate #. The hold- 
ing costs at the two queues may be different, however, in contrast to the models dis- 
cussed next. 

THE SYMMETRIC CASE: JOIN-THE-SHORTEST-QUEUE RULE 

Symmetric queues are ones that are not distinguished by number, so that if the 
contents of two queues are exchanged the departure process and holding costs are 
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unaffected. Control of routing to symmetric parallel queues has been studied by 
many authors, including Winston [74], Foschini [23], Weber [66], Foschini and Salz 
[24], Ephremides et al. [19], Lehtonen [45], Whitt [70], Houck [40], Menich and Ser- 
fozo [48], Johri [41], Hordijk and Koole [39], and Farrar [21]. All these authors 
assume that all customers are admitted and the only decision is where to route an 
arriving customer. In this case, the optimal routing policy is very often (but not 
always) the JSQ ("join-the-shortest-queue") rule, in which an arriving customer is 
routed to queue i i f  x i  = m i n j { x j } .  

Most of the cited references use sample-path arguments involving stochastic 
ordering and/or  coupling and very often show that the JSQ rule is optimal in stron- 
ger senses than simply minimization of expecte;d total discounted cost. 

Menieh and Serfozo [48] use induction on value iteration in a Markov-decision- 
process model to show that the optimality of JSQ routing extends to a network of 
parallel nodes with possibly state-dependent Poisson arrival or compound Poisson 
arrival process, and a memoryless service mechanism at each node. The service 
rate at each node can depend on the number of customers at that node and at other 
nodes. Similarly, the holding-cost rate need not be separable. But both the service 
rates and the holding cost must satisfy certain interchangeability assumptions. A 
special case is where the arrival process is state-independent and compound Pois- 
son and the service rate at each node is the same decreasing, concave, and bounded 
function of the number of customers at that node. 

Menich and Serfozo's model does not cover the case in which stations are 
�9 / M / s -  since then the service rate at each node is increasing rather than decreasing 
- but this case has been separately considered by Johri [41] who showed that JSQ 
routing minimizes (among other measures) the average waiting time of customers 
in the system. 

THE SYMMETRIC CASE: SERVE-THE-LONGEST-QUEUE RULE 

Many of the models above are special cases of a model considered by Farrar 
[21], in which the problem is to allocate dynamically both n streams of customers, 
arriving as non-homogeneous Poisson processes of differing rates, and n servers of 
differing speeds, so that exactly one arrival process and one server is allocated to 
each of n symmetric queues in parallel. This is a combined customer routing and 
server allocation problem. The natural generalization of JSQ is to allocate the j th  
fastest arrival stream to the j th  shortest queue and the j th  fastest server to the j th  
longest queue. This is the JSQ/SLQ ("join-the-shortest-queue/serve-the-longest- 
queue") rule. Menich and Serfozo also considered this rule for the case in which n 
identical arrival streams and n identical servers are already present, but there is one 
extra arrival stream to route and one extra server to allocate. Farrar's proofs are 
by a sample-path argument based on comparing states in terms of submajorization 
ordering of states. In this ordering, x is submajorized by y if their components 
have the same total, but the sum of the kth largest components of x are no more 
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than the sum of the kth largest components of y, for all k = 1 , . . . ,  n. In other 
words, the customers are spread more evenly between queues in state x than they 
are in state y. The sample-path approach is more powerful than value iteration. 
Farrar  shows that JSQ/SLQ stochastically minimizes the sum of the k largest 
queues, for all k, when the sets of instantaneous arrival rates and service rates are 
arbitrary functions of time. Moreover, as in Menich and Serfozo's work, these 
rates may also be functions of the state, provided that if x is better than y in the sub- 
majorization order (i.e. more spread out) the sets of arrival and service rates for 
state x are greater in submajorization order than those in y, i.e. less spread out. 

Farrar also considers symmetric parallel queues with finite buffers. He proves 
that JSQ/SLQ stochastically minimizes departure times when buffers are different 
sizes and there is a single arrival stream to be routed, or if there are several streams 
to be allocated but buffers are the same size. The first of these results is also proved 
by Hordijk and Koole [39], who use a Markov decision model and show that JSQ 
is optimal for infinite buffers and batch arrivals that must be allocated to a single 
queue before their size is observed. 

SUMMARY OF MONOTONICITY RESULTS FOR ADMISSION AND ROUTING 

Each of the papers cited so far in this section and the previous section has some- 
thing to say about the structure of optimal policies for admission and routing of 
customers in a network of queues, at least for small (e.g., two-node) networks or 
networks of special (e.g., cyclic or series) structure. We now summarize some of the 
implications of the results in these papers. For simplicity we only consider the 
case where the cost per unit time of holding customers is proportional to the total 
number of customers in the network. (That is, the holding-cost functions hi(xi) at 
all nodes i are the same linear function.) If  admission or rejection of arriving custo- 
mers at a particular node is an option, then a (node-dependent) cost in incurred 
whenever a customer is rejected (or, equivalently, a reward is earned whenever a 
customer is accepted). The objective is to minimize the expected discounted total 
cost. 

Consider a series of m nodes with a single exponential server at each node i and 
a controllable Poisson arrival process at node 1. An optimal policy for admission of 
arriving customers is monotonic in the following sense. If it is optimal to accept a 
customer in a particular state, then it is still optimal if a customer is removed from 
any node i or moved from node i to node i + 1. (See Weber and Stidham [67].) 

Consider a network of two nodes in series, each with an exponential server and 
a controllable Poisson arrival process. (See Ghoneim [25], Ghoneim and Stidham 
[26].) If  it is optimal to accept a job at node 1 (node 2) in a particular state, then it is 
still optimal if a job is removed from node 1 or node 2 or moved from node 1 to 
node 2 (from node 2 to node 1). 

Consider a network of two parallel nodes, each with an exponential server and 
a separate queue, and with a common controllable Poisson arrival process. An opti- 
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mal policy for routing customers to the two queues is monotonic in the following 
senses. If it is preferable to route a customer to queue i rather than queuej  in a parti- 
cular state, then it is still preferable if a customer is removed from queue i or added 
to queue j.  (That is, the optimal switching curve is monotonic. See Davis [18], 
Abdel-Gawad [1], Hajek [29].) If admission or rejection of arriving customers is 
also an option, then an optimal policy is also monotonic in the following senses. If it 
is optimal to admit a customer in a particular state, then it is also optimal to do so if 
a customer is removed from either queue. Moreover, if it is optimal to admit a job and 
route it to queue i then it is also optimal to do so ifa customer is moved from node i 
to nodej .  If the service rates of the two servers are equal, then the JSQ ("join-the- 
shortest-queue") rule is optimal. This result  extends to more that two parallel 
queues, to arbitrary arrival processes, and to service-time distributions with nonde- 
creasing failure rates or state-dependent exponential servers, but not to arbitrary ser- 
vice-time distributions. If  there are also servers to allocate then the SLQ ("serve- 
the-longest-queue") rule is optimal. (See Menich and Serfozo [48], Farrar [21 ].) 

ROUTING TO PARALLEL SERVERS FROM A COMMON QUEUE 

In the routing-control models discussed so far, each server has its own queue, a 
customer upon arrival is routed to one of the queues, and thereafter no jockeying 
between queues is permitted. Suppose instead that customers enter a common buf- 
fer when they arrive and the decision about which server should be assigned to the 
customer is postponed until the customer reaches the head of the queue. The trade- 
off is between immediately assigning the customer to a slow server or waiting for 
a faster server to become available. 

Such a decision procedure, if feasible, is clearly preferable to the former 
approach according to any reasonable performance measure, since all decisions are 
made at later points in time when more information is available. In some systems, 
however, it may not be feasible or permissible to delay the routing decision beyond 
the time point at which the customer arrives. An example is the assignment of vehi- 
cles to alternative lanes at a tunnel or toll plaza. For communication systems, it 
can be argued that the separate-queue model is most appropriate for virtual-circuit 
routing, in which an arriving customer (session) is assigned a route (virtual cir- 
cuit) at the instant of arrival (session generation). 

Perhaps the first paper to examine the single-queue, parallel-server optimal rout- 
ing problem was the unpublished Ph.D. dissertation of FarreU [22]. Later refer- 
ences include Sarachik [52], Lin and Kumar [46], Walrand [64], Viniotis and 
Ephremides [63], and Shenker and Weinrib [56]. Most references concentrate on 
proving the optimality of a threshold policy: always route the customer at the head 
of the queue to the faster server, if available, and route to the slower server only if 
the faster server is unavailable and the number of customers in the queue exceeds a 
threshold. The models generally assume Poisson arrivals, exponential servers, a lin- 
ear holding-cost rate, and discounted or average cost criterion. Attempts to prove 
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the optimality of a threshold policy for more than two servers have so far been 
unsuccessful. Shenker and Weinrib [56] compare the performance of threshold poli- 
cies to policies based on various heuristics. They also analyze the performance of 
heuristic routing rules for the separate-queue, parallel-server model discussed pre- 
viously. 

OTHER ROUTING MODELS 

Yum and Schwartz [76] proposed a JBSQ ("join-biased-shortest-queue") rule 
as an improvement on the JSQ rule when the servers have different rates. In this 
case an arriving customer is routed to the queue that minimizes the weighted num- 
ber of customers in the queue. (The individually optimal rule, in which an arriving 
customer minimizes his expected waiting time, is an example of a JBSQ rule, but it 
is not optimal for the system as a whole when the servers serve at different rates.) 

Bovopoulos and Lazar [11] use linear programming to examine numerically the 
optimal routing and flow-control policies for the separate-queue parallel-server 
problem. The objective is to maximize throughput, subject to a constraint on 
expected response time. 

Krishnan [43] develops a model for optimal routing to parallel queues. His algo- 
rithm uses separable routing, based on an optimal static allocation of flow, as a 
base policy and then uses one step of policy improvement to yield a state-dependent 
policy with better performance. Extensive numerical studies suggest that this algo- 
rithm performs very well. 

Chang [14] considers the separate-queue model where each queue feeds a series 
of identical exponential servers, with a Poisson arrival process. He shows that the 
optimal policy routes an arriving customer to the series that minimizes the sum of 
the queue sizes in the series. 

TWO QUEUES WITH COMBINED CONTROL OF ROUTING AND SERVICE 

Hajek [29] considers a general two-node model that incorporates many of the 
features of both the parallel and series queue models (but not the option of accept- 
ing or rejecting arriving jobs). In Hajek's model, queues 1 and 2 receive Poisson 
arrivals at rates A1 and A2, respectively. A third stream of Poisson arrivals at rate A 
can be routed to either queue. The stations have fixed exponential servers with 
rates #1 and #2 and a third exponential server with rate # that can be assigned to 
either queue; jobs whose service is completed by these servers leave the system. 
There are two additional exponential servers, with rates q'12 and 3'21, the first of 
which serves queue 1 and sends jobs to queue 2, the second of which serves queue 2 
and sends jobs to queue 1. Service completions by these servers can be "accepted" 
or "rejected"; the jobs arriving at rate 7 are to be routed to one or the other of the 
queues; and the server with rate # is to be assigned to one or the other of the queues. 
All these decisions are to be made dynamically as a function of the number of jobs 
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in the two queues. Hajek uses an inductive proof to establish the existence of a 
monotonic switching curve, on which all these decisions can be based. His analysis 
accommodates convex holding costs at each queue and costs associated with each 
switching decision. 

A METHOD BASED ON PIECEWISE-LINEAR INTERPOLATION 

Bartroli [5] presents a new mechanism for inductive proofs of monotonicity of 
optimal control policies for networks of queues, based upon piecewise-linear inter- 
polation of the value function on an appropriate triangulation of Euclidean space. 
He applies this mechanism to the problem of optimal admission and routing to 
two parallel queues and obtains simpler proofs of the structural results mentioned 
above. 

6. Scheduling in networks of  queues 

Scheduling problems arise in the control of networks of queues when one must 
decide which class of customers to process next at one or more nodes of a network. 
The class of a customer may determine its processing time, holding cost, and/or  
its route through the network. 

The earliest results on scheduling a queueing system concern an isolated single- 
server facility fed by independent Poisson arrival processes, one for each customer 
class. For the case of a non-preemptive M/GI/1 queue in which customer class i 
has service rate #i and holding-cost rate ci, various authors have shown that a pol- 
icy known as the c# rule minimizes the expected steady-state holding cost per unit 
time. The c# rule always gives priority to a job of the class i with the largest value of 
ci~ i among the jobs present. It is an example of an index rule, in which an index 
(in this c a s e  ci]zi) is computed for each job class i and the classes are served in 
decreasing order of the index value. 

Harrison [34,35] considers a multi-class non-preemptive M/GI/1 queue, in 
which the objective is to maximize the expected discounted value of total service 
reward minus holding costs incurred over an infinite horizon. He uses Markov deci- 
sion theory (specifically, a variant of the policy improvement technique) to show 
that an index rule is optimal for this problem. Whittle [71] shows that the optimal- 
ity of this index rule can be derived from the general theory of Gittins indices (Git- 
tins [27]). Other references on the optimality of index rules for preemptive as well 
as non-preemptive scheduling of a single-server facility include Whittle [72,73], 
Baras et al. [3], Baras et al. [4], Varaiya et al. [61], Walrand [65], Nain [50], Nain et 
al. [51], and Liu and Nain [47]. 

Klimov [42] considers a multi-class, non-preemptive M/GI/1 queue in which a 
customer of class i, upon completing service, re-enters the system as a class-j custo- 
mer with probability PU and leaves the system with probability p~0. He shows that 
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the long-run average cost is minimized by an index rule. Tcha and Pliska [59] con- 
sider Klimov's problem and establish the optimality of an index rule for the infi- 
nite-horizon discounted-cost case. 

Klimov's model can be regarded as the first model for scheduling in a network 
of queues, if one associates a node of the network with each customer class, with a 
single server who must select which node to serve next. Customers are routed 
from node to node independently of one another and of the state of the system 
according to the Markov routing matrix (p/j). The optimality of an index policy 
depends crucially, however, on the property that only one node of the network may 
receive service at any point in time. 

Problems in which service may take place simultaneously at more than one 
node are much harder to solve exactly and do not typically have index rules that are 
optimal. In section 4 we mentioned Farrar 's work [21] on the optimality of the 
SLQ rule for allocating servers of different speeds to parallel queues. Farrar [20] 
also considers a system of two queues in tandem, in which each of the two stations 
has a fixed server, but there is also an additional server whose effort is to be dynami- 
cally allocated between the stations. He considers a system in which there are no 
arrivals (commonly called a clearing system) and  shows that a policy that mini- 
mizes expected value of total linear holding cost until such time that system dears  is 
transition monotone, in the sense that following a service completion at either sta- 
tion it cannot be optimal to move the extra server to that station if it was not 
already in use there. The conjecture that the optimal policy is transition-monotone 
when there are arrivals, or non-linear holding costs is supported by numerical 
work, but remains open. 

Harrison [37] approximates a multi-class queueing network with Poisson input 
by a Brownian network. The optimal scheduling policies obtained using the Brown- 
ian network are nearly optimal for the corresponding multi-class network with 
heavy traffic. Other works on network scheduling that deal with Brownian approx- 
imations of a multi-class queueing network include Harrison [36], Harrison and 
Wein [38], Wein [68,69], and Laws and Louth [44]. 

Hariharan et al. [33] (see also Moustafa [49]) study a series ofm queues (labeled 
j = 1 ,2 , . . . ,  m) with m + 1 classes of jobs (labeled k = 0, 1 ,2 , . . . ,  m). Class-0 jobs 
require service at node 1 only, whereas class-k jobs, k = 1 ,2 , . . . ,  m, require service 
at nodes k through m. The service time at each node is deterministic and equals 
one unit of time. The decision to be taken at the beginning of every service slot is 
whether to serve a class-0 or class-1 customer at node 1. The objective is to mini- 
mize the expected discounted holding cost over an infinite horizon. Hariharan et al. 
[33] formulate the problem as a Markov decision process and derive conditions 
under which it is optimal to schedule a class-0 job, showing in particular that it is 
optimal to do so in all but a finite polyhedral set of states in the case where all custo- 
mer classes incur holding cost at the same linear rate. 

The model where service times are deterministic finds applications in packet- 
switched data communication networks, where each message is divided at the 
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source node into packets of fixed length. Since processing times at the nodes and 
links in a communication network are directly proportional to the length of the 
packets, the packets require the same service time at each node. 

Recent work by Yang et al. [75] and Chen et al. [16] on a similar model with expo- 
nential service times is based on point processes with stochastic intensities. The 
model reduces to a discrete-parameter Markov decision model. They consider a 
two-node queueing network with two classes of customers. The problem includes 
the scheduling of the server at node 1 amongst different classes. Dividing the pro- 
blem into several cases corresponding to certain parameter values, they derive opti- 
mal scheduling rules for some of these cases and propose heuristic rules for the 
other. 

Our survey reaches a conclusion in the next section with a discussion of the 
model of Hariharan et al. [33], as an example of a Markov decision process model 
of a scheduling problem in a network of queues. 

SCHEDULING A SERIES SYSTEM WITH CONSTANT SERVICE TIMES 

Consider an m-node network of the type described above. Each node j  has a sin- 
gle server (j = 1 ,2 , . . . ,  m). The classes of jobs are defined according to their 
routes. In particular, we define m + 1 classes of jobs. Class-0 jobs require service at 
node 1 only. Class-k jobs (k = 1 ,2 , . . . ,  m) require service at nodes k, k + 1 , . . . ,  m 
(in that order). The service times at each node are constant and equal. Without loss 
of generality we adopt this service time as our time unit, called a slot. Thus, in 
each time slot t (t = 0, 1, . . . ) ,  exactly one customer is served at each node 
j = 1 ,2 , . . . ,  m (provided that the class to which the server is assigned has at least 
one customer in its queue at the beginning of the time slot). Let At(k) denote the 
number of class-k arrivals during time slot t and let At = (At(O), A t ( l ) , . . . ,  At(m)). 
We assume that the random vectors/It ,  t = 0, 1 , . . .  are i.i.d. Customers of all 
classes incur holding cost at rate 1 while in the system. Future costs are discounted; 
the one-period discount factor is ft. The objective is to minimize the expected total 
discounted holding cost over an infinite horizon. 

Since all the jobs at n o d e j  ( for j  = 2, 3 , . . .  ,m) have the same remaining route 
and holding-cost rates, they can be regarded as equivalent to class-j jobs. Hence, 
for each nodej~>2, it is sufficient to keep track of the total number of jobs at that 
node and the only scheduling decision that is to be made is at node 1, where the sys- 
tem controller has to choose between class-0 and class- 1 jobs. 

Let x = (xo, x l , . . . ,  Xm) denote the state of the system, where x0 is the number 
of class-0 jobs at node 1, xl is the number of class-1 jobs at node 1, and x~, 
k = 2, 3 , . . . ,  m, is the number of jobs at node k (which we shall call level-k jobs). To 
describe the effects of the scheduling decision, it will be convenient to introduce 
the following notation. Let 

do(x) := -eol(xo >0) ,  
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di(x) :=(-ei+ei+l)l(xi>O), i = 1 , 2 , . . . , m - 1 ,  (5) 

din(x) : = - e m l ( x m > O ) ,  

where ei is the unit m-vector with a one in the ith component and zeroes else- 
where. Thus, di(x) measures the effect on the state vector x of the service of a level-i 
job, i = 0, 1,. .  :, m. Now define state-transformation operators T/x as follows: 

m 

fox :=  x + ao( ) + (6) 
i = 2  

m 

TlX  : =  x -5 dl(x) q- Z diCx). (7) 
/--2 

Thus, given that the state of the system is x, if a class-0 customer is served at 
node 1, then the state of the system at the beginning of next service slot, without the 
addition of new arrivals, is Tox. Similarly, if a class-1 customer is served at node 
1, then the state of the system at the beginning of next service slot, without the inclu- 
sion of the new arrivals, is/ ' ix. 

Let V(x) be the minimal expected total g-discounted cost (/3 < 1) over an infinite 
horizon starting from state x. Then V(x) satisfies the optimality equation 

m 

V(x) = y~  xi + min{ U(Tox), U(Tlx) } , (8) 
i = 0  

where U(x) =/3E[V(x + A)] and A = (A(0),A(1), A(2) , . . . ,  A(m)) has the com- 
mon joint distribution of the random vectors At = (At(0), At(l), At (2) , . . . ,  At(m)), 
t = 0 , 1 ,  . . . .  

We now characterize certain sufficient conditions to be met by the state vector 
x under which it is optimal to serve customers of class 0 at node 1. To establish these 
properties for the infinite-horizon problem, Hariharan et al. [33] use successive 
approximations (value iteration) and in the process show that they are also valid 
for the finite-horizon case. 

Let Vn(x) be the minimal expected total/3-discounted cost over n periods (time 
slots) starting in state x, n/> 1 (V0 = 0). We can express the value functions Vn 
recursively as follows: 

m 

V,(x) = y ] x i +  min{U,(Tox), U,(Tlx)} , n~> 1, (9) 
i=O 

where Un(x) =/3E[V,-I(x + A)]. It follows from the theory of Markov decision 
processes (see Sch/il [53], Bertsekas [6]) that Vn(x)~ V(x) and Un(x)'" U(x) as 
n ----~ o<3. 

The following theorem contains the sought-for characterization. It shows that 
it is optimal to serve class-0 customers at node 1 in all but a finite set of states, which 
is the intersection ofm - 1 partial-sum inequalities. 
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THEOREM2 

Serving class-0 customers at node 1 is optimal in state x if :co/> 1 and Ek=2 x i ~ k 
for some k ~ {2, 3 , . . . ,  m}. 

The proof of theorem 2 depends on the following two lemmas. 

LEMMA 1 

Given x such that :co i> 1 and xl/> 1, if 

V~(y - eo) - V~(y - el + e2) <~0, for all y>>.x, 

then 

U~+l(x - eo) - U~+l(X - el + e2) ~<0. 

(10) 

(11) 

LEMMA 2 

For j>~i>>.2, let X = {x : )-~=1Xj-k>~p for all p ~ { 1 , 2 , . . .  , j -  i -  1} and 
)-~=0 Xj+k i> l + 1 for some l e {0, l, 2 , . . . ,  rn - j } } .  If V0 satisfies the following 
inequality, 

f ( x + e i ) - f ( x + e j ) < ~ O ,  f o r a l l j > ~ i > ~ 2 a n d x ~ X ,  (12) 

then V= and U~ also satisfy (12). 

Lemma 1 follows directly from the definition Un. Lemma 2 may be proved by 
induction on n (see Hariharan et al. [33]). 

To prove theorem 2 it suffices to show that Un satisfies the functional in- 
equality 

f (Tox)  <~f(TlX) (13) 

ifx0>11, x11>land k Y~i=2 xi >~k for some k s  {2, 3 , . . . ,  m). This can also be done by 
induction on n (see [33]), using lemmas 1 and 2. 

Remal ' k  

Lemma 2 gives conditions on the state-vector x under which having an extra cus- 
tomer at node i instead of at node j (j > i), the number Of customers at all other 
nodes being the same, does not result in an additional cost. This might seem coun- 
ter-intuitive at first. However, the condition x~ X implies that the extra job at 
node j in state x +  ej is blocked by the jobs at nodes j , j +  1 , . . . , m ,  and 
i + 1 , . . .  , j  - 1 such that the following statements hold. 

(a) When this extra job reaches the terminal node (node m)I there is at least one 
other job at the terminal node (refer to condition ~k=l  Xj+k>>-I for some 
l E {0, 1 , . . . ,  m -- j}), so that the extra job continues to stay at node m. 
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(b) The nodes in between i andj are sufficiently loaded such that, at least until the 
extra job at node i (state x + ei) reaches the end node, there is a job (other 
than the extra job from node j, starting in state x + ej) at node m (refer to condi- 
tion )-~=1 Xj-k >~p for allp E { 1 ,2 , . . .  ,j - i -- 1 }). 

This ensures that the extra job (from state x + ej) is not served at node rn until the 
extra job at node i (from state x + ei) reaches node m so that the extra jobs in the 
two states leave the system at the same time. In fact, the inequality (12) may not be 
valid without this condition. (See Hariharan et al. [33] for counterexamples.) 
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