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We present two multiclass queueing networks where the Brownian models proposed by 
Harrison and Nguyen [3,4] do not exist. If self-feedback is allowed, we can construct such an 
example with a two-station network. For a three-station network, we can construct such an 
example without self-feedback. 
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1. Introduction 

It has been demonstrated that Brownian models are effective for approximate 
analysis of queueing networks, particularly when no explicit analytical methods 
are available [3,4,1]. In 1988 Harrison [2] proposed Brownian models as approxi- 
mations for multiclass open queueing networks. That work was expanded by 
Harrison and Nguyen in two recent papers [3,4] with the aim of developing a sys- 
tematic method for performance analysis of open networks. The network models 
they consider have general routing and general service requirements. The corre- 
sponding Brownian model for a d-station network is a reflected Brownian motion 
in the d-dimensional non-negative orthant IRa+. Their work provides explicit formu- 
las for calculating data of the reflected Brownian motion in terms of primitive net- 
work data. 

In this note we present two network examples where the Brownian model 
(reflected Brownian motion) proposed by Harrison and Nguyen does not exist. In 
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our examples, all customers follow one deterministic route. Customers may visit a 
particular station more than once, and a customer's service requirements at succes- 
sive visits to a station may differ. Such a network is an example of a multiclass net- 
work. If self-feedback (i.e., a customer leaving a station may immediately visit the 
same station) is allowed, we can construct such an example with d = 2. For d = 3, 
we can construct an example without self-feedback. At this point, we are not able 
to offer an explanation as to why Harrison and Nguyen's models fail for these parti- 
cular examples. 

For an open single-class network, Reiman [8] proved a heavy traffic limit theo- 
rem which says that under heavy traffic conditions Brownian models are good 
approximations of queueing networks. The :existence of the limiting processes 
(reflected Brownian motions) was resolved by Harrison and Reiman [5]. Peterson 
[7] proved an analogous heavy traffic limit theorem for a network populated by sev- 
eral types of customers where each type follows a deterministic, feedforward 
path. The existence of Peterson's limiting process depends heavily on the special 
feedforward structure of the network. Reiman [9] proved a heavy traffic limit theo- 
rem for self-feedback one-station networks, and his proof was simplified by Dai 
and Kurtz [6]. However, there are no limit theorems for general multiclass net- 
works with more than one station. Our examples show that it is difficult to formu- 
late a correct Brownian model for general multiclass networks, let alone to prove a 
general heavy traffic limit theorem. 

2. Reflected Brownian motion 

Let 0 be a d-dimensional vector, F be a d x d positive definite matrix and R be 
a d x d matrix. 

DEFINITION 1 
The matrix R is said to be an $ matrix if there exists a u > 0 such that Ru > 0 and 

a completely-$ matrix if each principal submatrix of R is an $ matrix. 

Here and later, vectors are envisioned as column vectors and vector inequalities 
are interpreted componentwise. 

DEFINITION 2 
A semimartingale reflected Brownian motion (SRBM) associated with data 

(0, F, R) is a continuous, {~'t}-adapted, d-dimensional process W together with a 
family of probability measures ~Px, x~N d} defined on some filtered space 
(f2, ~, {~t}) such that for each x e N~_ under Px, 

W(t)=X(t)+RY(t)>_O, foraU t_>0, 

where 
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(i) 

(ii) 

X is a d-dimensional Brownian motion with drift vector 0 and covariance 
matrix F such that {X(t) - Ot, 5:t, t >>, 0} is a martingale and X(0) = x Px-a.s., 
Y is a continuous, {5~t}-adapted, d-dimensional process such that Px-a.s. for 
each i e { 1 , . . . ,  d}, the ith component Y/of Y satisfies 
(a) Y/(0) = 0 and Y/is non-decreasing, 
(b) Yi can increase onlywhen IV/= 0, i.e., f o  l{~(s)#0}dY/(s) = 0. 

R e m a r k  
The vector 0, the matrix F and the matrix R are called the drift vector, the covar- 

iance matrix and the reflection matrix of the SRBM, respectively. 

In [3,4] Harrison and Nguyen do not give a formal definition of a reflected Brow- 
nian motion, which was used as their Brownian model. It is obvious that the defini- 
tion of SRBM given above is very weak. In particular, the reflected Brownian 
motion alluded to in Harrison and Nguyen [3,4] is a semimartingale reflected Brow- 
nian motion as defined here. The following proposition was proved by Reiman 
and Williams [ 10]. 

PROPOSITION 1 
If there exists an SRBM associated with data (0, F, R), then R must be a comple- 

tely-$ matrix. In particular, the diagonal elements of R are positive. 

R e m a r k  
Taylor and Williams [11] recently proved that R being completely-$ is also suffi- 

cient for the existence and uniqueness (in law) of an SRBM. 

3. A two-stat ion network with self-feedback 

Consider a two-station network pictured in fig. 1. Customers arrive at station 
one according to a Poisson process with rate 1. Each customer follows a determinis- 
tic route whose sequence of visitation is 1, 1, 2, 2, 1 and then the customer 
departs. Hence each customer makes 5 stops before exiting the network. We desig- 
nate those customers in their kth stop as class k customers. The service times for 
class k customers are assumed to be exponentially distributed with mean mk 

1 
4 I:l 

Fig. 1. A two-station network with self-feedback. 
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(k = 1 , . . . ,  5). Using the notation in Harrison and Nguyen [4], we have the number 
of stations d = 2, the number of classes c = 5, and the constituency matrix C and 
the routing matrix P given by 

1 1 0 0 1 )  and 
C =  0 0 1 1 0 

p = 

r0 1 0 0 0 ~ 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

0 0 0 0 0 

(3.1) 

Put M = diag(ml , . . . ,  ms) and Q = (I - pr)-l, where prime denotes transpose. It 
is easy to check that the vector of arrival rates for each class is 

) ,=  a(1, 0, 0, 0, 0)r = (1,1,1,1,1)'. 

We assume that servers are perfectly reliable, hence the vector # of availability 
rates defined in (2.2) of [4] is (1, I f  and the vector p of traffic intensities defined in 
(3.4) of [4] is (ml + mE + ms, m3 + m4f. Also, the matrix A defined in (4.16) of [4] is 
simply C'. 

In section 4 of [4] the authors develop an approximating Brownian system 
model, eventually defined by (4.29)-(4.33); in that Brownian approximation the 
server workload process is modeled as a reflected Brownian motion W* with reflec- 
tion matrix (I + G) -1 , where 

G = C M Q F A  = C M Q F C ' .  

Later, in section 6 of [4], the authors describe a "refined" BrOwnian approximation 
which is exactly the same except that G is replaced by 

= G[diag(p)] -1, 

where diag(p) denotes the diagonal matrix with diagonal elements p l , . . . ,  Pd. 
Thus, as explained in section 6 of [4], the reflection matrix in the refined Brownian 
approximation is 

R = (I  + ~)-1  = d iag (p ) [CMaC,] - l ,  (3.2) 

and the refined Brownian approximation is precisely the so-called QNET approxi- 
mation proposed earlier in [3]. One can easily cheek that 

C M Q C  ~ = ( m l  + 2m2 + 3m5 2m5 ~. 
2m3 + 2m4 m3 + 2m4 ] 

Hence, the determinant of (1 + (~) is 

1 
det(I + G) = ------- [(ml + 2m2)(m3 + 2m4) + 2m4m5 - m3m5]. 

pip2 
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Choose m = (0.1,0.05, 0.9, 0.05, 0.8)', so that p = (0.95, 0.95)'. Then, det(I + (~) 
= -0.4875 and 

( - 2 . 1 5 9 1 3 . 4 5 4 5 )  
R =  4.1023 -5.6136 ' 

which is not completely-$ because the diagonal elements of R are negative. There- 
fore, by proposition 1, the corresponding SRBM does not exist. 

For the "unrefined" Brownian approximation developed in section 4 of [4] one 
has the reflection matrix R = (I + G) -1, and with the specific data above that 
works out to be 

( -4 .0777  6.2136~ 
R =  \ 7.3786 -10.2913,}' 

so again the proposed Brownian approximation does not exist. Incidentally, if 
one takes m = (0.1,0.05, 1/6, 0.05, 0.8)', then I + G is not invertible. Similarly, if 
one takes m = (0.1,0.05, 0.81953125, 0.05, 0.8)', then I + G is not invertible. 

Remark 
If we do not allow self-feedback, one can prove that R is always completely-$ 

when d = 2. 

4. A three-stat ion network example 

Consider a three-station network. Customers arrive at station 1 from outside 
according to a Poisson process with rate 1. The route for each customer is determi- 
nistic with the sequence of visiting stations given by 1, 2, 1, 3, 2, 3, 1 and then the 
customer departs. Thus each customer makes 7 stops before exiting the system. As 
in section 3, customers in their kth stop in the route are called class k customers. 
The service time for a class k customer is exponentially distributed with mean 
mk(k = 1 , . . . ,  7). We again assume that the servers are reliable. Note that if custo- 
mers at station 2 have zero service times, then the subnetwork consisting of sta- 
tions 1 and 3 is exactly the one discussed in section 3. Using the notation in [4], we 
have d = 3, c = 7 and the routing matrix P given by: Pk,k+l = 1 for k = 1 , . . . ,  6 and 
Pkl ----- 0 otherwise. The constituency matrix is ( 01000 ) 

C =  1 0 0 1 0 . 
0 0 1 0 1 

Put M = d iag(ml , . . . ,  roT) and Q = (I - p , )- i .  The vector p of traffic intensities is 
(ml + m3 + m7, m2 + ms, m4 + m6)'. The reflection matrix R for the "refined" 
Brownian approximation is given by R = (I + ~)-1 = [diag(p)](CMQCI)-l, 
where 



46 J. G. Dai, Y. Wang / Nonexistence of Brownian models 

ml q- 2m3 + 3m7 m3 + 2m7 2m7 
C M Q C  I = m2 + 2m5 m2 + 2ms ms ) . 

2m4 + 2m6 m4 + 2m6 m4 + 2m6 

Set m --- 0.1,0.5, 0.05, 0.9, 0.45, 0.05, 0.8) I. Then 

/ - 2 . 0 2 7 0  0.1067 3.1951 
R =  [ 1.1628 0.9388 - 2 . 2 8 3 0 | ,  

\ 2.6884 -1.1415 - 2 . 8 3 7 7 ]  

which is not  a completely-$ matrix because Rll and R33 are negative. Further-  
more,  if we use the "unref ined" Brownian approximation then 

-3.1486 0.3890 4.6312~ 
R = (I + G) -1 = 1.8055 0.7560 - 3 . 0 7 5 5 ] ,  

3.9780 -1.4239 -4.4991 ] 

which is not  completely-$ either. For  this three-station network, the Brownian 
models  proposed in [3] and [4] do not  exist. 
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