
Queueing Systems 13 (1993) 87-110 87 

R e - e n t r a n t  l ines * 

P.R.  K u m a r  

University of Illinois, Department of Electrical and Computer Engineering, 
and Coordinated Science Laboratory, 1308 West Main St., Urbana, 11_,61801, USA 

Received 1 November 1992; revised 30 June 1992 

Traditionally, manufacturing systems have mainly been treated as either job shops or flow 
shops. In job shops, parts may arrive with random routes, with each route having a low volume. 
In flow shops, the routes are fixed and acyclic, as in assembly lines. With the advent of semicon- 
ductor manufacturing plants, and more recently, thin film lines, this dichotomy needs to be ex- 
panded to consider another class of systems, which we call "re-entrant lines". The 
distinguishing feature of these manufacturing systems is that parts visit some machines more 
than once at different stages of processing. 

Scheduling problems arise because several parts at different stages of processing may be in 
contention with each other for service at the same machine. There may be uncertainties in the 
form of random service or set-up times, as well as random machine failures and repairs. The 
goal of scheduling is to improve performance measures such as mean sojourn time in the sys- 
tem, which is also known as the mean "cycle-time", or the variance of the cycle-time. 

In this paper we provide a tutorial account of some recent results in this field. We describe 
several scheduling policies of interest, and provide some results concerning their stability and 
performance. Several open problems are suggested. 
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lines, scheduling policies, queueing networks, buffer priority policies, due date policies, stabi- 
lity, stochastic control, mean delay, variance of delay, machine failures, set-up times. 

1. Introduction 

In  the  t r ad i t iona l  d i c h o t o m y ,  m a n u f a c t u r i n g  systems are  classified as e i ther  j o b  

shops  or  f low shops;  see G r a v e s  [1]. Briefly,  j o b  shops  are  used  fo r  low v o l u m e  pro-  

d u c t i o n  o f  par ts ,  typ ica l ly  m a d e  to  order .  Each  (possibly  c u s t o m  m ad e )  p a r t  m a y  

ha ve  a d i f fe ren t  r ou t e  (i.e., sequence  o f  p rocess ing  steps) t h r o u g h  the system,  a n d  so 

the  p a r t  rou tes  m a y  be r e g a r d e d  as " r a n d o m " .  In  con t ras t ,  f low shops  (such as as- 

sembly  lines) are  used  for  h igh  vo lume  ded ica ted  p r o d u c t i o n  o f  a pa r t - t ype ,  which  

is m a d e  to  s tock.  The  pa r t  rou te  is f ixed, and  acyclic.  
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With the advent of semiconductor manufacturing, and more recently, thin film 
lines, however, this dichotomy needs to be expanded to consider a third class of 
manufacturing systems, which we shall label as re-entrant lines; see fig. 1. This type 
of system consists of one (or more) part types, each with its own fixed route 
through the plant. The part flow(s) along the route(s) may be high volume. The 
characteristic feature of each part flow route is that parts visit some machine (or set 
of machines) more than once. Thus parts at different stages of their life may be in 
contention for service at the same machine. This gives rise to problems of machine 
scheduling. 

These re-entrant lines differ from flow shops since the part flow route is re- 
entrant, i.e., non-acyclic. As mentioned, this "re-entrant" feature gives rise to im- 
portant scheduling problems. In addition, they differ from job shops since there 
may be only a single part flow route, which is thus of high volume. Thus, in contrast 
to job shop scheduling, which is usually regarded as a combinatorial problem, 
there is more structure to exploit when addressing scheduling problems. Depending 
on whether the re-entrant line is a full scale production facility or a research and 
development facility used for prototyping, and on whether the products manufac- 

Service Center 1 
M1 machines 

Service Center 2 I 
M2 machines I 

I 

machines M3 machines 

t ' 
Fig. 1. A re-entrant line. 
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tured are memory or logic chips, the system may be classified as either a make-to- 
stock or make-to-order facility. 

In the rest of the paper, we provide an account of some recent results in this 
area. In section 2, we describe a re-entrant line, and in sections 3 and 4 we provide 
some bounds on attainable mean delay in a stochastic framework, under the 
assumption that service and inter-arrival times are exponentially distributed. In 
section 5 we describe a scheduling policy for reducing delay. In sections 7-9 we 
examine the issue of stability of re-entrant lines, under a deterministic, bursty mod- 
el of arrivals described in section 6. Section 10 provides some simulation results 
on the delay experienced by some scheduling policies. In section 11 we examine the 
problem of minimizing the variance of delay, suggest a scheduling policy, discuss 
its stability, and provide some simulation results. In section 12 we provide a sto- 
chastic control approach to the problem of production control under random 
machine failures. Finally, in sections 13 and 14 we turn to an examination of sche- 
duling issues if set-up times are incurred whenever processing is switched from 
one buffer to another. 

2. Descript ion o f  a single re-entrant line 

Consider a set { 1 ,2 , . . . ,  S} of S "service centers" (see fig. 1). Each service center 
cr ~ { 1 ,2 , . . . ,  S} consists of M~ identical machines. Parts of a certain type enter at 
a service center or(l) e {1 ,2 , . . . ,  S}, where they are stored in buffer bl. Then they 
visit service center or(2), where they are stored in buffer b2, etc. Let buffer bt at ser- 
vice center or(l) be the last buffer visited. The sequence or( l ) , . . . ,  or(l) is the rou te  

of the part. We shall allow for the possibility that e(i) = a(j) for some stages i # j ,  
and accordingly call this type of a system as a r e - e n t r a n t  line. 

To describe the system more fully, we need to specify the nature of the arrival 
process(es), the service times at the service centers along the routes, and how parts 
are to be selected for service at the service centers. Finally, if machines are subject 
to failure, we need to specify the failure and repair times. 

3. B C M P  and  Kel ly  networks  

Let us assume that the machines do not fail, and 

(i) the arrivals are a Poisson process of rate A, 
(ii) the service times at service center tr are all exponentially distributed with 

mean 1/#~, 
(iii) the scheduling discipline at each service center is first-come-first-serve 

(FCFS), i.e., a part which arrives first at a service center is served first. 
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Under these assumptions, the system is a BCMP or "Kelly" network (see [2,3]) 
and the steady-state distribution has a "product" form. Some properties of the 
steady-state distribution (taking M~ = 1 for simplicity) are, 

Prob (there are n parts at service center a) = (1 - p~)p~, 

where 

and 

Also, 

V~ := number of visits to service center ~. 

A 
E[number of parts in buffer bj at service center a] #~ - AV~ " (1) 

We have assumed here that the arrival rate ), is within the capacity of the system, 
i.e., p~ < 1 for all ~r. 

(For the more general case where there are many such routes, many machines 
at each service center, etc., and for more details about the "product-form" steady- 
state distribution, see [3].) 

There are two crucial, restrictive features of BCMP and Kelly networks. First, 
in assumption (ii) above, all parts at a service center a are required to have the same 
mean 1/#~, regardless of the buffer they are in. Second, the scheduling discipline 
(FCFS above) is not allowed to depend on the buffer occupied by the part. Thus, 
priorities based on the "stage" of production of a part are disallowed. 

To illustrate our ignorance when the mean service times are different on revi- 
sits, consider the system in fig. 2. When #1 ~ #3, even under an FCFS discipline, 
currently we do not know the steady-state distribution of the system, or even 
whether there is one. (We conjecture though that the system is stable whenever 
p~ < 1 for all a, and hence that there is in fact a steady-state distribution.) The state 
of the system consists of a binary valued sequence to describe the order of arrivals 
at Service Center 1, and an integer to denote the number at Service Center 2. The 

, ~ = 1  b 

1 1__ 

[ I 

,U3 

Service Center 1 

_11 k-- 
Service Center 2 

Fig. 2. A system with unequal service time distributions for the buffers at the same service station. 
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inclusion of the order of arrivals in the state is necessitated by the FCFS nature of 
the service discipline. 

4. Bounds  on attainable performance 

Can we bound the performance attainable by optimal scheduling? Under as- 
sumptions (i) and (ii) of the preceding section, we can indeed obtain a lower bound 
on the mean "number of remaining stages", as follows. 

Let us consider a stable scheduling policy, i.e., one for which there exists a stea- 
dy-state distribution with a finite second moment for number of parts. Let xi (t) be 
the number of parts in buffer i at time t, including any in service, and define the num- 
ber of  remaining stages R( t) as 

l 

R(t) = E ( l -  i+ 1)xi(t). 
i=1 

We shall apply "uniformization" (see [4]) and suppose that an idle machine at 
service center a is working on a fictitious customer whose service time is exponen- 
tially distributed with mean 1/#,. Let {rn } be the sequence of times at which there is 
either an arrival, or a real or fictitious service completion, at some machine. We 
shall denote by 5F~. the it-field generated by events up to time Tn. Let us scale time so 

s that I + ~o-=1 #* = 1. 
Then 

s 

E[R2(Tn+I)I9:~.] =A[R(Tn) +/]2 + E#o- l (c r  is busy at 7"n)[R(Tn)- 1] 2 
o'=1 

s 

+ ~ # o - l ( g  is idle at "r.)R2(rn) 
tr=l 

>>.R2('c.) + 2AIR(r.) + Al 2 (usi/ag l(~r is busy at r.) ~< 1) 

S S 

- E 2#aR(~'n)+ E # o - l ( a  is busy at rn). 
o-=l o-=l 

Taking expectations and telescoping, 

lira E[R(T.)]>~ M2 + Y~'f=l #~" (.~V,~/#~) (using po- = E ( l ( a  is busy at rn))) 
S ~ ~o-=1 2#. - 2AI 

s 

= sAl(l + 1) (using l =  E vo-) . (2) 
2 Y]o-=l #o-(1 - po-) .=1 

Thus we have obtained a bound on the attainable performance of any stable sche- 
duling policy (with a finite second moment). This bound is due to Meyn [5]. (See 
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also Meyn and Down [6], where such a "Lyapunov" function is used to establish 
the stability of "generalized" Jackson networks when the assumption of exponen- 
tial distributions is relaxed.) 

Let us compare this bound with the known performance of the FCFS disci- 
pline. Using (1), for the FCFS discipline we obtain, 

t ( l - i + 1 ) ~  
nlirnoo E[R('rn)] = ~ ~ 5_ ~-~ " 

I f /~  = #, V~ -= V(andthus p~ _-- p, SV =/ ) ,wehave  

pS(l + 1) 
lira E[R(~-n)] = 2 ( 1 -  p) ' 

n--~ oo 

while the bound (2) is, 

Thus, we have 

p(l+ 1) 
l irn E[R(Tn)]>~ 2(1 - p - - - - ~  " .(3) 

E[number of remaining stages under FCFS] 
E[number of remaining stages under optimal policy] ~<S. (4) 

Since we do not really expect FCFS to be so bad when S is large, it appears that 
the bound (2) is rather poor when S is large. 

Our real interest centers not on the mean "remaining number of stages of 
work", but on the delay experienced by a part, which is known as cycle-time in the 
semiconductor manufacturing parlance. Since (number of stages of remaining 
work) ~< 1 (number of parts in system), we obtain from (1), (2) and Little's Theorem 
that 

Mean delay of FCFS 2S12 ~ < - -  
Optimal mean delay (l + 1) ' 

which is also rather gross when the number of stages or service centers is large. 
An alternative bound, which is useful at light loading can be obtained as fol- 

lows. Let us dedicate a server of rate #~ to each buffer. Then there is no conflict be- 
tween buffers. Moreover, since all parts at a buffer are essentially identical, and 
since we have a tandem queueing system, any non-idling (also misleadingly called 
work conserving) policy, and in particular, FCFS, is optimal. Using the known 
result for tandem queues (a special case of Kelly networks), we obtain the bound, 

lira E xi(t >~ - 
t " ~ c ~  t r = l  i = I  ] ~  - -  ~ 

If#~ - #, V~ -- V, we obtain 
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t--,'oo V - p " 
i=1 

Thus, combining bounds (5) and (4), we obtain 

Mean delay of FCFS . [ 2 , 7 l  2 V - p ] 

Optimal mean delay ~< mln [-(]~ ~),V- 0 - P 

�9 [ 2 S l  2 1 ] 

~<mln[-(~ 1 ) ' 1 -  p] " 

Clearly, more work is needed in the area of performance quantification! 

(5) 

5. Reducing  the mean  delay: The last buffer first serve policy 

Let us consider two possible goals of scheduling a manufacturing system. First, 
one may want to reduce the m e a n  cycle-time, i.e., the mean sojourn time or delay of 
a part in the system. Second, one may want to reduce the v a r i a n c e  of the cycle- 
time, which is useful for reliably meeting due dates. In this section, we will focus on 
the goal of constructing a scheduling policy to reduce the mean cycle-time. 

EXAMPLE 5. I 

Consider the simple motivatory system of fig. 3. There is a single machine, and 
each part visits it l times in succession. Let us suppose that arrivals are a Poisson 
process of rate A, and service times at buffer i are exponentially distributed with 
m e a n  1 / l z  i. By Little's Theorem, (mean delay) = 1/A(mean number in system). 

Taking our cue from Little's Theorem, which prescribes that in order to mini- 
mize delay one must minimize the mean number of parts in the system, it is clear 

1 I11 Ell 1_ 
Service Center with 1 machine 

I i 

I 1 

Fig. 3. System of example 5.1 where LBFS is optimal for mean delay. 
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that the optimal policy for the machine is to take up parts from buffer bl in the 
order of their arrival to b l (and hence in the order of their arrival to the system), and 
then continuously work on a part, through all its stages, until it exits the system. 
(This is provable using a sample path dominance argument.) 

Under such a policy, the system is also equivalent to an M/G/1  system, where 
all the service times at the buffers are aggregated into a single service time which is a 
sum of exponentially distributed random variables, and operating under an FCFS 
discipline. Hence, by the Pollaczek-Khinchine formula, the mean delay in the 
system under this priority scheme is 

2 p -  p2 +/~2 [1//z2 + . . .  + 1/#~] 

2(1 - p) 

where p = ~-]~I=1 &/#i. 
The above policy can also be described as one where the part taken up next for 

processing by the machine is the one with the shortest expected remaining proces- 
sing time, counting all its stages, the so called SERPT policy. Yet another descrip- 
tion of the optimal policy is as follows. Order the buffers bt, bt-m,.. . ,  bl in the 
reverse of the order that they are visited, and give priority to the buffers in this or- 
der. (Thus, a part in buffer b3 should be taken up for processing only if buffers 
bl , . . . ,  b4 are empty.) Moreover, parts are taken from the head of a buffer only. [] 

The optimality of the "shortest expected processing time" policy for minimizing 
the mean flow time of a set of fixed jobs under a non-preemptive discipline using a 
single machine or several parallel machines, has been established under an assump- 
tion of stochastic ordering of the service times; see [7,8]. Such optimal "time-shar- 
ing" results are also available for queueing networks; see Klimov [8,9] and Lai 
and Ying [10]. 

Taking our cue from such considerations, let us consider a policy for a re- 
entrant line which orders the buffers bl,. �9 bl, and gives non-preemptive priority 
in that order. We shall refer to this as the Last Buffer First Serve Policy (LBFS). 
Since such a policy attempts to clear parts from the system, it is a good candidate 
for reducing the mean delay, particularly at high load factors. However, in evaluat- 
ing any policy one must also consider whether it induces excessive forced machine 
starvations. In section 10 we provide the results of some simulations. 

6. A deterministic model  

We would like to analyze policies such as LBFS, and others. The available 
results cover only relatively simple systems, as in Simon [11]. Hence, in view of the 
difficulties faced by a probabilistic model of arrivals and services, let us adopt a 
deterministic model. 

Let us suppose that in every time interval [s, t], 
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Number of arrivals in Is, t] ~< A ( t -  s) + 7 for all 0 ~<s ~< t <  c~. (6) 

We shall refer to A as the "arrival rate" (though it is only an upper bound). The con- 
stant 7 allows for some burstiness; see Cruz [12]. 

Regarding the service times, let us suppose that a part in buffer bi requires Ti 
units of service from one of the machines in service center a(i), and that there are 
M~ identical machines at service center ~r. 

We shall also suppose that 

A'ri 
p~:=  ~ ~ -~<1  f o r a l l a e { 1 , 2 , . . . , S } ,  

{iltr(i)=tr} 

i.e., that the arrival rate A is within the capacity of the system. 

7. An unstable buffer priority policy 

The last-buffer-first-serve (LBFS) policy is but one example of a scheduling pol- 
icy based on ordering the buffers according to a priority ordering, and giving non- 
preemptive priority in that order (always choosing parts from the head of a buffer 
if there is more than one part in the buffer). 

However, some buffer priority policies can be unstable, as shown in the follow- 
ing example drawn from Lu and Kumar  [13]. 

E X A M P L E  7.1 

Consider the system shown in fig. 4. Let us suppose that parts arrive periodically 
at rate A = 1, at times 0, 1, 2, 3, . . .  to the system. Suppose that T1 = T3 = 0, and 
T2 = ~'4 = 2/3. Each service center consists of only one machine, i.e., M1 = M2 = 1. 
Even though ~-1 and T3 are zero, parts in buffers bl and b2 require attention (of0 sec- 
onds!) from the machines at service centers 1 and 2, before they can proceed to buf- 
fers b2 and b4 respectively. Consider the buffer priority policy employing the 
buffer priority ordering b4, bl, b2, b3. 

Suppose that at time 0-, there are x parts in buffer bl, and 0 parts elsewhere in 
the system. At time 0-, these x parts are transferred to buffer b2. Service Center 2 

A = I  * 

7-4 

Service Center 1 

7-3 

Service Center 2 

Fig. 4. System of  example 7.1 which is unstable for a buffer priority policy. 
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commences a busy period which is completed at time T-,  satisfying (T + x)2/3 
= T, i.e., T = 2x. At time T-, the 3x parts in buffer b3 are transferred to b4. The 
machine at Service Center 2 then goes into a busy period lasting 2x time units, dur- 
ing which 2x parts have arrived into hi. Hence the new state of the system at time 
4x- is 2x parts at buffer bl, and 0 parts elsewhere. 

Thus, in one cycle of operations described above, the number of parts in the sys- 
tem has doubled from x to 2x. This process repeats itself, showing that the mean 
number of parts in the system, as well as mean delay, are unbounded. [] 

For an example of an unstable system with ri # 0, see Tang and Shi [14]. 

8. Stability of  the last-buffer-first-serve policy 

It is a non-trivial fact that the LBFS policy is stable. The following contractive 
property of LBFS is proved in Lu and Kumar [13]. 

THEOREM 8.1: CONTRACTIVE PROPERTY OF LBFS 

Let w~ := Y'~{ilb, is servedbyservicecentercr} Ti/Ma be the work, in time units, brought 
in per incoming part to a machine at service center or, and let ~ := max~ w~, be the 
corresponding quantity for the "bottleneck" machine. Then, for every c > 0, there 
exists a constant c(c) such that, if there are x parts in the system, however located, 
when a part arrives at the system, then its delay in the system satisfies, 

Delay~<c(e) + (g,+ e)x for all e>0 .  

The proof of this assertion can be found in [13]. The essential property on which 
it hinges is that there is only "unilateral temporal interference" by parts. To see 
this, suppose, for simplicity only, that the buffer priority discipline is pre-emptive. 
Consider a part arriving into buffer b5 (say) at a service center cr which also serves 
buffers bE, b3, b7 and blo. Then by the pre-emptive priority, the part in b5 is not sub- 
jected to delay by having to wait for parts in buffers bE and b3. Its only delay is 
caused by parts already in b7 and bl0, or parts which arrive into b7 and bl0 while it is 
waiting in bs. Since all such parts must have arrived into the system prior to its 
own arrival into the system, we see that delay is caused only byparts which arrived 
earlier, not later. This is what we mean by unilateral temporal interference. 

Utilizing theorem 8.1, one may establish the following stability and perfor- 
mance upper bound for the delay of an LBFS policy. 

THEOREM 8.2 

(i) Under the LBFS policy, the delays of all parts are bounded. 
(ii) If x(0) is the number of parts in the system at time 0, then the number of parts 

x(t) at time t is bounded by, 
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2(Ac(e) + 7) 
x(t)~<max (1 + p +  Ae)x(0) + Ac(e) +7 ,  T---p--Ae J 

for all t/> 0, for every e > 0 with 1 p Ae > 0, where p := max~ p~. 
(iii) The asymptotic number of parts in the system is bounded by, 

+ 7 limsupx(t)~< for all e>0  with 1 p Ae>0. 
t-*oo 1 p Ae 

Proof 
See [13]. [] 

The above theorem provides a bound on transient behavior in (ii), and a bound 
on asymptotic behavior in (iii). As one would expect, the asymptotic performance 
bound is independent of the initial number x(0) in the system. 

In contrast to the LBFS policy, parts moving under an FCFS scheduling policy 
are subject to bilateral temporal interference by parts which arrive both before as 
well as after it. We have been unable to establish whether FCFS is stable - a signifi- 
cant open question, and one which is well worth resolving. We conjecture that 
FCFS is stable. 

9. The first-buffer-first-serve policy 

Let us consider another buffer priority policy, the first-buffer-first-serve 
(FBFS) policy, which is the diametric opposite of the LBFS policy. It supplies non- 
preemptive service in the priority order bl, b2, �9 bl, i.e., in the same order that buf- 
fers are visited. 

The stability of FBFS is simple to establish; see [13]. 

THEOREM 9.1 

The FBFS policy is stable. 

Outline of proof 
For ease of exposition, suppose that the service discipline is preemptive. Then 

parts in buffer bl have highest priority, and the other buffers in the system are trans- 
parent to it. Since bl is also the entry point for parts, and their arrivals are nearly 
periodic as in (6), it follows that the level ofbx is bounded. Thus the departures from 
bl are also nearly periodic. These however constitute the arrivals into b2. One can 
repeat this argument, until one arrives at a buffer which is subject to interference by 
buffers earlier in the route. At this point, one may regard the servers (machines) 
as having allocated a dedicated fraction of their times to the earlier buffers (since 
their arrivals as well as departures are nearly periodic). Thus the parts in the later 
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buffers have their services met by the remaining capacity at the machines. In this 
way, by induction on the buffers, in the order b l , . . . ,  bt, one can prove that every 
buffer level in the system is bounded. [] 

It is worth noting that under the FBFS policy also the parts suffer only from uni- 
lateral temporal interference. However, unlike LBFS, the interference is due to 
parts which arrived later rather than earlier. 

For a treatment of systems consisting of many part-types, with different re- 
entrant routes, we refer the reader to [13], which provides several stable buffer 
priority policies. 

10. Some simulation results 

While theorem 8.2(iii) provides a bound on delay, it is conservative. To obtain 
a better idea of performance of LBFS, simulations have been conducted in [13] on 
the system shown in fig. 5. 

Ninety random systems were constructed. To construct each system, the deter- 
ministic service times at each buffer were randomly generated, and then normal- 
ized so that p,  = 0.8 for all ~ in thirty of the systems, and equal to 0.9 and 0.999 
respectively, in the other two sets of thirty systems each. Thus each system had 
deterministic processing times (which were randomly chosen). The arrivals in all 
cases were a Poisson process. For each system, one simulation run was performed 
to compare the four policies, LBFS, FBFS, FCFS, and another policy LS to be 
introduced in section 11. The mean delays of all 30 simulations runs (one for each 
system) as well as the mean rank (among the four contending policies) are shown in 
table 1. At high loading (p = 0.999) LBFS was best in all thirty systems, LS was 
always second, while FCFS and FBFS were always third and fourth respectively. 

Fig. 5. Simulated system. 
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Table 1 
Simulation results for mean delay and rank of mean delay on system of fig. 5. 

99 

p FBFS a FCFS LBFS LS 

0.8 Average of 30 means 33.63 11.32 10.06 10.52 
Average rank of mean 4.00 2.80 1.40 1.80 

0.9 Average of 30 means 164.04 31.54 22.42 26.56 
Average rank of mean 4.00 2.90 1.20 1.90 

0.999 Average of 30 means 491.65 83.62 49.32 65.43 
Average rank of mean 4.00 3.00 1.00 2.00 

a Due to an extremely large build-up of queue size, only 14 sets of values were recorded at the load 
factor 0.999. 

This lends credibility to our intuition that LBFS is a good policy for reducing 
mean  delay at high load factors, in two ways. First, it was always best among the 
contending policies, at/9 = 0.999. Second, the same intuition also suggests that  
FBFS should be a bad policy vis-a-vis mean  delay, and it was indeed the worst  in all 
90 simulations. 

11. Reducing the variance o f  the delay: The least slack pol icy 

Reduct ion of  the variance of  the cycle-time is also often described as an impor- 
tant  goal in semiconductor  manufacturing.  A low standard deviation of  delay 
allows one to plan releases into the system to accurately meet  due dates. Moreover ,  
if a certain end product  requires many  separate parts of  different types for its final 
assembly, then an accurate prediction of  the delay allows a tight coordinat ion of  
the product ion complet ion times of  the various part-types, enabling on-time assem- 
bly. 

Let us suppose that  each part  7r entering into the system has a due date 6(7r) 
s tamped on it. Also suppose that  to each buffer bi we associate a number  ~i. Let us 
define the slack s(Tr) of  a part  7r in buffer bi as, 

: =  - r  

Consider the case where the number  (i is chosen to be equal to a (maybe empiri- 
cal and rough) estimate of  the mean remaining delay till completion for parts in buf- 
fer hi. Then, clearly a part  7r' with s (~)  <s(Tr) can be regarded as having fallen 
fur ther  behind (or less ahead!) its schedule than lr. Thus if the goal is to ensure that  
the lateness (defined as exit time e(Tr) minus due date 6(7r)) of  all parts is the same, 
then ~ should be accorded higher priority over 7r. This suggests the following Least  
Slack (LS) policy; give highest priority to a part  with the smallest slack s(Tr). It is 
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Table 2 
Simulation results for variance and rank of variance on system of fig. 5. 

p FBFS a FCFS LBFS LS 

0.8 Average of 30 Std. deviations 14.16 4.19 3.44 3.01 
Average rank of Std. deviation 4.00 2.87 2.00 1.13 

0.9 

0.999 

Average of 30 Std. deviations 18.29 7.64 5.52 4.76 
Average rank of Std. deviation 4.00 3.00 1.97 1.03 

Average of 30 Std. deviations 15.22 4.04 4.41 3.35 
Average rank of Std. deviation 4.00 2.17 2.70 1.13 

a Due to an extremely large build-up of queue size, only 14 sets of values were recorded at the load 
factor 0.999. 

clear that such a policy will tend to reduce the variance of the lateness, since it tends 
to "equalize" the lateness of all parts. 

If we instead choose 6(7r) = arrival time of a part, rather than due date, then it 
is clear that the least-slack policy will tend to reduce the variance of delay in the 
system. 

However, we need to resolve a "circular" feature of the mutual dependence 
between estimates {~i} of delay and the policy LS. The policy LS is specified by the 
numbers {(i}, but the numbers {(i} are estimates of the remaining delays which 
are determined by the policy. In [13] this issue is resolved as follows. First all {(i} 
are set to zero, and the LS policy with ~; = 0 is implemented. A simulation of this 
LS policy is then run, and new estimates {(i} of remaining delays are obtained. 
These are then used to refine the policy LS, and so on. This iterative procedure was 
used to obtain a policy LS whose empirically observed delays were close to the num- 
bers {~i} used in defining the policy itself. Such an iterative procedure is also used 
in Vepsalainen and Morton [15]. 

The simulation results, from [13], on the system of fig. 5 are reported in table 2. 
They indicate the effectiveness of LS in reducing the variances of lateness or delay. 
We should note that in our simulations above, the systems were balanced in that 
p~ = p at all service centers. Also, no machine failures were considered. 

The numbers (i, which should more properly be called the "parameters" describ- 
ing the LS policy, could also be chosen on some other basis. For example, choosing 
(i - 0 results in s(Tr) - 6(7r), and so the LS policy then coincides with the well 
known Earliest Due Date Policy. Such "slack" based policies are often mentioned 
in the literature; see Baker [16], for example. In fact, if jobs arrive to the system in 
the order of their due dates, then it is worth noting that the LBFS policy is itself a 
special case of the LS policy which is obtained by setting all ~i to 0. This property 
can be used to generalize the proof of stability of LBFS to LS; see [13]. 
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T H E O R E M  1 I. 1 
The least-slack policy is stable for every choice of parameters {~}. 

Noting, as above, that both the LBFS policy for reducing mean delay, and the 
LS policy for reducing standard derivation, are of the same form, with merely dif- 
ferent choices for the ~i's, one may consider a "convex" combination of these two 
policies for reducing (Mean +3 Std. Devns) of delay. It is obtained by setting 

(i = a/[mean remaining delay from bi] 

for some 0 < ai < 1. 
A more comprehensive set of simulations has been performed on models of semi- 

conductor manufacturing plants in Lu and Kumar  [17]. They indicate that low 
mean delay and standard deviation can be realized by "optimizing" over the para- 
meters ~i; see the "Least Optimized Slack" policy in [17]. 

Recently, using a Brownian motion approximation of a network, Wein [18,19] 
has determined policies which attempt to reduce the mean and variance of delay. 

12. Machine failures: A stochastic control approach 

Machine failures (and maintenance, recalibration, or other down times) are a 
significant source of uncertainty in semiconductor manufacturing systems. We will 
now illustrate some structural features of an optimal solution suggested by a sto- 
chastic control formulation. 

Let us adopt a "fluid" viewpoint, and suppose that when service center ~ works 
at maximum rate on a buffer bi, then/~i units of parts flow out of buffer bi and into 
buffer bi+l, ( o r  exit ifbi = bl is the last buffer) per unit time. Let ui(t)  be the fraction 
of service center tr's service capacity which is provided to buffer b/ at time t. 
Clearly 

ui(t)>,O, and ~ ui(t)<<,l for all tr, (7) 
{ilbi is served by tr} 

if service center ~r is working, and 

ui(t) = 0, for all i such that bi is served by a ,  (8) 
if service center cr has failed. (For simplicity let us suppose that service center tr con- 
sists of just one machine.) 

Letf~(t) = 0 or 1 be a variable to denote whether service center cr has failed or 
is working at time t, and letf( t)  = ~i ( t ) , . . .  ,fs(t)) be the failure status of the entire 
system. From (7) and (8) it follows that for every system status vector f ,  there is a 
feasible set U(f) of vectors u = (Ul , . . . ,  ul) T. It should be noted from (7, 8) that 
each U(f) is determined by linear constraints. 
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Thus one obtains the constraint, 

u( t )eU(f ( t ) ) .  (9) 

Let us suppose (for simplicity) that each fi(t) is an independent Markov chain 
with transition rate qil from 0 to 1, and qio from 1 to 0. Thus the constraint set 
U(f(t)) changes randomly with time as a Markov chain. 

Now let us examine the part flows and the buffer levels. Let x(t) = (x2(t), 
. . . ,  xl(t), Xl+l (t)) be the levels of buffers b2,. . . ,  bl, bl+l at time t. We omit bl from 
consideration, regarding it as an infinite source of raw material instead. Thus, sol- 
ving the stochastic control problem to be formulated shortly will also provide an 
optimal policy for releasing parts into the system, i.e., an optimal release policy. 
However, we do include an output buffer bl+l to denote the net inventory level of 
finished parts. For this purpose, we suppose that there is a net demand rate A for 
parts, which constitutes a constant drain on bt+l, which is however sporadically 
replenished from bt. We allow Xt+l to be positive or negative, the latter correspond- 
ing to a backlog, while 

xi(t)>>.O for i =  2 , . . .  , l  (10) 

for the remaining physical buffers. Thus we have the state constraint (10) in addi- 
tion to the control constraint (9). 

Clearly the evolution of the state of the buffer levels x(t) is governed by a state 
equation of the form 

k(t) = B u ( t ) - b A  (11) 

for an appropriate matrix B, and b = [0, 0 , . . . ,  0, 1] T. In fact the ith row of B is 

[ 0 , . . . ,  0 ,  1s --]~i ,  0 ,  . . . ,  0]. 
To complete the formulation as a stochastic control problem, let us specify a 

cost rate 

I 
C(X(t)) = Z CiXi(t) q- C~+lX~l(t) -b Cl+lXl+l(t ) �9 

i=2 

Thus ci for 2 ~< i ~  l is the cost of maintaining one unit of work-in-process at bi for 
one unit of time. The interpretation of cT+ 1 is as a backlogging cost for a finished 
part per unit of time. 

The Hamilton-Jacobi-Bellman equation for the infinite horizon discounted 
cost function 

fo +~176 where a > 0 ,  

is, 
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min uTBWvxV(x, f)  - -aV(x , f )  + ~ qoo[V(x , f ) -  V ( x , f  -e~)] 
u~ v ( f )  

u i=O if x i--O {wl f~  = 1 } 

q- ~ q~l[V(x,f) - V ( x , f  +e~)] 

- c(x) + ATeT+l V x V ( x , f )  , (12) 

where en := (0 , . . . ,  0, 1 ,0 , . . . ,  0, 1) T. The feature of interest here is the left hand 
side in (12). For fixed (x,f),  it is a linear programming problem, and so an optimal 
solution is obtained at an extreme point of the constraint set. At each extreme 
point, either ui = 0 or 1, and thus all service attention is dedicated to just one 
buffer. 

However, as t increases, even if f (t) does not change, x(t) does change, and so 
the optimal u(t) can switch from one extreme point to another. Thus, for each fixed 
f ,  we may divide ~l (actually restricted to xi >i 0 for i = 2 , . . . , / )  into regions, where 
in each region one extreme point is optimal. 

At the boundary between regions, more than one extreme point may be opti- 
mal, and so an entire edge or face may be optimal. This corresponds to 0 < u~ < 1 for 
some i. If  the vector fields Bu - bA of(11) in adjoining regions are outward directed 
at a boundary, then a "chattering" phenomenon takes place. This corresponds to 
choosing an optimal u~ at the boundary which is not an extreme point, and the tra- 
jectory ofx(t) then follows the boundary. 

In this way, as successive boundaries are met, the trajectory of x(t) may be suc- 
cessively restricted to lower dimensional surfaces, and there may even be a point 
x = z* at which 2(t) = 0. This corresponds to an optimal buffer state z* where the 
system simply produces enough to match demand. 

Kimemia and Gershwin [20], in a pioneering work, considered a system of the 
form (11) with B = I and b = (AI, A2,. . . ,  Ap) T. This corresponds to a system pro- 
ducing a variety of part-types, but without taking into account the internal dy- 
namics inside the system, i.e., neglecting the flows between buffers. They have 
determined suboptimal control laws. 

A much simpler scalar system has been fully solved in Akella and Kumar  [21] 
and Bielecki and Kumar  [22]. This is a system consisting of just one machine produ- 
cing a single part-type at rate u, 0 ~< u ~< # when up, and at rate u = 0 when down; 
see fig. 6. The constant demand rate is A. The machine state is described by a Mar- 
kov chain with failure and repair rates q0 and ql. This is modeled as a system 

5c(t) = u(t) - A 

u(t)e[O,#] i f f ( t ) =  1, : 

= 0 if f (t) = O, 

wheref(t)  is a Markov chain with state transition matrix 
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qo 

0 < u < #  ql u----O 

l u(t) 

x(t) 

Machine 

LlrJ 
A 

Fig. 6. A failure prone system. 

[--ql ql ].  
qo -qo 

Let us consider the average cost function, 

1 fr  l imoo~E [c+x+(t)+c-x-(t)] dt. 
dO 

(The discounted cost version is treated in [21 ].) 
The optimal control law is the following. There is an optimalbuffer levelz*, 

z*=max 0,(~_ p,~A)l~176 , (13) 

and the product ion rate u should always be chosen to reach the inventory level z* 
as quickly as possible, and maintain it there. Thus 

u(t)= l i f x ( t ) < z * a n d I ( t ) = l ,  

= A if x(t) = z* and I(t) = 1, 
--- 0 otherwise. 

The reader may wonder why the optimal buffer level z* in (13) may be zero. This 
has its roots in three facts. First, the steady-state distribution of  x(t) has a mass at 
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z*, and an exponentially decaying density for x < z*. Second, changing z* to some 
other z simply translates this steady-state distribution. Last, the cost function is of 
an absolute value type. Due to these facts, the optimal level z* should be so chosen 
that the ( lOOc+/(c + + c-))th percentile of the steady-state distribution (rather 
than the mean) is at the origin, see [22] for more details. 

For a generalization to many machine states, see Sharifnia [23]. Lehoczky et al. 
[24] have carried out an asymptotic analysis of systems as above when the failure 
and repair rates are large. Also Mitra [25] has analyzed the steady-state distribu- 
tion of a system with many "production" and "consumption" machines. Chen and 
Yao [26] have addressed the issue of accuracy of such fluid model approxima- 
tions. 

For flow shops, there has been much work over the past three decades on the 
problem of analyzing systems with machine failures. Recently, Lim et al. [27] have 
generalized the early work of Sevastyanov [28] and obtained asymptotic approxi- 
mations of the throughput of such systems with finite buffers (also see the refer- 
ences in [27] for earlier work on this problem). They have also determined 
procedures to allocate the buffer sizes efficiently; see [29]. 

For more general systems, little appears to be known regarding buffer level con- 
trol policies, and this is clearly an area where more work is needed. 

Some heuristics for avoiding starvation at bottleneck machines in a semiconduc- 
tor manufacturing plant, by maintaining healthy buffer levels of parts, are de- 
scribed in Lozinski and Glassey [30]. 

13. Set-up times 

A more careful analysis of manufacturing systems should address the issue of 
set-up times, which was absent from our earlier discussion. 

Below we shall indicate some preliminary work in this area. Let us begin with 
the single machine system shown in fig. 7. There are P types of parts produced by a 
machine. Let us suppose that a delay 5 is incurred whenever the production of parts 

Part type 1 

-~1 

Part type P 

II 
Machine I 

Fig. 7. A single machine with set-up times. 
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is switched from one buffer to another. We shall adopt a fluid model and suppose 
that the arrival rate of parts of type p is Ap, and the service rate is i% We assume 
that 

Let us denote pp := Ap/#p. 

~-'AP <1. (14) P : =  

Clearly, on the average there is only a fraction (1 - p) of the total time that can 
be consumed by set-ups, and so on the average the time between set-ups should be 
no less than 6/(1 - p). Thus, set-ups cannot be too frequent. On the other hand, if 
set-ups are too infrequent, then the production runs for each part-type are large, 
leading to excessive inventories; see Gershwin [31]. Thus we are faced with a pro- 
blem reminiscent of the dynamic "lot-sizing" problem, see Elmaghraby [32]. 

In an attempt to increase production run lengths, let us consider the class of 
"clearing" policies (also called "exhaustive service" policies). A elearingpoliey is 
one which continues to work on a buffer until it is emptied. In order to fully specify 
such policies, one only needs to specify how the next part-type to work on is to be 
chosen. Let {rn} be the sequence of times at which production runs end, and let Pn 
be the part-type whose production is commenced at time (rn + 6), after the set-up. 
We shall say that a scheduling policy is a Clear-A-Fraction (CAF) policy if there 
exists an e > 0, such that 

P 

Xp,(7"n)~f.~_dXp(Tn) for all n,  
p=l  

where xp(t) denotes the buffer level ofpart-typep at time t. 
If a CAF policy is used, it is clear that whenever the total number of parts 

E;=I  XP(Tn) is large, then the next production run is guaranteed to be long, thus re- 
ducing the work at the machine. Utilizing this elementary fact, the following result 
is proved in Perkins and Kumar [33]. 

T H E O R E M :  STABILITY OF C L E A R - A - F R A C T I O N  POLICIES 

(i) Every CAF policy is stable, i.e., 

P 

sup Z x p ( t )  < + o 0 .  
t p=l 

(ii) In particular, 

P 

lim sup ~ Xp(t)<<.~SPlZmax + 
t--* oo p=l  

5Pmax max/~p(p - pp). 
( 1  - 
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(iii) If .~;=1 xp(O) ~<6/(e(1 - p)) maxp #p(p - pp), then the bound in the right hand 
side in (ii) holds for all t I> 0. 

Clearly it is of interest to minimize the mean buffer level while maintaining the 
same throughput rate. It is shown in [33] that for any scheduling policy which is 
non-idling (or which works at full rate whenever it is not being set up), 

1 T P 6[ E;P=I ~/CpT-pXpp(1 -- pp)]2 
lim -- f ~ cpxp(t) dt>~ (15) 

r - ~  TJo 2(1 - pp) p=l 

This provides a bound on attainable performance. 
Moreover, what is of interest is that one can construct policies which come very 

close to the performance (15), in simulations. Specifically, let 

ap= ApW/Cp'r;lpp(a-pp)-I, bp :=eAplap, 

(these constants are motivated by the analysis leading to the lower bound (15)), 
then the policy which choosesPn to minimize apxp('rn) + bp (it is easy to see that it is 
nearly a CAF policy, and hence stable), yields performance which is very close to 
(15). 

An improvement of the lower bound in (15), when idling or working at less 
than full rate is allowed, as well as an extension of the policy above, are provided in 
Chase and Ramadge [34]. 

14. Set-up times: Re-entrant lines 

Since CAF policies yield attractive results for single machine scheduling, let us 
analyze them for their performance in systems of re-entrant lines. Specifically, let 
us suppose that each machine in a re-entrant line adopts a CAF policy in deciding 
which buffer to provide service to next. Such a policy has two attractive features. 
First, it can be implemented in a distributed fashion without any sharing of infor- 
mation or coordination of action between machines. Second, it is easy to imple- 
ment, requiring little computation. 

However, they can be unstable as the following example from Kumar  and 
Seidman [35] shows; see also Chase [36]. 

EXAMPLE 14.1 
Consider a system such as in fig. 4 with A = 1, and 1/#2 + 1/#4 > 1 even though 

the capacity condition (14) is satisfied. We allow 8 = 0 (no set-up times) or 6> 0. 
Consider an initial state xl (0) = ~ > 0, and xi(O) = 0 for i = 2, 3, 4, and with service 
center 1 set-up for ha, and service center 2 set-up for b3 at time 0. Then it can be 
shown that for all large enough ~ there exists a time T at which a similar state re- 
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occurs except that Xl (T) -- A~ + b, where A := #2/(#2~4 --/Z4) > 1, and b > 0. Thus 
a similar cycle of operations again repeats itself, leading to unbounded buffer 
levels. [] 

It is worth noting that, as in example 7.1, the instability is caused by the re- 
entrant nature of the line itself rather than the set-up times; in fact, instability can 
occur even with ~ = 0. 

This instability is caused by the "positive feedback" effect induced by two way 
material flow between machines in a re-entrant line. In fact, as shown in [35], 
instability also occurs for systems such as in fig. 8 where the two way material flow 
is caused by differentpart-types rather than the same part-type; thus each separate 
route could still be acyclic. This suggests the validity of the theory of re-entrant 
lines to more general systems without re-entry, but with two way flow of jobs, as in 
communication networks. 

It is easy to see that CAF policies are indeed stable for acyclic systems, where 
we require acyclicity of the graph when all part-types are considered (thus it is not 
enough for individual routes to be acyclic, as in fig. 8). 

In fact [35] even determines sufficient conditions on non-acyclic systems, under 
which CAF policies are stable. This result has been generalized somewhat by 
Humes [37]. 

In general, however, some modifications have to be made to ensure stability for 
general non-acyclic systems. In [35] it is shown that if one implements a "distribu- 
ted supervisor" at each service center which 

(i) truncates all long enough production runs, and 
(ii) maintains a FIFO list of all buffers with a large number of parts, 

then such a supervisor can stabilize any non-acyclic system. 
Another approach taken in [33] shows how to implement a CAF policy at each 

machine as though it were operating in a virtually isolated mode, so as to ensure 
stability. 

An important open problem is to accurately quantify the performance of such 
policies. 

Part-type 1 , * I 

Service Center 1 Service Center 2 

Part-type 2 

Fig. 8. A non-acyclic system, unstable under a distributed CAF policy, where the route of each part- 
type separately is acyclic. 
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15. C o n c l u d i n g  remarks 

We have made  an a t tempt  here to motivate several issues concerned with the 
scheduling o f  re-entrant  lines. These types of  manufactur ing systems are o f  much  
current  interest since they model semiconductor manufactur ing plants, and more  
recently, thin film lines. 

Aside f rom the re-entrant  feature, some of  the features of  interest are r andom 
service and set-up times, as well as r andom machine failures and repairs. 

Control  is exercised over such systems by the release policy for introducing new 
parts into the system, and the scheduling policy for determining which part  a 
machine  should work on when it becomes idle. The goal of  scheduling is to provide 
good performance  relative to such measures as mean  cycle-time and variance o f  
cycle-time. 

Due  to the re-entrant  form of  the line, there is the possibility o f  instability. We 
have provided an account  of  some recent stability results in the field. Once stability 
is assured one wishes to improve the performance of  the system, and we have pro- 
vided results, simulations and conjectures concerning the behavior o f  various sche- 
duling policies. 

There are m a n y  open questions and we have suggested some of  them. More  
work  is definitely warranted  to resolve these issues. 
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