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We consider an M2/G2/1 type queueing system which serves two types of calls. In the case 
of blocking the first type customers can be queued whereas the second type customers must 
leave the service area but return after some random period of time to try their luck again. This 
model is a natural generalization of the classic M2/G2/1 priority queue with the head-of-the- 
line priority discipline and the classic M/G/1 retrial queue. We carry out an extensive analysis 
of the system, including existence of the stationary regime, embedded Markov chain, stochas- 
tic decomposition, limit theorems under high and low rates of retrials and heavy traffic 
analysis. 
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1. I n t r o d u c t i o n  

The so-called retrial queueing systems are characterized by the requirement 
that customers finding the service area busy must join the retrial group and reapply 
for service in random order and at random intervals. These models arise frequently 
in the analysis of telephone and other communications systems. A review of the lit- 
erature on this topic can be found in Falin [4] and Yang and Templeton [9]. 

Most retrial queues assume that the input process is homogeneous from the 
point of view of call characteristics such as the service time and the inter-retrial 
time distributions. In practice, however, these characteristics may differ widely for 
different subscriber groups. This leads us to multiclass retrial queues. In a general 
desc r ip t ion  we can  cons ider  n types  o f  cus tomers .  T y p e  i p r i m a r y  cus tomer s  a r r ive  
a c c o r d i n g  to  a h o m o g e n e o u s  Po i sson  s t r eam wi th  ra te  ~i, the  assoc ia ted  re t r ia l  
in tens i ty  is #i a nd  the  service t ime d i s t r ibu t ion  func t ion  is Bi(x) ( for  m o r e  detai ls  see 
Kulkarni [8] and Falin [3]). 
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Such models are essentially more difficult than the single class models, so expli- 
cit results are available only in a few special cases. Kulkarni and Falin obtained 
explicit formulas for the first and second moments of the number of sources of 
repeated calls. 

The extreme case of #i = /z  was considered by Hanschke [5]. Recently, Choi 
and Park [1] investigated a priority retrial queue which, in fact, can be considered as 
another extreme case of the above multiclass retrial queue by taking #1 -+ oo and 
n = 2 .  

The latter extreme case is of special interest for practical applications. Khalil et 
al. [7] have studied this situation in full detail, at a Markovian level, in the context 
of telephone exchanges serving outgoing and incoming customers. The outgoing 
calls can be queued whereas blocked incoming calls are initially rejected, but after 
some random time repeat their demands. 

From the point of view of the study of the number of customers in the system, 
the extreme case/z 1 ~ O<3 and n = 2 corresponds to a queue with two priority levels. 
If  a priority unit arrives when a non-priority unit is being serviced, it may wait till 
the non-priority unit completes service, i.e. a variant of postponable (or head-of- 
the-line) priority discipline is considered. 

Choi and Park studied only the distribution of the number of customers in the 
two groups when B1 (x) = B2(x). So our main objectives are: 
(a) to consider a more general and natural case, assuming different service distribu- 

tions for both types of customers, and 
(b) to study of such a model in more depth. In particular, we investigate stochastic 

decomposition and asymptotic behaviour of stationary characteristics. 
In section 2 we describe the model. The study of the embedded Markov chain 

at departure epochs and the joint distribution of the waiting line and the orbit is car- 
ried out in sections 3 and 4. In section 5 we represent our model as a convolution 
of two simple random vectors. The investigation of the asymptotic behaviour 
under heavy-traffic and high and low retrial intensities is undertaken in section 6. 
Throughout the paper we will show that our results are in agreement with those of 
Choi and Park [1] and with the well-known results for the classic M/G/1 retrial 
queue and the head-of-the-line priority queue studied by Jaiswal [6]. 

2. Model description 

We consider a single server queueing system at which two different types of pri- 
mary customers arrive according to independent Poisson streams with rates ~ and 
A, respectively. Demands from the first flow, with rate c~, can be identified as prior- 
ity customers and they are queued after blocking and then served in some discipline 
such as FCFS or random order. On the other hand, any non-priority customer 
(those from the second flow) who finds the server busy upon arrival leaves the sys- 
tem immediately, to seek service again at subsequent epochs until he finds the set- 
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vet free. The retrial times are assumed to be independent and exponentially distrib- 
uted with parameter/z > 0. 

Both types of customers require a service time with distribution function Bk(X), 
k = 1, 2, where the number "1" is associated with the priority customers. The input 
flows of primary arrivals, intervals between repeated trials and service times are 
assumed to be mutually independent. 

Let 

fo ~) 
& ( s )  = e - sx  ( x ) ,  

K(k)(y,z)  = 13k(a(1 -- y) + A(1 -- z)), 

= 

bk(x) = ffk(x)/(1 -- Bk(x ) ) ,  

1) 2) 

where lyl ~< 1, Izl < 1,n ~ N a n d k  = 1,2. 
The state of the system at time t can be described by the Markovian process 

X( t )  = (A(t), C( t ) ,N ( t ) ,  ~(t)), where C(t) is the number of customers in queue 
(excluding the customer in service), N(t )  is the number of sources of repeated calls 
(or customers in orbit), A(t )  represents the type of the customers in service and 
~(t) is the corresponding elapsed time. We assume that A (t) = 0 when no customer 
is in service at t, hence A (t) = 0 implies C(t) = O. 

3. E m b e d d e d  Markov  chain 

Let r/a be the time of the dth departure. It is easy to see that a sequence of random 
vectors Xa = (A(rld - 0), C(rla - 0), N(rla - 0)) forms a Markov chain, which is 
the embedded Markov chain for our queueing system. Its state space is { 1,2} x Z 2 
and its one-step transition probabilities 

r(k,n,m)(t,i,j) = P{Xd+I = (l, i, j )  lXa = (k, n, m)} 

are given by the formulas 

t~ (1) if n 0, 
r(k,n,m)(1,i,j ) : O~ q- A d- m ~  k i ' j -m 

t-(l) if n/> 1, "~i-n+l,j-m 

~ k}2) m "~- 
r (k ,n ,m)(2 , i , y  ) : OL + A + m #  - 

0 

m/z /,.(2) 
o~ + A + m ~  ''i,j-m+l if n = 0 ,  

i f n>~ l ,  

where 
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i 

k!k.),j = fo ~176 (ax)ir e-aX (A--X)Je-~Xfl dBk(x) 

is the probabi l i ty  that  i priori ty a n d j  non-prior i ty  units  arrive at the system dur ing  
a service interval of  type k. 

As usual,  the first quest ion to be investigated is the ergodicity of  our  chain. 

T H E O R E M  1 

The embedded  M a r k o v  chain is ergodic if and  only if 

o r + p < 1 .  (1) 

eroof 
Obviously,  condi t ion (1) is necessary for ergodicity. Indeed, since customers  can- 

no t  be lost, in the steady state carried traffic is equal to offered traffic. But  offered 
traffic is ~ + p and carried traffic is equal to the mean  number  of  busy channels,  
i,e. to the probabil i ty that  the channel  is busy. This probabil i ty is obviously less 
than  1 and  thus ~r + p < 1. 

N o w  let tr + p < 1. To  establish ergodicity we will use the classic Foster  criteria: 
for an irreducible and aperiodic Markov  chain Xa with state space S, a sufficient 
condi t ion  for ergodicity is the existence of  a non-negat ive func t ion f ( s ) ,  s e S (so- 
called test funct ion or Lyapunov  function),  a positive number  e and a finite subset 
A of  the state space S such that  the mean  drift  

Dr = E[f(Xa+I) -- f(Xd)[Xa = s] 

is finite for all s ~ S and Ds <~ - e for all s r A. 
In our  case, as the Lyapunov  funct ion we consider 

f (k,n,m) = (Affl x) + 1 - p)n + (aft} 2) + 1 - g )m.  

Then  

a + A  if n = 0  
Dknm = a + p - 1 4  a + A + m #  

t r + p -  1 if n / > l .  

Let  e = (1 - a - p)/2 and M0 = (a + A)(1 - e)/#e. Then, for all states with 
k =  1,2; n~>l; m~>0, we have Dknm = - - 2 e < -  e. Besides, for all states with 
k = 1, 2; n = 0; m >i M0, we have 

a + A  a + A  
Dknm = --2e q ~< -- 2e + = --e. 

a + A + m #  ~ + A + M o #  

Applying  the above criteria we can guarantee that  the chain is ergodic. [] 

Our  second goal is to f ind the stat ionary distr ibution 



G.I. Falin et al. / Retrial queue with priority customers 4 4 3  

H!. k) = lim P{Xd = (k, i, j )} .  
zj d ~ o o  

Some information about this distribution can be obtained with the help of Lya- 
punov's function used to prove theorem 1. Namely, the well-known mean drift rela- 
tion 

E ,~ ~(k) = 0 ~k/jll/j 
(k,i,j) 

becomes 

//oy 1 - a - p (2) 
. =  a + A + j #  a + A  ' 

where Hoj r / ( 1 )  = --0j + H~ 2). 
The following theorem 

embedded Markov chain. 
fully describes the stationary distribution of the 

T H E O R E M  2 

The stationary distribution//!.~) has the following partial generating functions 
II  (k) (y, z) x--,oo ,,i x--,oo .,j rr(k). ~j 

~--- / - - ~ i = 0  . r  / - - - , j=O " . , . t / j  . 

/](1) (y, z ) --_ K(1)(y,z) 

(a - e ,h ( z )  + ,~ - Aa(z ) ) (T(y , z )  - z) + ( a - e , y  + A - A T ( y , z ) ) ( z -  Q(z)) R(z) 
• (Q(z) - z ) ( y -  K(1)(y,z)) ' 

(3) 

ah(z) + A -  Az R(z) (4) H(Z)(y,z ) = K(2)(y,z ) a - Q(z) - z 

where h(z) is the solution of the equation ~1 (a - ah(z) + A - Az) - h(z) = 0 in the 
unit disk Ihl ~< 1 and 

R(z) = 1 - a - Pexp{ l a  + A f l  z a ( 1 - h ( u ) )  +K(2,(h(u), u)A(1- K (2)_ u(h(u)' u)) du } ,  

T(y,z)  = K(E)(y,z), Q(z) = K(2)(h(z),z). (5) 

Proof 
Using the above formulas for the one-step transition probabilities of the 

embedded Markov chain, we get the following set of equations for the stationary 
distribution/-/!k). zj �9 
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i+1 j j 
//!1) ~--- E E / 7  b "(1) ..t- ~--~ r-r 1.(1) Ot 

tJ "-'nm'~i+l-n,j-m -- ~ 110mrH,j-m OL -~- ,,~ At- m# 
n=l m=0 m=0 

(6) 

J A j+l 
E Homki, j -moL E rr 7.(2) m# H!2)  : (2) ]- 110mt~i'j+l-m a + A + m# " (7) 

zj + A + m# m=l m = 0  

For the generating functions/i(1) (y, z) and//(2) (y, z) eqs. (6) and (7) become 

y//(1)(y,z) = K(1)(y,z)(ayR(z) + / / ( y , z )  - 1-I(O,z)), (8) 

where 

//(2)(y,z) = K(2)(y,z)(AR(z) + #R'(z)),  

/ /(y,  z) = II(l)(y,z) +//(2)(y,z) = E y i z J I I i j ,  
i=O j=o 

(9) 

Note that 

(x) 

//0j zJ. 
.= a + A + j #  

(a + A)R(z) + #zR'(z) : / / ( 0 , z ) ,  (10) 

and thus from (8), (9) and (10) we have 

/ /(1)(y, z ) ( y -  g ( 1 ) ( y , z ) )  = I z R ' ( z ) g ( 1 ) ( y , z ) ( g ( 2 ) ( y , z )  - z) 

- R(z)K(1)(y,z)(a(1-  y) + A ( 1 -  K(2)(y,z))). (11) 

The key to solve this equation is the following lemma: 

LEMMA 
If a + p < 1 then, for each fixed z with Izl < 1, the functionf(y,  z) = y - K  (1) (y, z) 

has a unique root y = h(z) in the unit disk lYl ~< 1. The function h(z), Izl < 1, has the 
following properties: 
1) h'(1) -- A311)/(1 - a ) .  
2) h" (1 )=  A2320)/(1 - a )  3. 
3) z = K (2) (h(z), z) if and only ifz = 1. 

Proof of this lemma is standard and we omit it (see [1]). 

Note that h(z) is the generating function of the number of non-priority custo- 
mers arriving in a classic Mz/G2/1  priority queue during a busy cycle of priority 
customers. In other words, h(z) = qo(A - Az), where qo(s) is the Laplace-Stieltjes 
transform of the busy period in an M/G/1  queue with arrival rate a and service 
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t ime B1 (x). Thus the function h(z) is analytical in the open disk [z[ < 1 and is contin- 
uous in the closed disk Izl ~< 1. 

Replacing y = h(z) in (11) we get 

#(K(E)(h(z),z)  - z)R'(z)  = (a(1 - h(z)) + A(1 - K(2)(h(z) ,z))R(z)  . (12) 

As we have noted in the lemma, the coefficient K (2) (h(z), z) - z never vanishes 
for z ~ 1 and besides 

lim a(1 - h(z)) + A(1 - K(Z)(h(z),z)) _ A(~ + p) 
z-+ 1-  K(2) (h (z), z) - z 1 - ~r - p 

Thus, the function 

g(z) a(1 - h(z)) + A(1 - K(2 ) (h ( z ) , z ) )  

= x ( 2 ) ( h ( z ) , z ) -  z 

< o o .  (13) 

(14) 

is analytical in the open disk [z[ < 1 and is continuous in the closed disk [z[ ~< 1. 
Therefore, for [z[ ~< 1 eq. (12) can be solved as follows: 

{ I f  z e~ (1 -h (u ) )  + A(x - K(E)(h(u)'u)) d u } .  
R(z)  = R(1)exp ~ K(2)(h(u),u) - u 

Using (2) we get the final formula for R(z).  N o w  (3) and (4) follow from (11) 
and (9), respectively. [] 

4. Joint distribution o f  the channel  state and the queue  length in the steady 
state 

Let 

Po• = P(A( t )  = O, C(t) = i ,N( t )  = j )  

be the probability that  at time t the channel is free; there are i customers in the prior- 
ity queue a n d j  customers in orbit. 

Obviously, Poo" = 0 if i  t> 1. Let 

Pkiy(x) dx  = P(A( t )  = k, C(t) = i ,N( t )  = j , x < ~ ( t ) < x  + d x ) ,  k = 1,2,  

be the probability that  at time t the channel is occupied by a customer of type k, 
k e {1,2}; elapsed service time is between x and x + dx, there are i customers in 
priori ty queue a n d j  customers in the orbit, and 

Pkij = Pkq(X) dx  = P(A( t )  = k, C(t) = i, N( t )  = j ) .  

Introduce also the corresponding partial generating functions: 
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0o  

eo(~/= ~ zJeooj, 
j=O 

oo  oo 

P k ( y , z ; x )  = y '~y i  Z z j P k i j ( x ) ,  k =  1,2, 
i=0 j=0 

f0 ~ ~ Pk(y , z )  = P k (y , z ; x )  d x =  y i Z z J P k i j ,  k =  1,2. 
i=0 j=0  

T H E O R E M  3 

In steady state the joint distribution of the channel state, the length of the prior- 
ity queue and the number of sources of repeated calls has partial generating func- 
tions: 

{ l  f f  a ( 1 - h ( u ) ) + A ( 1 - K ( E ) ( h ( u ) , u ) )  } 
P o ( z ) = ( l - a - p ) e x p  -~ ~-~2~(h~,~jZ u du , (15) 

P1 (Y, z; x) = P0 (z) 
( a - a h ( z )  + ~ -  AQ(z))(T(y,z) - z) + ( a - a y  + A -  ATO, , z ) ) ( z -  Q(z)) 

x (a(z) - z ) ( y -  g(1)(y,z)) 

x (1 - B1 (x))e -(a(1-y)+'x(1-z))x , (16) 

a - ah(z)  + A - Az (1 - B 2 ( x ) ) e  -(~ , (17) 
Pa(y , z ; x )  = Vo(z) Q(z) - z 

where T(y ,  z) = K(E)(y, z) and Q(z) = K(Z)(h(z), z). If in the cases A(t)  ~ {1,2} we 
neglect the elapsed service time ((t) then for the corresponding generating func- 
tions we get 

V l ( y , z )  = Co(z) 

(a - ah(z) + ,~ - Aa(z) )( T(y,z)  - z) + (a - ay + ,X - AT(y,z)  )(z - Q(z) ) 
x (Q(z) - z ) ( y -  KO)(y , z ) )  

1 - K (1) (y,  z)  
X 

oL(1 - y )  + A(1 - z ) '  

a - ah(z)  + A - Az 1 - T ( y , z )  
P2(y ,z )  = Po(z) Q(z) - z a(1 - y) + A(1 - z)" 

P r o o f  
In a general way we obtain the equations of statistical equilibrium: 
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a 
Ox Pkiy(x) = - ( c~ + A + bk(X) )ekij( X) + C~Pk,i-l,j( X) (1 -- ~iO ) 

+ Aek,i,j-l(X)(1--6jo), i>>.O;j>~O;k= 1,2, (18) 

2 oo 

e l / j ( 0 )  = oLeoojr '~ ~ fo Pk'i+l'j(X)bk(X) dx, /~>0;j~>0, (19) 

0 if i~>l, (20) 
P2/j(0) ----- APooj + (j + 1)#Po,o,j+I if i = 0, 

(~ + ~ + j~)eooj = ~ P~oj(x)bk(x) dx, (21) 
k=l  

where 6 is Kronecker's function. 
For the generating functions Po(z), e l  (Y, z; X) and P2(Y, z; x), eqs. (18)-(21) 

become 

O p k ( y , z ; x ) = - - ( a ( 1 - - y ) + A ( 1 - - z ) + b k ( x ) ) P k ( y , z ; x ) ,  k =  1,2, (22) 

yPl(y,z;O) = Z (Pk(y,z;x)  - Pk(O,z;x))bk(x) dx + ayPo(z),  (23) 
k=l  

P2(y,z;O) = APo(z) + #~0(z), (24) 

(a + A)P0(z) + #ZUo(Z ) = Z Pk(O,z;X)bk(X) dx.  (25) 
k=l  

From (22) we find that P1 (Y, z; x) and P2 (Y, z; x) depend upon x as follows: 

Pk(Y, z; x) = Pk(Y, z; 0)(1 -- Bk(x) )e -(a(1-y)+A(l-z))x . (26) 

With the help of(26), from eqs. (23) and (25) we have 

2 

yPl(y,z;O) = )--~ Pk(y,z;O)K(k)(y,z) -- (a(1--  y) + A)Po(z) -- #zP'o(Z ) . (27) 
k=l  

Eliminating from (24) and (27) the function P2 (Y, z; 0) we get 

pUo(z)(K(2)(y, z) - z) = Po(z)(a(1 - y) + A(1 - K(2)(y, z))) 

+ PI(y, z; 0 ) ( y -  KO)(y,z)) .  (28) 

Equation (28) has the same structure as eq. (11) which appeared in the analysis 
of the embedded Markov chain. Then it can be solved by the same approach. 
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Namely, if we put y = h(z) in (28) we obtain the following differential equation 
for P0(z): 

#(K(2)(h(z),z)- z)P~o(Z) = (a(1 -h (z ) )  + A(1 - K(2)(h(z),z))Po(z). 

The above expression is identical to eq. (12) for the generating function R(z). 
Thus 

Po(z)/R(z) = Constant. 

Obviously P0(1) = 1 - a - p. Indeed, 1 - P0(1) is the probability that the chan- 
nel is occupied, i.e. carried traffic. Since customers cannot be lost, in the steady 
state carried traffic is equal to the offered traffic a + p. Thus, Const. = a + A and 
(15) follows from (5). 

Now from (28) we can find P1 (Y, z; 0) and thus from (26) P1 (x, y; z). This implies 
formula (16). Similarly, from (24) we find P2(y,z; 0) and thus from (26) we get 
(17). [] 

ious performance characteristics of the system: 
a) probability that the channel is occupied 

priority traffic): 

With the help of generating functions P0(z), P1 (Y, z) and Pz(Y, z) we can get var- 

by a priority customer (carried 

P1 =~r; 

b) probability that the channel is occupied by a non- priority customer (carried 
non-priority traffic): 

P2 =P; 

c) mean number of customers in the priority queue 

2(1 -o ' )  ' 

d) mean number of customers in the non-priority queue 

)~(O~fl~l) _{_ )~fl(2)) /~(0" q- p) 
E[N(t)] = 20  Z~-)(f---~Cp) +#(1  - a -  p)" 

The mean waiting time for each group of customers can be obtained from 
E[C(t)] and E[N(t)] via Little's formula. 

It should be noted that E[C(t)] and E[N(t)] can be calculated almost automati- 
cally with the help of the property of stochastic decomposition, which we will dis- 
cuss in the next section. 

For the special case B1 (X) = B2(x),  replacing h(z) = K (k) (h(z), z), k = 1,2, we 
find that our results agree with all the results given in Choi and Park [1]. 
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5. Stochastic decomposit ion 

Introduce the random vector (An, Cu, Nn), where An e {0,1, 2}; CueZ+; 
N n �9 Z+, with the help of the generating functions Pk(y, z) = E[yC,, zN,'; A n = k], 
ke{1,2}  and Po(z) = E[zN,;An = 0] (note that C n = 0 if A n = 0). This vector 
represents the number of customers in priority and non-priority queues and the 
type of customer in service at the stationary regime. 

Let (Aoo, C~, Noo) be the corresponding vector for the classic M2/G2/1 priority 
queue with the head-of-the-line priority discipline. 

Introduce also a random variable R n with the help of the generating function 

( l  fZa(1-h(u))+A(1-K(2)(h(u) ,u))  } 
Rn(z ) = E[z&] = exp al K- (~(h~ ,u  i --u du . (29) 

In fact, R n represents the number of customers in orbit given that the server is 
free. 

Then from theorem 3 and well-known results for the classic ME/G2/1 priority 
queue [6], we have the following result about stochastic decomposition of the vec- 
tor(A, ,  Cn, Nn). 

THEOREM 4 
The vector (An, Cu, Nn) can be represented as a sum of two independent random 

vectors. One of them is the vector (Aoo, Coo, C~o) and the second is (0, 0, Ru): 

(An, Cn, N#) = (Aoo, Coo, Noo) + (0,0,Rn). (30) 

This result is extremely useful for analysis of the system under consideration. 
For example, eq. (30) implies that 

E[Cn] = E[Coo], 

E[Nn] = E[Noo] + E[R~]. 

The values of E[Coo] and E[Noo] are well-known from the classic theory of prior- 
ity queues, and E[Rn] can be found without difficulty from (29) and (13), so that 

+ p) 
E[Rn] = #(1 - a - p) " 

It should be pointed out that similar results about stochastic decomposition 
were establishes for other retrial queues (see [9] and [10]). 

6. Limit theorems for high and low retrial intensities and heavy traffic 

Although the performance characteristics of the system are available in explicit 
form, they are, however, cumbersome: the above formulas include integrals of 
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transforms, solutions of functional equations, etc. However, in some domains of 
the system parameters we can approximate the steady state distribution by classic 
distributions such as Gaussian or Gamma distributions. With this goal, in this sec- 
tion we investigate the asymptotic behaviour of the number of customers in the sys- 
tem under limit values of various parameters. 

In real situations, subscribers who get a busy signal almost immediately repeat 
their calls. Therefore, an investigation of the asymptotic behaviour of system char- 
acteristics under high retrial intensity is of special interest in practice. 

In general, as #--* c~, the stationary distribution of a retrial queue converges to 
a limit, which is usually the stationary distribution of a certain limit system. Intui- 
tively, in our case the limit system is the classical ME/(12/1 investigated by Jaiswal 
[6]. 

This heuristic argument is rigorously established with the help of the stochastic 
decomposition given in theorem 4. As expected, the marginal distribution of the 
number of priority customers in queue is independent of parameter #. Moreover, 
the distribution of customers in orbit depends on # through R~,; but 
lim~,~oo R(z) = 1, so the limit system for our retrial priority system is the M2/G2/1 
queue with head-of-the-line priority discipline. 

The following result about the rate of convergence of the distribution Pkij(#) of 
the vector (A,, C~,, N,) to the corresponding distribution Pkij(O0) associated with 
the limit system with the head-of-the-line priority discipline is essentially more 
interesting. 

THEOREM 5 
2 oo oo As /z'--*oo the distance D=Ek=oEi=o 7__olekij( )-P iA )l=O(1/ ). 

Moreover, the following inequalities hold: 

2(1 - ~ r -  p)(1 - Ro(#)) <D<2(1 - Ro(#)), (31) 

where 

R0(#) = exp{ - 1  f01 a(1-h(u))+A(K(E)(h(u)'u))du) (32) 

Proof 
The proof is based on the stochastic decomposition property. Namely, theorem 

4 implies that P/jk(#) is a convolution of the distribution Pkq(~) and Rm(#) 
= P(R~ = m), i.e. 

J 
Pkij(#) = ~ Pkim(oo)Rj-m(#). (33) 

m = 0  

Thus, 
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j - 1  

Pko(#) - Pkij(c~) = Pko(C~)Ro(Iz) - Pko(Oo) + (1 -- 6jo) ~ Pk,m(c~)Rj-m(#) . 
m=0 

Therefore, using (33) we get 

j - 1  

Iek0(p) - ek,y(c~)l <ek/y(c~)(1 -- R0(#)) + (1 -6 jo)  Z ekim(~176 -m(lz) 
m=0 

= - + Pku( ) - 

= Pk/j(oo)(1 - 2R0(#)) + Pkij(#).  

Hence, summing over all the states we obtain 

D < ( 1  - 2R0(#)) ~ Pkij(oo) + ~ Pkij(lz). (34) 
k,i,j k,i,j  

But both Pkij(oo) and Pkij(#) are probability distributions. Thus both sums on 
the r ight-hand side of(34) are equal to 1, and the upper inequality in (31) follows. 

To get estimation from below we use the obvious inequality la  - bl  ~>a - b, so 
that  

oo 

k,i k,i j = l  

= (1 - R0(#)) ~ Pkio(OO) + 1 -- ~ Pkio(#) -- 1 + ~ Paio(oo) 
k,i k,i k,i 

= 2(1 - R0(#)) ~ Pkio(oo) = 2(1 -- R0(#)) (1 - a - p) (a  - ah(O) + A) 

>2(1 - Ro(#))(1 - o r -  p). 

Note  that  R0 (#) can be obtained from eq. (29) by putting z = 0. [] 

In the case o f #  --~ 0 one can prove that an adequate t ransformation of  N(t)  leads 
to a Gaussian distribution. This statement is established in the following: 

THEOREM 6 

I f  the ME~G2~1 retrial queue with head-of-the-line priority discipline is in the 
steady state and/32 (k) <c~,  k = 1,2; then as #--~0 the number  N(t )  of customers in 
orbit is asymptotically Gaussian with mean  A(a + p)/#(1 - ~ -  p) and variance 
1//z(A2(afl61) + A/~62))/2(1 --a)(1 - - a - -  p)2 + A(tr + p)/1 - - a - -  p). 

P r o o f  
Let the variable be 
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# l / 2 ( N ( t  ) _ A(a + p) "~ N*(t) \ u ( 1 - a - p ) /  " 

The characteristic function E[e itn'] can be expressed in terms of  Po(z), P1 (1, z) 
and P2 (1, z) as follows: 

it~(a+p/ ~, 
E[e itm] = H(e it"m) exp - (1 - a - p)#X/2j ' 

where H(z) = Po (z) + PI (1, z) + P2(1, z). From now on we denote w = e it~'v2. 
Hence, from theorem 3, we have 

a ( 1 - h ( w ) )  + A(1 - w )  
E[e itN*] =(1 - o r -  p) ~(/~(~)~-(-(-(~, w)---w) 

{ i f  w itA(a + p ) ~  (35) 
x e x p  ~ g(u) d U - ( l _ a _ p ) # l / 2 j  , 

where the function g(u)is given by formula (i 4). 
If#--,- 0 then w-+ 1, so from (13) we get 

l im(a - a -  p)a(1  -h(w)) +A(1 - w) 
u-- , 'o  A(K(2)(h(w),w) - w) = 1. (36) 

We turn now to the calculation of the exponent on the right-hand side of  (35). 
Let us t ransform the argument  of the exponential function as follows: 

1 / w  itA(a + p) l fW ( A ( a +  p)"~ 
-~ g(u) du-  (1 ~g-__-p~l/2 = ~ g(u) i ---~--p] du 

A(a + p)(w - 1 - it# 1/2) 
-~ (37) 

u ( 1  - a - p )  

The second term on the right-hand side of (37) has the limit equal to 

A(a + p)t 2 (38) 
2(1 - a - p)" 

To calculate the limit of the first term in (38), it is convenient to introduce the 
function 

It is easy to see that 

fl w ( ~(a + p) f(#) = g(u) ~ ~--Z_-p] du. (39) 

f(O) = O, f '(O) = 
4(1 - a ) ( 1  - a -  p)2" 

Thus, as # ~ 0 we have 
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2 2 (1) (2) t + ) 
f ( # )  = - #  4-0--  a---~ --- ~ - ~ 2  + o(#) ,  (40) 

and therefore, from (36), (38) and (40) it follows that 

{ 2 (1) (2) ) 
lim E[e itN*] = exp --~- \2(1 - o.)(1.- o - p)2 + i ~ 2 S p ]  #--*-0 

and this completes the proof  of the theorem. [] 

It should be noted that if a = 0 then theorem 2 agrees with a known result for 
the M/G/1 retrial queue (see [4]). 

The case of heavy traffic is more complicated. We assume that  heavy traffic 
means that  A -+ (1 - o)//312) - o. Note in e l (y ,  1) + P2(Y, 1) that the priority queue 
size converges to a proper distribution, so only the orbit limit behaviour is mathe-  
matically interesting. It can be checked that the next theorem agrees with the corre- 
sponding result obtained by Falin [2] for the M/G/1 retrial queue. 

THEOREM 7 
I f  the M2/G2/1 retrial queue with head-of-the-line priority discipline is in the 

steady state and 3~ ~) < oo, k = 1,2; we have 

lim E[e -s(1-~-p)N(t)] = (1 + as)  -b  , 

--, (1-~)/~I 2~-o 

where 

,,.~(1)R(2) 2(1 - 0")/312) ( 1 -  o')/32 (2) +'- ' , '2 t"l b = 1 + 

a =  2/312) 2 , #((1--0")/32 (2) -['- Ot/3(1)/3(2)"~ ' 2  1 ,I 

that  is, the scaled random variable N* (t) = (1 - o. - p)N(t) converges weakly to a 
gamma distribution as A ---* (1 - o.)//312) - o. 

Proof 
The Laplace-Stieltjes transform E[e -sN'(t)] of the random variable N*(t) 

= ( 1 -  o . -  p)U(t)can be obtained from H(z)  = Po(z) + P 1 ( 1 , z ) +  Pz(1,z)by put- 
ting z = e -s(1-~-p), so that 

or(1 -- h(e-S(1-v-P))) + A(1 - e -s0-a-p))  
E [ e  = (1 - o. - p )  

x exp ; J 1  g(u) du , (41) 

where g(u) is given by (14). 
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If after some algebra we expand K (2) (h(e-S(1-a-P)), e -s0-a-p)) into a power ser- 
ies in terms of 1 - e -s0-~-p), we have 

P (1 - e -s0-a-p)) K(2)(h(e-S(1-~-P)), e -s(1-~-p)) = 1 1 - a 

+ ~ 2 ~ _  0-)2 + 2-~--_ ~-~3-] ( 1 -  e-*(1-~-P)) = + o ( ( 1 -  e-*0- '-P))2).  (42) 

With the help of (42), it is possible to calculate the limit of the first factor on the 
right-hand of(41). It is equal to (1 + as) -1. 

To find the limit of  the exponential term in eq. (41), we must investigate 

],e-s0-a-P) 
lim ] g(u) du. (43) 

-, (1-~)/~I 2) J1 

By making the change of variable v = (1 - u)/(1 - e-*(1-~-o)), we put the inte- 
gral (43) in the form 

fo a(1 - h ( 1  -v t ) )  + A(1 - K(:)(h(1 - v t ) , l  - vt)) 
1 ~ -vTSS-K(-~)(h((1--~),l - vt)  t dv, (44) 

where t = 1 - e -s0-a-p). 
Under  the assumptions of  the theorem it can be seen that 

A2fl~ 1) 
)~/~}1) rs _)t_ /.2~2 + e~o(l) 

h ( 1 - r e )  = 1 1 - 0 -  2 (1 - -0 )  3 

K(2)(h(1 - re), 1 - re) = 1 - - -  ( A~fl__~ ~__AP__~(2_~I) 3'~ r2Ea e2o(1 , P r e +  + + ) 
1 - ~  ~2~--~)2 2(1-cr) ] 

uniformly with respect to r e [0, 1] as e -+ 0. 
In particular, for r = v and e = 1 - e -s(1-'-p), we obtain that the integrand in 

(44) converges uniformly with respect to v, as A --+ (1 - 0-)/fl}:), to the function 

otf~(1)/~(2) ) s(l -- 0-) (1 -- 0-)~62) + 2 I 

31~) 1 + 2ill:), vs 

-1 

(45) 

Although the basic reasoning used to get (45) is parallel to the case a = 0, it is, 
in comparison, rather more cumbersome. Therefore, some intermediate steps to 
get (45) have been omitted. 

Hence, by solving integral (44) we get that the limit (43) is equal to (1 + as) 1-b. 
This completes the proof. [] 
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