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We consider an M/M/1 retrial queueing system in which the retrial time has a general distri- 
bution and only the customer at the head of the queue is allowed to retry for service. We find 
a necessary and sufficient condition for ergodicity and, when this is satisfied, the generating 
function of the distribution of the number of customers in the queue and the Laplace transform 
of the waiting time distribution under steady-state conditions. The results agree with known 
results for special cases. 
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1. Introduction 

We consider an M / M / 1  retrial queueing system with exogenous Poisson arri- 
vals occurring at rate A and customer service times which are independent and 
exponential ly distr ibuted with mean 1/#. An arrival obtains service immediately if  
the server is idle and joins the queue (in accordance with a first, come, first-served 
discipline) if  the server is busy. The control policy for access to the server f rom the 
retrial group is that  only the customer at the head of  the queue can retry for ser- 
vice. This is tried for after a random time. I f  at  the instant o f  retrial the customer  
concerned finds the server busy, he returns to the head of  the queue and repeats this 
procedure  until he succeeds. We assume that  the retrial times (the time intervals 
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between two consecutive retrials made by a customer) are independent and identi- 
cally distributed with cumulative distribution function S(-), density function R(.) 
and mean r. 

Fayolle [7] has investigated, as a telephone exchange model, an M/M/1 retrial 
queue with exponential retrial times and the same control policy except that retrial 
customers who find the server busy join the tail of the queue instead of the head. 
He found the queue size and sojourn time distributions. We note that as the queue 
size distribution is independent of queue discipline, his expression for the queue size 
distribution should agree with ours for the case of exponential retrial times. Farah- 
mand [6] has investigated and M/G/1 retrial queue with exponential retrial times 
and the same control policy and obtained the queue length distribution. See also 
Choi and Park [1] who use a supplementary variable method. Falin [5] and Yang 
and Templeton [ 12] give comprehensive reviews of the retrial literature. 

An examination of the literature reveals the remarkable fact that even retrial sys- 
tems with all exponential components can be very complicated. Many have not 
been solved at all and those that have been do not always possess generating func- 
tions for the equilibrium distribution of state which are such that the component 
probabilities can be easily extracted. For example, a direct treatment of the classi- 
cal retrial problem considered by Cohen [3] seems to necessitate the use of extended 
continued fractions (see Hanschke [8] and Pearce [10]). The literature on non-expo- 
nential retrial times is very sparse. Approximate methods have been used by Pour- 
babai [11] on the G/M/S/O retrial queue and by Yang [13] on the M/G/1 retrial 
queue. To the best of the authors' knowledge the present work is the first giving 
exact analytic results for a retrial problem with generally distributed retrial times. 

In section 2 we employ an imbedded Markov chain to derive a necessary and suf- 
ficient condition for ergodicity of the system. In section 3 we use a supplementary 
variable approach to find the generating function of the number of customers in the 
queue. This result is shown to coincide with a known one [7] in the case when retrial 
times are exponentially distributed. Section 4 contains a treatment of the queue 
length problem useful for algorithmic calculation. In section 5, we find the Laplace 
transform of the waiting time distribution. Finally, in section 6, we outline a gener- 
ating function-free treatment of the waiting time. 

2. Ergodicity 

Let N(t) represent the number of customers in the queue at time t. We write 
~(t) = 1 or 0 according as the server is busy or free at time t. For N(t) > 0 we denote 
by R(t) the residual amount of the present retrial lifetime of the customer at the 
head of the queue. 

The Markov process Y(t) - (N(t), R(t), ~(t)) is clearly regular, having bounded 
transition rates, and so almost surely only finitely many transitions of state occur 
in any finite time. We utilize an associated discrete-time Markov chain (Xn) in 
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which the continuous-time process is observed just after the completion of each 
retrial. The state of (Xn) at each such time is the corresponding retrial queue size. 
As the underlying process is regular, it will be ergodic if and only if the Markov 
chain is ergodic. We shall derive the following result. 

THEOREM 1 
A necessary and sufficient condition for the ergodicity of the retrial system is 

that 

[1 _ f0 oo e_(~+~,)x dR(x)] #2 > A2r. 

Proof 
First we consider the one-step transition probabilities (Pi,j) for (Xn). For 

j>>.i>O and ke{0,1}, let flk,i,y(t) represent the probability that ~( t )= k and 
N(t) = j, conditional on ~(0) = 1, N(0) = i and a retrial lifetime having begun at 
time 0 but not having finished by time t. Then 

ei, j "-~ [/~l,i,j(x) + l~O,i,j+l(X)] dR(x )  ( j~>i>0),  

Pi,i-1 = ~o,i,i(x) dR(x) ( i>0),  

Po, j = [/~l,l,j(x) -{-/~0,1,j+l(X)] dR(x) ( j > 0 ) ,  

E Po,0 = /~o,1,1(x) dR(x). 

For each m/> 0, 

~k,l+m,n+m(X) = &,1,n(X) = ak,n(X), say, 

so the transition probabilities thus have the form 

P o d =  PI, j  (J>10), 

{ f ( j - i + l ) ( j ~ i - l > ~ O ) ,  
Pi,j = ( j < i -  1), (2.1) 

where 

f0 ~ f(0)  = Ot0,1(X) dR(x), 

f ( j )  = [ ij(x) + dR( ) (j>o).  

The structure exhibited by (2.1) is just that of the transition probabilities in the stan- 
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dard M / G / 1  system. A necessary and sufficient condition for ergodicity may be 
derived exactly as for that system to be 

F ' ( 1 ) < I ,  (2.2) 

where 

f0 F(z) = Z f ( j ) z J  = [Al(g,x) +A0(z,x)] dS (x) (Izl~<l), (2.3) 
j=0 

the functions Ak being defined by 

Ao(z,x) : =  Z O~o,j+l(x)zJ ( I z l ~ < l ) ,  
j=0 
OO 

AI(Z,X) :--- Z o q , j ( x ) z J  ( I z / ~ < l ) .  
j=l 

The quantities ak,. (t) are given by the forward differential equations 

C~tO,n(t) = --AO~0,n(t) + /zOq,n( t )  ( n > 0 ) ,  

a'l,n(t ) = -()~ + #)al,n(t) + A~0,.(t) + A(1 --r ) (n>O), 

subject to the initial conditions aO,n(O) = 0 and al,n(O) = 6n,1. These equations 
may be cast in terms of the Laplace transforms 

as  

f0 ~176 
~,.(~) := e-'t~k,.(t) dt ( ~ > 0 )  

(s + ~)a;,.(s) = .a~,.(s) (n>0) ,  

(S +/~ + ]~)t~,n(S ) -- t~n,1 = ~Ot~,n($ ) + A(1 - t~n,1)Ot*l,n_l(S ) ( n > 0 )  . 

Finally, ifA~(z, s) represents the Laplace transform OfAk(z, t), we have 

z(~ + ~)A;(z,~) = ~A*~(z,~), 
[s + A(l - z) + #]A~(z,s) = z + AzA~(z,s). 

On substituting z = 1 in these equations, we derive 

_ # 

A;(1,s) s(s + A + #) ' 

s + A  
A;(1, s) - ~(~ + ~ + u) 

Also, ifA~ ~ (1, s) denotes O/OzA* k (z, s)Iz=l, we have on differentiation of (2.4) that 

(2.4) 
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(s + A)[A;(1,s) -t- A;'(1, s)] = #Ai'(1,s),  

(s + #)Ai ' (1,s  ) - AA~(1,s) = 1 + A[A;(1,s) + A; '(1,s)] ,  

whence we find 

and thus 

A~'(1,s) = (s + A)[Z4~(1,s) + 1] 
s(s + ,~ + ~) 

(s -+- A) y ~  A~'(1,s) = (s + A -+-/z)A~t(1,s) - (s + A)A;(1,s) 
k=0,1 

(s + ~)3 
S2(S + A +/Z) 

so that  on inverting the transform we obtain 

= A { A/z A2t +#/2")2 e - (~+u)t . OlOz ~ Ak(z,t)l:=, A + ff (A + . ) 2  t- A--'~--~+ (A 
k=0,1 

From (2.3), condition (2.2) thus reads 

A A]Z A 2 
~ - - - +  rq  

A + ~  (A + . ) 2  f0 (A + #)2 e -(~+u)x dS(x) < 1, 

which on simplifications gives theorem 1. [] 

3. Queue size distribution 

Let the supplementary variable R(t) denote the remaining retrial time of the cus- 
tomer at the head of the queue when the queue is not  empty at time t. We define 

po(t) = P (N( t )  = O,~( t )=  1), 

qo(t) = P (N( t )  = 0,~(t) = 0 ) ,  

p i ( t , x ) d x =  P(N( t )  = i , R ( t ) e [ x , x  + dx) ,~(t)  = l) , i~>1, 

qi ( t , x )dx  = e(N(t) = i , R ( t ) e [ x , x  + dx) ,~( t)  = 0), i~> 1. 

By considering transitions of the process between times t and t + At and letting 
At--+ 0, we derive (as in [1,9]) the system of forward equations 

d p o ( t )  = - (A + #)po(t) + Aq0(t) + ql (t, 0),  (3.1a) 
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-~ pl( t ,x)  = - (A + #)pl(t ,x)  + Ar(x)po(t) 

+ r(x)pl(t,O) + Aql(t,x) + r(x)q2(t,O), 

fit p i ( t ' x ) = - ( A + t z ) p i ( t ' x ) + A p i - l ( t ' x ) + r ( x ) p i ( t ' O )  

+ Aqi(t,x) + r(x)qi+l(t,O), i>/2, 

dqo( t )  = -Aqo(t) + #p0(t), 

(o o) 
-fit ffxx qi(t, x) = -Aqi(t, x) + #pi(t, x), 

together with the normalizing equation 

(3.1b) 

(3.1c) 

(3.1d) 

po(t) + qo(t) + [pi(t,x) + qi(t,x)] dx = 1. 

Since we are interested in the steady-state behaviour of the system, let us assume 
that the condition for the system to be stable as t--* ~ is satisfied. We write 
Po = limt~oopo(t),p~(x) = limt~oopi(t, x) and similarly for the q's and derive from 
the forward equations above that 

(A + #)Po = Aqo + ql(O), (3.2a) 

d 
d 2 1 ( x )  = - (~ + ~)pl(x) + ~r(x)po + r(X)pl(0) 

+ Aql(x) + r(x)q2(O), (3.2b) 

dxPi(X) = - (A + #)pi(x) + )~p,-1 (x) + r(x)pi(O) 

+ Aqi(x)+r(x)qi+l(O), i>~2, (3.2c) 

Aqo = #po, (3.2d) 

d qi(x) = -)~qi(x) + #pi(x), i>~ (3.2e) 1. 

The normalizing equation becomes 

Po + qo + [pi(x) + q,(x)] dx = 1. 

From (3.2a) and (3.2d) we obtain that 

i~> 1, (3.1e) 



B.D. Choi et al. / An M / M /1 retrial queue 281 

Ap0 = ql (0). 

With notation along the lines of the previous section, we employ p~ (0) for ii> 1 to 
denote the Laplace transform ofpi  (with 0 >i 0) and similarly for q~ (0). The quan- 
tity 

p~.(O) = P ( N - -  i,~ = 1) 

is then the steady-state probability that there are i customers in the queue and the 
server is busy. 

For z satisfying - 1 ~< z ~< 1, define the generating functions 
oo oo 

* i 
=  p,(O)z , e(O,z)= 

i=1  i=1  

and corresponding quantities Q* (0, z), Q(O, z). We observe that P* (0, z) + Q* (0, z) 
+p0 + q0 is the generating function for the distribution of the number of customers 
in the retrial group at an arbitrary time point in the steady state. 

On taking Laplace transforms and forming generating functions from (3.1b, c, 
e) we derive the basic equations 

where 

( 0 -  A)Q*(O,z) + #P*(O,z) = Q(O,z), 

AQ*(O,z) + ( 0 -  A - # + Az)P*(O,z) = f(O,z)  , 

(3.3) 

(3.4) 

f (O,z)  = P(O,z) + r*(O){A(1-  z)po - P(O,z) Q ( ~ z ) }  . 

We wish to solve these equations for P* and Q*. Let 01 (z), Oz(z) be, respectively, 
the greater and lesser zeros of the quadratic polynomial in 0 

D(0, z) = ( 0 -  A)(0-  A - # + M) - A~,. 

We can easily check that both zeros are nonnegative for -1  ~<z~< 1 and that 
01 (1) = A + # and 02(1) = 0. For convenience we henceforth omit the argument z 
in Oi(z) (i = 1,2) except where it is required to avoid ambiguity. 

By applying Cram6r's rule to (3.3) and (3.4) we have 

D(a,z)Q*(O,z) = Q(O,z)(O- A - # + Az) - #f(a,z), (3.5) 

D(O,z)P*(O,z) = ( 0 -  A)f(0,z) - AQ(0,z). (3.6) 

Letting 0 = 0 in (3.5) and (3.6) yields 

Q* (0, z) + q0 = A - z ( # / z -  A)Q(O, z), (3.7) 

?*(0,z) +po = (Az) -1Q(O,z). (3.8) 

Since P*(O, z) has a finite value for any 01>0 and -1  ~<z~< 1 and D(O, z) vanishes at 
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Oi (i = 1,2), the right-hand sides of (3.5) and (3.6) must vanish at 0 = 01,02. Thus 
we have 

- r*(0 , ) ]e (0 ,z  ) - [A + ( 0 , -  A) ~ ]  Q(0,~) (o,- A)[1 

= A(e i -  A)r*(Oi)(z- 1)p0 

for i = 1,2. On applying Cram6r's rule to these two equations we have 

P(O,z) = Apo(z - 1)K(z)-I[A(O2- A)r*(O2)- A(O1- A)r*(O1)], (3.9) 

where 

Q(O,z) = Apo(z - 1)K(z)-l(01 - A)(02 - A)[r*(02) - r*(O1)] , (3.10) 

(01 - -  A)(1 - r*(01)) -[A + (01 - -  A)r*(Ol)/Z] 
K(z) = ( 0 2 -  A)(1 - r*(02)) - [ A +  (02 A)r*(O2)/z] " 

A/z(1 - r*(A +/z))po 

Letting z ~ 1 in (3.10) yields 

a(0,1)  = ~2 
_ _  _ A2r ( 1 - r * ( A + # l l A +  # 

and letting z ~ 1 in (3.7) and (3.8) gives 

Q*(O, 1) +qo = A-2(I~- A)Q(O, 1) and ?*(O, 1) +po = A-1Q(O, 1). 

Since P* (0, 1) + Q* (0,1) + p0 + q0 = 1 andp0 = Aqo/#, we thus have 

A/~2 ~3 r 
(1 - r*(A + N)) A +----~- 

Po = #2(1 - r*(A +/~)) ' 

#2 AUr 
(1 - r * ( A + # ) ) A + #  (3.11) 

q 0 =  N(1 - 

As we saw in section 2, the positivity of the numerators is a necessary and sufficient 
condit ion for system stability. 

From (3.10) we derive 

AN(z-  1)[r*(O1)-r*(O2)]PoZ , (3.12) 
Q(0,z) = ~_~i=l,2(_ l )i[zOi(l _ r*(Oi) ) + ( )tg q- N)r*( Oi)] 

where we have used (01 - A)(O: - A) = -Ap.  From (3.9) and (3.10), P(0, z) is now 
known from 

[~ 02r*(02) -- Olr*(O1)] 
= o ( O , z )  
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so we have f (0 ,  z) from its definition in terms of P(0, z), Q(0, z) andp0. Addit ion 
of (3.5) and (3.6) gives 

P*(O,z) + a*(O,z) - ( 0 -  A -  #)[Q(0, z) +f(O,z)] - A(1 - z)Q(O,z) (3.13) 
( o  - - - + - 

We thus have obtained the following result. 

T H E O R E M  2 

(a) The generating functions for the distributions of  the numbers of  customers in 
the retrial queue when the server is idle or busy are given, respectively, by the 
right-hand sides of(3.7) and (3.8), where Q(O, z) is given by (3.12); 

(b) the joint  distribution of the number of  customers in the queue and the remain- 
ing retrial time of the customer at the head of the queue is given through its 
transform P* (0, z) + Q* (0, z) by (3.13). 

Exponential retrial times 
When retrial times have an exponential distribution with mean r, our model 

becomes that of  Fayolle [7] with a different service discipline but the same queue 
size distribution. We verify that our result reduces to the known one. 

Substitution of r* (0) = ( 1/r) / (0 + 1/r) into (3.11) yields 

q0 = 1 - (1 + Ar)p, 

P0 = p[1 - (1 + Ar)p], 

where p = A/#. Also 0102 = A2(1 -- z) and 01 (01 - -  A) - -  02(02 - -  A) = (A -~- # - -  )~Z) 

x (01 - 02), so that 

g(z) =z(01 + l/r)(02 + l/r) 

and the term following K(z)-I in (3.10) is equal to 

A# 02 - 01 
r (01 + 1/r)(02 + 1/r)" 

Substitution of  the values into (3.1 O) gives 

Q(O,z) = -P [1 - (1 + Ar)p]z 
r 1 - (1 + Ar)pz " 

Thus from theorem 2 we have 

(1 - pz)[1 - (1 + Ar)p] 
E(z~V; c = O) = Q* (0, z) + qo - 1 - (1 + Ar)pz ' 

1 - ( 1  + Ar)p 
E(z~v; ~ = 1) = e*(O,z) +Po = P l -  

(1 + Ar) pz ' 

which is proposition 1 of  Fayolle [7]. 
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4. Determinat ion  o f  the queue size probabil it ies  

In this section we derive, under the stability assumption, formulae suitable for 
algorithmic calculation of the quantities Pi (x), q i (x )  (i/> 1). Our derivation reveals 
some symmetries between the p- and q-quantities less apparent in the formulation 
of the previous section, and the equations are rendered more compact if we vary the 
notation of section 3 and for i i> 1 set 

~ k , j ( x )  = ,f qj(x) 

I, pj(x) 

and define 

f o r k = 0 ,  

f o r k = l ,  

q0 f o r k = 0 ,  
7rk,0 = 

P0 for k =  1. 

The analysis is based on the imbedded Markov chain utilized in section 2. If we 
denote the equilibrium distribution on the chain by re .~~176 then following the stan- k 710 

�9 dard theory of the M / G / 1  queue verbatim we derive the generating function 
OO 

e j z  y = [1 - Z'(1)] ( z -  1)F(z) 
j=0 z - F(z) 

An algorithmic procedure for the calculation of the probabilities ej is given by 
r as theorem 5.20 in [2]. Letyj = 1 - )-'~/i=0JS. Then 

r = 1 - F'(1) ,  

r162 = Yo/ fo  

and for anyj  > 1 

j-1 

~jl~o = ~ f o - ' - '  EY,,Y,2 ...Y,,, 
i=1 

where the inner summation is over all/-tuples of positive integers with 

el + e2 + . . . ei = j - 1 .  

For k = 1,2, let 0k(t) be the probability that ~(t) = k and no retrial lifetime has 
begun since time 0, given a retrial lifetime ended at time 0 and emptied the retrial 
queue. Then 

'y~(t) = ~"/0(t)  + / ~ ' ) ' l ( t ) ,  

~(t )  = - ( ~  + ~)~l(t) + ~0(t)  

with initial conditions 7k(0) = 8k,1. 
In terms of Laplace transforms, these forward equations may be written as 
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so that 

(* + a)-ra(,) = ~,-r;(,), 

(, + ~ + ~,)-r;(,) = 1 + ~-ra(,),  

P 
7~(s) - ~(, + 2~ + v) + ~2 ,  

s + A  

The probability density for an empty period of the retrial queue having length t is 
AT1 (/), SO that the mean length of empty periods is 

A t71(t) dt = -A7~'(0) = ~/A 2 . 

Hence the mean time between the ends of successive busy periods for the retrial 
queue is (Po + qo)-l~/A 2. Such time points occur in a renewal stream at rate 
(Po + qo)A2/#. Chain points at which the state i s j  will occur in a renewal stream. 
The rate for these will be 

~,j -- (po + qo) ( ) ,2 / . )~ j /~o  (j>~o) , 

which is an algorithmically calculable quantity since po + qo is given from section 
3by 

po + qo = 1 - (A + #)A2r 
#2[1 - r*(A + #)] " 

We determine ~rk, j(x) by use of the theorem of total probability, conditioning 
on the elapsed time since the last event epoch of the imbedded chain and the state of 
the chain at that epoch. By renewal theory we have 

• lrk,j(x) = VI Bk,l,j(t)r(t + x) dt 
I=1 

+ ~'o 71(r)A dr  ~k, mj(t)r(t+x) dt ( j > 0 ) .  

Since 

~0 ~176 = /~') ' ;(0) ----- 1, dr  

this equation simplifies to 

fo lrk, j(x) = ~_, ~'l ~k,j-l+l(t)r(t + x) dt 
l=l 

+ u/o c~k,j(t)r(t + x) dt ( j > 0 ) .  

It remains to determine the quantities ak,j (t). From (2.4) we have 
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whence we derive 

# 
a~(z,s) : (s + A)[s + A(1 - z) + / z ] -  A/z' 

, z ( s  + ~) 
AI(Z'$) • (S +/~)[$ "[- A(1 - z) +/z] - A/z' 

~;'J(~) = [~(~ + 2A + ~) + ;~2]J ( j > o ) ,  
~j_l (S jr  )k r (4.1) 

~'J(~) = [~(~ + 2~ + ~) + ~2]J ( j>0) .  

These transforms can be inverted by use of formula (5.2.17) of Erdtlyi et al., 
which gives )--~Jm= 1 Ares J-z( s + a) -j as the Laplace transform of 

L..~ n L~ O j - 1  tm m ( j )( ~--, _~.~--, - - n n e_at m 1 + -1)  Az+l_na n, (4.2) 
n m=0 " = 

where we interpret (o) = 1. If we make the factorization 

S(S -[- 2/~ -I-/Z) -]-/~2 = (S + Vl)(S -[- V2) , 

then vx, v: are clearly real and nonnegative. From (4.2), (s + A) j-1/(s + vl) / is the 
Laplace transform of 

J-l [t(A-Vl)]m ( j - 1 )  
e-Vlt ~ m! m " 

z=0 

Since (s + v2) -j is the Laplace transform of 

e-V2ttJ-1/(j - 1)!, 

we may invert the first relation of (4.1) by the convolution theorem as 

t ~ j-1 ( j )  
tXO,j(t)=izf  e_Vz(t_u)(A(t--u))J-le_vW (()~--Vl)U) m --1 du ( j > 0 ) .  

( j -  1)! m-~ m J0 m=0 

Similarly 

t [ (,~(t__ U)r (A(t __ U)r 
al, j( t)= fo e-V2{t-u) A "(j---~)l. + ( A - v 2 )  ~--~).I  

j l • e_VlU~-~((A--vl)u) m 1 
m! du (j>O) 

m=0 

and we are finished. 
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5. Wai t ing  time distr ibution 

Let T be the random variable representing the waiting time of a tagged customer 
in the queue. By conditioning the state of the system seen by such a customer at 
his external arrival time, we have 

E(e -sT) =e(~ = 0) + E(e-srlN=O,~= 1)p0 

+ E(e-' IN = n ,k - -  i)?n(x) ax. (5.1) 
n=l 

We observe that E(e-~rlN = n, k = x, ( = 1) (for n ~> 1) is the Laplace transform 
of the waiting time in the queue of the arriving tagged customer when there are n 
customers in the retrial group, the remaining retrial time of the customer at the 
head of the queue is x and the server is busy. This transform is determined by mod- 
ifying the original time-dependent M/M/1 retrial queue differential-difference 
equations (3.1) with initial conditions N(0) = n + 1,R(0) - -x , ( (0)  = 1 and the 
input policy modified so that external arrivals who find the server busy are lost. 
With these changes qi (t, 0) will be the required probability density function of the 
conditional waiting time and f ~  e-~tql (t, 0) dt (later denoted by w~+ 1 (s, x)) will be 
E(e-SrlN = n, R = x, ~ = 1). The main object of the following argument is to  find 
f e-Stql(t, O) dt. 

With the new input policy, eqs. (3. lb, c, e) become 

( 0  0 )  
-Or ~ Pn+l(t,y)=-#Pn+l(t,y)-I-rO~)Pn+l(t,O)-I-~qn+l(t,y), (5.2a) 

0 ( 0  ffy)pi(t,y) = -  #pi(t,y) + r(y)pi(t,O) 

+ ~q~(t,y)+r(y)q~+i(t,O), l<.i<~n, (5.2b) 

fit qi(t,y) = -~qi(t,y) + IzPi(t,y) , 1 <<.i<<.n + 1, 

with the initial conditions 

pi(O,y) = 6x(y)6i,n+l and qi(O,y) = O. 

We solve these differential-difference equations via the transforms 

n+l rco foOO 
P*(s'O'z) = E zi / e x p ( - s t -  Oy)pi(t,y) dt dy, 

i=1 dO 

n+a ~0e~ ~ Q*(s,O,z) = E zi exp(-st-Oy)qi(t,y) dt dy, 
i=1 

(5.2c) 

(5.3) 
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n+l ~ 
U(s,z)  = E z  i exp(-s t )p i ( t ,O)  d t ,  

i=1 

n+l f0~ V(s ,z)  = E z  i exp(-s t )q i ( t ,O)  d t .  
i=1 

First ,  f o rming  t r ans fo rms  on  (5.2) gives 

( O -  s -  #)V*(s,O,z) + AQ*(s,O,z) = f ( s , O , z )  , 

#e*(s ,O,z)  + ( O -  s -  A)Q*(s,O,z) = V(s , z )  , (5.4) 

where  

f ( s ,  O,z) = U(s ,z)  + r*(O)[w*n+ 1 (s, x) - U(s ,z)  - V(s , z ) / z]  - e-~ n+l 

a n d  we set 

w~+ 1 (s, x) = e-*tql (t, 0) dt .  

A n  appl ica t ion  o f  Cram6r ' s  rule to (5.4) provides  

G(O,s)P*(s,O,z) = f ( s , O , z ) ( O -  s -  A) - A V ( s , z ) ,  

G(O,s)O*(s,O,z) = ( 0 -  s -  # ) V ( s , z )  - # f ( s ,O , z )  , (5.5) 

where  G(O, s) = (0 - s) (0 - s - A - #). Since G(O, s) = 0 a t  0 = s and  0 = s + A 
+ # ,  the  r igh t -hand  sides in (5.5) mus t  also vanish there,  whence  we have  

V(s , z )  + r*(s)[W*n+l(s,x ) - U(s ,z)  - V(s ,z) /z]  - e-SXz n+' + V(s , z )  = 0 ,  

# v ( s ,  ~) - Av(,,  ~) + #r*(~ + ~ + u)[WLx(~, x) - u ( ~ , z )  - v ( , , z ) / z ]  

- #e-(S+~+U)Xz n+l = 0.  

A n  appl ica t ion  o f  Cram6r ' s  rule to these two relat ions gives 

U(s,z)  = L ( s , z ) / M ( s , z ) ,  

where  

e- '~z "+' - r*(s)wn+,(s,x ) 1 - r*(s)lz 

L ( s , z )  = #e_(,+~+U)Xzn+ 1 _ w~,+l(s, x)r*(s + A + # )#  - A  - #r*(s + A + #z  "1) ' 

M ( s , z )  = - A - / z  + r*(s)[A + #/z] + lzr*(s + A + #)[1 - z - l ] .  

W e  observe tha t  M(s ,  z) = 0 when  

~,[r*(,) - ~*(~ + ~ + u)]  

= z ( , )  - ~ + u - At*( , )  - ur*(* + ~ + U) 

a n d  Iz(s) l ~< 1 for  s i> O. Hence  L(s,  z) = 0 at  z = z(s) too, tha t  is, 
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Wn+l (S, X ) : e-SX[)k -t- #r*(s + AAr, (s) + ,)/z(~)]+ Izr*( s+ +/ze-Cs+A+t')x[1A +/z) - ,*(~)/z(s)] Z(s)n+l , 

Finally, since 

f0 ~ E(e-SrlN = 0,~ = 1 ) =  W*l(S,x)r(x) dx, 

E(e-Srl N = n,R = x,~ = 1) = w*~+l(s,x), 

we have from (5.1) that 

E(e - 'r  = q0 + Q* (0,1) + poz(s) 
+ [[~ + ~r*(~ + ~ + ~,)lz(~)]e*(~,z(~)) + #[1 -r*(s)lz(s)] 
x P*(s + A + #,z(s))z(s)]/[Ar*(s) + #r*(s + A + #)1 

Thus we have obtained the following. 

(5.6) 

THEOREM 3 

The Laplace transform of the steady-state distribution of the waiting time in 
the queue is given by (5.6). 

6. Algorithmic determination of waiting times 

The determination of the distribution of the waiting time in the equilibrium 
regime may also be determined in the spirit of section 4 without the use of the gener- 
ating function of the queue length distribution. 

For n > 0, let Vk,n (x, t) be the probability density for the waiting time of an arriv- 
ing customer being t, given that the customer finds ~ = k, N = n and _R = x. We 
define Vk,o (x, t) to be the corresponding quantity for a customer at the head of the 
retrial queue when R = x. The unconditional waiting time of a customer arriving in 
the steady state then has the density function 

/0' /0 w(t) = q 0 6 ( t ) + P o  Vl,o(X,t)r(x) dx + Elrl ,n(X)Vl ,n(X, t)  dx .  (6.1) 
n=l 

In this formula only the quantities VI,,, remain to be determined. We outline briefly 
below how this can be done. 

The backward Kolmogorov differential equations governing Vo,n, Vl,n are 

( 0  0 )  
-~x+-~t Vo,n(X,t) = --AVo,n(X,t) + AVl,n(X,t), (6.2) 

(o o) 
-~x + -~ Vl,n(x, t) = -IZVl,n(X, t) + #Vo,n(x, t), (6.3) 
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subject to boundary conditions 

V0,n(0 , t) ~--- Vl,n-1 (x, t )r(x)  dx  

Vo,o(O, t) = 6(t) ,  

/? El,n(0 , t) ~- Vl,n(X, t )r(x)  dx 

and initial conditions 

VO,n(X, O) = 6(X)6n,O , 

Vl,n(X, O) -~- O. 
t 

From (6.2) and (6.3) 
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(n>0) ,  

(n>~O) , 

(o o ) 
-~X + -~  + -~  + Iz + /~ Vl,n(X, t) = O , 

so that 

(o+o ) 
-~x " ~ +  # + A Vl,n(X,t) = (A+Iz)hn(t - x ) ,  

for hn some differentiable function. Also by (6.3) 

)~Vl,n(X, t) + #Vo,n(X, t) = (A + #)hn(t - x ) .  

Put 

where y = t - x. Then by (6.4) 

Vl,n (x, t) = Zn (y, x ) ,  

whence 

O z n ( y , x )  + (A + lz)Zn(y,x)  = (A + #)hn(y) , 

say, (6.4) 

(6.5) 

(6.6) 

z . ( y ,  x) = h . (y)  + # g . ( y ) e - ( ~ + ~  x , 

where gn is an arbitrary function of integration. From (6.5) and (6.6) we thus have 
the parametric solution 

Vl,n(X, t) = hn(t - x) + #gn(t - x)e -(~+#)x , 

Vo,n(X, t) = hn(t - x) - Agn(t - x)e -(~+u)x , (6.7) 

From the initial conditions, we see that each gn and h~ has nonnegative support. 
Finally, the boundary conditions yield 
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h*n(S ) - Agn(S) = hn_l(s)r*(s ) + #gn_l(s)r*(s + )~ + #) 

h;(s) - Ag~(s) = 1, 

hn(s) + #g,*z(s) = h*n_l(s)r*(s ) + #gn(s)r*(s + )~ + #) 

(n>0) ,  

(n > i0) ,  
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[ ] 1 - r * ( s )  1 A 1 - r * ( s )  - . -1  
h*~(s) = 1 - 1 - r * ~ - ~ - +  # -~ 1 - r*(s + )~ + #) (n>>.O) , 

1 - r * ~ A - - +  #)  1 - 1 - r * ~ - A +  #) 

x [1 ,k 1 - r* ( s )  i - n - ,  
/z 1 - r*(s ~X~-  #)] (n>~0). 

An explicit expression for w may now be found by substitution from (6.7) into 
(6.1). If  

~rn (x) = 7rl,n (x)e -(;~+u)x , 

then we derive 
O~ O0 

w(t)  = qo6(t) + po(ho * r)(t) + Z(71"l,n * hn)(t) + # y~(~rn * gn)(t) . 
n=l n=l 
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