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The paper gives models and analytic techniques for addressing critical issues of the 
Broadband Integrated Services Digital Network which will use the Asynchronous Transfer 
Mode. The traffic is expected to be highly bursty and variable at the source and conse- 
quently a key issue is admission control. We study a 4-parameter device called a regulator 
which acts as a policing device as well as a traffic shaper. The device is a generalized leaky 
bucket with a data buffer, a token buffer supplied by a constant-rate token stream, and a 
peak rate controller; the outputs of the device are streams of priority and marked cells. The 
composite system comprising of the source and the regulator is represented in a stochastic 
fluid model since fluid flow has been found to have properties well matched to the ATM 
environment, and the Markov Modulated Fluid Source allows bursty characteristics to be 
accurately modelled. A complete procedure based on spectral expansions for calculating the 
system's stationary state distribution is given. It is shown that with proper design the 
regulator effectively controls a three-way trade-off between throughput, delay and bursti- 
ness. Numerical results reveal that performance is sensitive to source characteristics such as 
the squared coefficient of variation of burst and silent periods. The second part of the paper 
characterizes the output of the regulator. The distributions of the time periods spent in the 
various states by the output process are calculated exactly. From this an approximate 
Markovian characterization is obtained. The output streams of priority and marked cells are 
coupled to capture their correlations. For the simple case of two-state on-off sources, the 
approximate Markovian characterization of the regulator's output rate processes is explicitly 
given and it is distinguished by the property that all moments are identical to those of the 
actual processes. With this characterization an original goal of analyzing a composite system 
of access regulation and statistical multiplexing is separated, decomposed and thereby made 
tractable. 

Keywords: Markov Modulated Fluid Sources, bursty traffic, statistical multiplexing, loss 
priorities, Broadband ISDN, ATM. 

1. Introduction 

This  p a p e r  is o n  m o d e l s  a n d  analy t ic  t e c h n i q u e s  fo r  a d d r e s s i n g  seve ra l  cri t ical  
i ssues  o f  t h e  f u t u r e  B r o a d b a n d  I n t e g r a t e d  Services  Dig i t a l  N e t w o r k  ( B - I S D N )  
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which will use the Asynchronous Transfer Mode (ATM). It is expected that the 
traffic on these networks will be characterized by high burstiness and high 
variability in the bit rates; this is clear from recent studies on video (Maglaris et 
al. [26], Kishino et al. [19]), packetized voice (Petr, DaSilva and Frost [34]) and 
facsimile (Chamzas and Duttweiler [5]). These characteristics are the driving 
force for admission control, access regulation and statistical multiplexing, all key 
elements of ATM networks and services (see the excellent papers by Coudreuse, 
Pays and Trouvat [7], and Eckberg, Luan and Lucantoni [13]); they are also at 
the core of this paper and its sequel. Admission control is a congestion 
avoidance procedure for deciding whether a call, with certain announced 
bandwidth, burstiness and other characteristics is to be carried or not, given 
certain information on the state of the network, such as the currently available 
bandwidth and buffers and the number of calls of various types in progress. The 
high level goal of the analyses of this and related papers is to facilitate 
admission control through, hopefully, simple tables, charts and guidelines. 
However, the concept of admission control of (admittedly) bursty sources raises 
fundamental questions of what constitutes the minimal description of burstiness 
which are consequential for network performance, which the user can provide 
and which the network can monitor. Such a universally accepted minimal 
descriptor does not exist today; in fact, one of the purposes of this paper is to 
demonstrate the sensitivity of network performance to some of the less visible 
features of burstiness in user-sources. 

Assuming that a description has been agreed upon by the network and the 
user, and that a call has been accepted, it will remain for the network to enforce 
the "contract". Correspondingly, the user, who is aware of both the nature of 
the contract and the existence of the network enforcement, may want to 
optimize his overall cost and performance by shaping his traffic and trading-off 
delay, throughput and burstiness. A device which with appropriate parameter 
values may function both as network police and as traffic shaper is described 
below. Hence, it makes sense to have a pair of these devices with different 
parameters in a serial configuration. We call this device an "access regulator"; it 
has all the features of the usual leaky bucket policing device plus other elements 
(Turner [38], Sidi et al. [35], Eckberg, Luan and Lucantoni [12], Berger [2,3], 
Chuah and Cruz [4] and Monteiro, Gerla and Fratta [30]). A Markovian model 
of a bursty source in conjunction with a model of the access regulator, the 
analytic techniques for solving the equations describing the stationary state 
distribution of the composite model, calculating various performance features 
and trade-offs, and characterizing its output exactly and, also, approximately as 
another Markovian source are all subjects of this paper. 

By the very statistical nature of burstiness, the estimation of the characteris- 
tics of a bursty source, such as mean rate, is subject to errors which increase as 
the estimation periods decrease. On the other hand, when the objective is 
enforcement and also because non-stationarity cannot be ruled out, estimation 
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Fig. 1. Integrated system of access regulation and statistical multiplexing. 

intervals cannot be long. This dilemma has several repercussions. First, for given 
contractual characteristics, the policing device has to have slack built into its 
design to minimize false detections of violations. However, this slack can be 
exploited by users which leads to inefficiencies. An alternative policy combines 
the minimum of slack with a "soft" violation tagging process. This is one reason 
that the concept of "loss priorities" is built into ATM concepts and standards 
(Coudreuse, Pays and Trouvat [7], Eckberg, Luan and Lucantoni [13], Woodruff 
e~ ~ al. [41]). Cells which are judged to be in violation of contracts between 
network and user are "marked", typically carried and dropped only in the last 
resort. In the scheme that we analyze (and which has several tractable variants), 
see fig. 1, the access regulator does not drop cells and has two output cell 
streams, "priority" and "marked". The selective discarding of marked ceils 
when the buffer content exceeds a pre-determined threshold is done at the 
statistical multiplexer. Although the entire system in fig. 1 is analyzed as an 
integrated system, for reasons of space we have deferred the analyses of the 
statistical multiplexer to this paper's sequel (Elwalid and Mitra [14]). 

The access regulator studied in this paper is shown in fig. 2. It is a 4-parame- 
ter device (r, B r, B D, t3): r is the constant rate at which tokens arrive, B r is the 
token buffer size, B o is the data buffer size and ~ is the parameter which 
bounds the flow rate of priority cells leaving the regulator; an important 
parameter is B ~= B z + Bo, the total buffer space in the device. The data buffer 
and the peak rate controller are not typical elements of the leaky bucket, 
although the data  buffer is included in the configuration considered by Sidi et 
al. [35] and Berger [3]. 

The parameter r is naturally associated with the average source bit rate. The 
analysis here shows that in the rather general Markovian framework of this 
paper, the cell loss probability PL depends on B D and B r only through their 
sum B. This has been known before (Berger [3]) in other contexts. Hence, prior 
to peak rate control, the throughput of priority cells depends on B D and B r 
only through B. Now r cannot be made too close to the average source cell rate 
without incurring the penalty of either high PL or large B. Hence some slack in 
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Fig. 2. The access regulator. 
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the form of 1 - p  > 0 must be introduced, where p is the ratio of the average 
source cell rate to r. 

The partitioning of B into B T and B o determines the trade-off between the 
delay incurred by the priority cells and their burstiness, i.e. variability. For fixed 
B, small B r gives large delays and smooth outgoing traffic. Our numerical 
studies show that this trade-off can.be effectively controlled, but only if B r is a 
small number of the order of the average amount of data generated by the 
source in a burst. We have observed that performance is insensitive to the 
partitioning for larger values of B r. In summary, r, B r and B D control the 
three-way trade-off between throughput, delay and burstiness of the outgoing 
priority cell stream. 

When the regulator is used as a policing device, the reasons for having the 
data buffer are not compelling. When the data buffer is non-existent or small, 
the issues are simpler: larger B T slows down the reaction time in detecting 
violations, while decreasing the probability of false alarm wherein marking rates 
are higher than they should be. The throughput of unmarked cells leaving the 
data buffer is limited by r, and B r limits the duration of periods during which 
the rate exceeds r. When the regulator is used as a traffic shaper, the role of the 
data buffer can be quite important. The user may benefit by paying the penalty 
of some delay to meet network specifications and thus obtain better guaranteed 
service from the network. 

In this paper we have chosen to concentrate on the role of access regulation 
in ATM-BISDN networks. However, there is also an important role envisaged 
for access regulation in conjunction with feedback-based congestion control. 
This approach is of particular value in data networking where the delay 
requirements are not as stringent as in real-time services. An exposition of an 
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approach which integrates access regulation with feedback-based congestion 
control is given by Mitra et al. [29]. 

The analyses of this paper and its sequel are based on stochastic fluid models 
(Anick, Mitra and Sondhi [1], Gaver and Lehoczky [16], Kosten [21,22], Weiss 
[39], Mitra [29], Stern and Elwalid [36], Coffman, Igelnik and Kogan [6]). The 
bursty sources are modelled as Markov Modulated Fluid Sources in which the 
state of a controlling continuous time Markov chain determines the rate of fluid 
generation. The particular class of two-state "on-off" sources have proven 
extremely useful and insightful. There are several fundamental reasons why 
fluid models are appropriate in the ATM environment: the small and uniform 
cell size (53 bytes) is, of course, important; the constant interarrival time 
between cells for several contiguous cells, at the time of generation, fits easily in 
the fluid framework and is difficult to handle in the queueing context; the 
numerical complexity of solving fluid models with finite buffers does not depend 
on buffer size, while with queueing models the complexity increases. The fluid 
approximation presumes a separation of time scales, i.e. the interarrival time of 
cells is small with respect to the time between changes in the rate, which is a 
feature of the high speed ATM environment. Hence, not surprisingly, several 
recent papers on packetized communications and ATM networks are based on 
stochastic fluid models (Tucker [37], Dittman and Jacobsen [9], Maglaris et al. 
[26], Li [25], Monteiro, Gerla and Fratta [30], Kobayashi [20], Norros et al. [33]). 
Several comparative evaluations of techniques for modelling and analyzing 
statistical multiplexing now exist (Daigle and Langford [8], Nagarajan, Kurose 
and Towsley [31], Kroner, Theimer and Briem [23]); these studies have found 
the approach in Anick, Mitra and Sondhi [1], which is based on stochastic fluid 
models, to be effective in its accuracy and capacity to solve large systems. 

SUMMARY OF RESULTS 
(i) The stationary state distribution of the system comprised of a Markov 

Modulated Fluid Source and the access regulator is obtained in section 2 from 
the spectral expansion of the solution of a system of ordinary differential 
equations and a set of natural boundary equations. Monotonicity and convexity 
properties are derived for on-off sources. 

(ii) Section 3 presents numerical results on the effects of B on PL as a 
function of p, on the dependence of the trade-off between delay and burstiness 
of the output rate A t (see fig. 2) on the partitioning of B into B T and B D, and 
on the effect of the squared coefficients of variation of the burst lengths and 
silent periods of on-off sources. Also, performance results from simulations of 
systems with ATM characteristics are compared with results from approximating 
fluid models and the agreement is found to be good. 

(iii) Section 4 gives results on the distribution of the token and data buffers 
just after transition epochs of the source. These results are based on conditional 
PASTA and serve as tools for use later in the paper. 
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(iv) Section 5 gives results on the mean busy (i.e. non-empty) and blocking 
(i.e. full) periods of the buffer in a generic buffering system with a general 
Markov Modulated Fluid Source. These results are used later in the paper and 
also in the sequel. 

(v) The rest of the paper (sections 6, 7 and 8) is devoted to the characteriza- 
tion of the output of the regulator. Section 6 gives the following mean values 
pertaining to the regulator: mean empty and busy periods of the token buffer, 
and the mean blocking periods of the token and data buffers. These results give 
the mean period during which the output rate R t equals the token rate r. 

(vi) Section 7 gives the exact distributions of the sojourn periods in states in 
which the output rates /~t and R t are greater than the token rate. (The 
distributions of periods in states where the output rates are less than the token 
rate are exponential.) 

(vii) Section 8 gives an approximate characterization of the output streams, 
priority and marked, of the regulator as coupled Markov Modulated Fluid 
Sources, i.e. with a common controlling Markov chain and a pair of cell 
generation rates for each state. This is done for the case of B o = 0 and on-off  
sources, although the results given earlier in the paper allow the procedure to be 
readily extended to general Markovian fluid sources. The Markovian characteri- 
zation consists of approximating the distributions of sojourn times in certain 
states by exponentials with means which are correct and have been previously 
calculated. This approximation has the fortuitous property of yielding all mo- 
ments for its rate processes which are identical to the corresponding moments of 
the actual process. 

With this characterization we separate the problem of analyzing the compos- 
ite of access regulation and statistical multiplexing, see fig. 1. While decomposi- 
tions such as this have been proposed before, notably by 2-moment renewal-the- 
oretic characterization (Kuehn [24], Whitt [40]), the innovation is in the Marko- 
vian and fluid features which experience has shown to be appropriate in the 
ATM-BISDN environment. 

2. The access regulator 

In this section we specify and then model a 4-parameter access regulator 
which polices and shapes the traffic from a source. The source, while typically 
single, may in fact be the multiplexed output of several sources. The burstiness 
of the source is modelled here (see fig. 3) as a Markov Modulated Fluid Source 
controlled by an N-state continuous time irreducible Markov chain (CTMC) 
with generator M and rates A = (h 1, h2 , . . . ,  A~v) where h i is the constant rate at 
which fluid is generated by the source when it is in state i. Special attention is 
given to "on-of f  sources", for which N = 2, state 1 is "off" and state 2 is "on". 
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Fig. 3. The source and regulator investigated in section 2. 

The specific function of the access regulator is to segregate the arriving cells 
into two streams, "priority" and "marked". Devices further downstream in the 
network, such as the statistical multiplexer, carry the marked ceils only if 
residual resources are currently available. In this section we obtain the station- 
ary state distribution of the composite of the source and the regulator. 

The regulator is shown in fig. 3. An arriving cell which finds the data buffer 
full is marked and diverted from the rest of the regulator. Tokens arrive (as 
fluid) at the constant rate r. Arriving tokens which find the token buffer full are 
lost. Principles guiding further operations are (i) only paired ceils and tokens 
move downstream, and (ii) the pairing is effected as soon as possible. A 
consequence of (ii) is that both buffers cannot  simultaneously be non-empty at 
any time. The device described above is related to the leaky bucket which has 
several equivalent representations. Typically the data buffer and the p e a k  rate 
control are not included; Sidi et al. [35] and Berger [3] include the data buffer. 
The operations described above are closely related to the "kanban" discipline 
used in manufacturing and production (Mitra and Mitrani [28]). 

We let R t denote the rate at time t of fluid flow of unmarked ceils which 
have been paired with tokens in the manner described above. There are only 
( N  + 1) feasible values of/~.t, namely, h i , . . . ,  A jr, r. This is because if the token 
buffer is non-empty then R t corresponds to the source rate, and if the token 
buffer is empty then /~ t  = r. A final step in the regulation is peak rate control 
which constrains the flow rate of priority cells leaving the regulator not to 
exceed 9 (9 > r). The excess over 9 of the rate of fluid flow is marked. Hence, 
the rate of priority cells leaving the regulator at time t ,  R t E {A 1 A 9 , . . . ,  A N/k 
9, r} where, in general, x A y = min(x, y). 

In an alternate configuration the peak rate controller is positioned before the 
pairing of cells and tokens. This does not result in any difference in the set of 
values of R t, and if there is no data buffer, i.e. B D = 0, then all differences 
vanish. However with B 9 > 0, the present configuration shown in fig. 2 leads to 
a greater utilization of the data buffer. 

A particularly interesting and viable special case of the regulator is when 
there is no data buffer, i.e. B D = 0. All the important formulas derived in this 
paper apply to this special case. Note that when B D > 0 there is the possibility of 
overtaking of marked cells over priority cells which necessitates resequencing at 
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some later point. On the other hand, as we shall show, the presence of the data 
buffer gives an important additional degree of design flexibility. Moreover, with 
proper design the overtaking is small. 

(1) STOCHASTIC FLUID MODEL OF THE REGULATOR 
Let X t and Yt respectively denote the contents of the data buffer and the 

token buffer at time t (0 ~< X t <~ BD; 0 <~ Yt <~ BT). As noted above, XtY t -- 0. Let 

Wt A= X, - Yt + BT, (2.1) 

so that 0 ~< W t ~< B. A tittle thought shows that knowledge of W t gives X t and Yr. 
It is helpful to think of W t as the "virtual buffer content". Let S t denote the 
state of the source at time t and . f &  {1, 2 , . . . ,  N} the state space. Let the state 
distribution of the source-regulator system in equilibrium be given thus 

F~(r A=Pr[S=i, W<~r ( i ~ J D ,  O<~r (2.2) 

where, as in the rest of the paper, we drop the subscript t when specifying 
�9 stationary distributions. A lexicographic arrangement gives the row vector F(~) 

= {F,(~:) I i ~ J } .  Let the scalar F(~) be defined thus, 

V(~) & Pr(W~<~)= (F(~) ,  1), (2.3) 

where, in general, the vector product (x, y)  = Y'. xiYi, and 1 = (1,. . . ,  1). 
Following the procedure in, say, Anick, Mitra and Sondhi [1], it is straightfor- 

ward to obtain the governing differential equations: 

d 
-d-~F(~)D = F(~:)M (0 < ~ : < B )  (2.4) 

where, recall from fig. 3, M is the generator of the controlling Markov chain of 
the source and D = d i a g  {A 1 - r , . . . ,  A~v - r}. "D" is a mnemonic for "drift" and 
the ith element of D, A i - r, is the drift or rate of change of the virtual buffer 
content W t when the source state is i. 

To complete the specification of the mathematical model, it is necessary to 
give boundary conditions to (2.4). See fig. 4 in this connection. It is helpful to 
define 

~ ~ {i ~ . f l A i - r  < 0}, o P v = { i ~ . / l A i - r > O } ,  (2.5) 

i.e., O~D and o~ v are the sets of source states gMng downward and upward 
drifts, respectively, to the virtual buffer content. Assume for simplicity that no 
source rate exactly equals the token rate, i.e. A i v~ r; Mitra [27] has shown how 
exceptions may be handled. This assumption gives o ~= o~ D u oPv. Also let the 
stationary state distribution of the source be w, i.e., 

w M = 0 ,  (w, 1 ) = l .  (2.6) 
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From fig. 4 note that 

F/(0 + ) = Pr[S = i and token buffer full], (2.7,i) 

w i - F/(B - ) = Pr[ S = i and data buffer full]. (2.7,ii) 

Hence, arguing as in Mitra [27], that if the source state S t ~ ~av, then the token 
buffer cannot be full except at isolated instants of t, we obtain from (2.7,i), 

/ 7 / ( 0 + ) = 0  ( i ~ a u ) .  (2.8,i) 

Similarly, if the source state St ~ JD then the data buffer cannot be full except 
at isolated instants of t. Hence, from (2.7,ii), 

F~(B-)  =wi (i ~ J D ) .  (2.8,ii) 

Since ~a  U O ~'~o = ~a  we have in (2.8) exactly as many boundary conditions as 
the number of differential equations in (2.4), namely, N. 

Now consider the solution of the system of differential equations in (2.4) in 
conjunction with the boundary conditions in (2.8). A particular method which 
has had considerable success in similar systems in the past is the method of 
spectral expansion (Anick, Mitra and Sondhi [1], Kosten [21,22], Mitra [27], 
Coffinan, Igelnik and Kogan [6], Stern and Elwalid [36]). This method has two 
components, first, the calculation of eigenvalues and eigenvectors, and, second, 
the calculation of coefficients of the expansion from the boundary conditions. A 
great deal is known about the algebraic theory that in structured problems 
greatly simplify the first set of calculations (see for example Elwalid, Mitra and 
Stern [15]). We shall have to omit further discussions on these techniques. 

The following is the spectral expansion of the system stationary state distribu- 
tion 

N 

F(~)  = E ajtkj exp(zj~), (2.9) 
j = l  
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where {aft is the set of coefficients and (zp ~bj) is an eigenvalue-eigenvector 
pair which satisfies the following equation 

zjdgjD =~b/M ( j =  1, 2 , . . . , N ) .  (2.10) 

A particular pair, see (2.6), is (0, w). Hence, from (2.9) 
N 

F(~) =alw + E .aypj exp(z/~). (2.11) 
j = 2  

Substituting this form in (2.8) gives a linear system of N equations in the N 
unknowns a l , . . .  , aN; this system of equations is completely specified once the 
eigenvalues and eigenvectors have been computed. Typically, the linear equa- 
tions have to be solved numerically. 

A mathematical device which is quite often useful when the blocking proba- 
bility is very small is to assume that B = ~ and, by appropriately integrating the 
tail of the resulting distribution, to bound and estimate probabilities of interest 
in the real case of finite B. However, in the case of B = ~ it is necessary for the 
existence of non-degenerate stationary distributions to have p < 1, where the 
traffic intensity 

1 
p & - ( w ,  a ) .  (2.12) 

r 

In this case the boundary conditions are composed of the set of equations in 
(2.8,i) together with conditions that assert that if Re ( z )  > 0 then a t = 0. It has 
been proved for a wide variety of conditions [27] that the number of such 
boundary conditions equals N. 

We now give the distributions of X and Y, and some performance measures 
in terms of the expression in (2.11): 

Pr[data buffer full] = 1 - F (B) ,  

Pr[token buffer full] = F(0), 

Pr[S = i ,  Y<y]  = w i - F i ( B T - Y  ) 
V r [ S = i ,  X < x ]  =F/ (x  +BT) 

(0 < y  <BT),  

(2.13,i) 

(2.13,ii) 

(2.13,iii) 

(2.13,iv) 

There are three interesting equivalent expressions for the stationary mean of/~t 
which is the throughput of unmarked cells prior to peak rate control; the two 
given now are conservation equations for cells and tokens, respectively (the third 
expression is (2.27)). For the first, 

(/~) = mean cell rate at source - mean cell loss rate due to full buffer 
N N 

= ~.,Aiwi- E (A i - r ) {w i -F i (B)}  
i=1  i=1  

=r + (F(B) ,  A - rl) .  (2.14,i) 
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The second expression is obtained analogously: 

(/~) = r - m e a n  token loss rate due to full token buffer 

= r - ( F ( 0 ) ,  r l - A ) .  (2.14,ii) 

The equivalence of all three expressions follows directly from the following 
identity (see Mitra [27]), 

( F ( ~ ) , A - r l ) = - c o n s t a n t  V~ (O<<.~<~B). 

Once the throughput has been calculated, it is straightforward to obtain the cell 
loss probability, PL = 1 - ( R ) / ( w ,  A). 

The distribution of delay seen by arriving cells, as given by the fluid model, is 

(F(r t  + B r ) ,  A) 
Pr(delay ~<t)=  ( ~ )  (t <Bo/r ) ,  (2.15,i) 

r[1 - F(B)]  
Pr(delay=BD/r ) = (/~) (2.15,ii) 

The right hand expression in (2.15,i) is the fraction of the carried flow, i.e. 
throughput, which arrives at the data buffer when its content does not exceed 
(rt). Similarly, the right hand expression in (2.15,ii) is the fraction of the carried 
flow that arrives to a full data buffer. 

Note that the procedure that we have given for calculating F(~) depends on 
B T and B D only through their sum B (see (2.8,ii)). Hence notice from (2.14) that 
the throughputs (R)  and ( R )  depend on B r and B D only through B. This has 
been observed independently by Berger [3] in a different framework. 

(2) ON-OFF SOURCES WITH TWO STATES 
This simple class of sources (Anick, Mitra and Sondhi [1]) is used throughout 

this paper to illuminate general results. For these sources the off and on periods 
are exponentially distributed with mean 1/a and 1//3, respectively, and while on 
the source transmit at rate A. Hence, [oo] 

M= AI, 

which gives 

(2.16) 

D = d i a g ( - r , A - r ) ,  and w =  , . (2.17) 
a+/3 a+/3 

We assume that r < A as otherwise no cells are marked. The two eigenvalues 
obtained by solving (2.10) are zl = 0 and z 2 which, in the special case of on-off  
sources, will be denoted simply by z, 

+/3)(1-o) 
z =  - (A - r )  ' (2.18) 
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where the traffic intensity, 
a a 

p =  
r a + f l  

Hence, p < 1 implies z < 0. The eigenvector associated with z is 

r = [ ( A - r ) / r ,  1]. 

The coefficients (al, a 2) in the special expansion (2.11) are 

a 1 1 
al . . . .  A( ' a2 = - - '  B) Z(B) 

where, generally, 

a A - r  
A( f ) A= 1 exp( z f  ). 

r 

Hence, the complete system stationary state distribution is 

F a ( f ) = W a A ( B ) ,  

{1 - ew(z )} 
F2(f) =w2 a ( B )  

This gives 

F ( ~ : ) = P r [ W ~ < ~ : l = { 1 - p e x p ( z ~ ) } / A ( B )  (O<.f <~B). 

(2.19) 

(2.20) 

(2.21) 

(2.22,i) 

(2.22,ii) 

(2.23) 

(3) OUTPUT RATE PROCESSES 
Let/~t  be the rate of unmarked cells leaving the data buffer at time t, see fig. 

2./~t is modulated by the process f2 t with state space = {1, 2 , . . . ,  N, N +  1}. Let 
O t be defined thus, 

g2t=i w h e n ( S t = i ,  Y t > O ) , ( i = l ,  2 , . . . , N  ), 
= N + 1 when (Yt = 0). (2.24,i) 

When g2 t = i, 1~ t = 5 i (1 ~< i < N + 1) where, 

51=A i ( i = 1 ,  2 , . . . , N ) ,  (2.24,ii) 
=r ( i = N  + 1). 

For example, in the case of on-off  sources, (51, 52, 53) = (0, A, r). 
We let ( 0  t, Rt,  v) be similarly identified with the output of the peak rate 

controller, which is also the output of priority cells of the regulator. The peak 
rate controller is modelled as a memoryless device: 

R, = R, ^ 5. (2.25) 
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t~t=r, Yt=O 

- -  _ buf  r 

Yt>O Y , > 0  Yt>O Y t > 0  

Fig. 5. Transition diagram of g2 r The rates/~t are also shown. At source states 1, 2 . . . .  , i*  data is 
generated at rates less than the token rate r, while the reverse is true for the remaining source 

states. 

Figure 5 sketches the transitions of the process g2 t for a typical source 
governed by a birth-and-death process. As indicated in the figure, transitions 
from R t =~i to/~t  = r cannot occur for i ~ J o  and, similarly, transitions from 
/~t = r to R t = A i cannot occur for i ~ i v .  

Note from (2.24) and (2.13), the stationary probabilities of g-2t: 

=[Pr[S=i,Y>OI=Fi(BT) ( l < < . i < N ) ,  
P r [ ~  = i] ~pr[Y=O]=l_F(Br)  ( i = g + l ) .  (2.26) 

The stationary mean and variance of the rate process /~t are of considerable 
interest and readily obtained from (2.24) and (2.25). For the mean, 

N+ 1 N 

(/~) = E b / P r [ a = i ]  =r{1-F(Br) } + ~7. AiFi(BT). (2.27) 
i=1 i=1 

Similarly for the second moment, 

N 
( / ~ 2 )  = r 2 { 1  _ F(BT)} + ~_,A2Fi(BT). (2 .28)  

i=1 

On introducing the spectral expansion of F(~), see (2.11), 

( / ~ 2 )  =al(R2s>_l..(l_al)r2_t_ ~.,aj{exp(zjBr)} ~ ( A ~ _ r 2 ) ~ i i  , (2 .29)  
j = 2  i=1 

w h e r e ( R E )  a N 2 = ~i=xAiWi is the second moment of the source rates. 
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Notice that in contrast to the previously established result that the throughput 
of tokens, and hence (/~>, depends on B r and Bn only through B, the second 
moment (/{2) depends on both B r and B n. As the numerical results in the next 
section will show, this important dependence is pronounced. 

(4) O N - O F F  S O U R C E S  ( C O N T I N U E D )  

For these sources it follows from (2.22), (2.23), (2.27) and (2.28) that, 

":1 
1 A 

where P, A ( B )  and z have been defined in section 2(2). 
Let C,2,i~ denote the squared coefficient of variation of -Rt, i.e. 

C2,# = 1. 

It is easily verified that for fixed B, 
2 

- - > 0  Vp, 
aB r 

and 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

02[C 2 ,~ { 
~..,RJ < 0  if p < l ,  (2.34) 
0B 2 > 0 if p > 1. 

That is, with B held fixed, increasing B 7. (and therefore decreasing B n) 
2 . 2 increases C,,h, also, C,,k is a concave function of B T if p < 1 and convex if 

p > l .  

3. Numerical investigation and simulation results 

In this section we study the performance of the regulator as measured by the 
cell loss probability (or equivalently the marking probability) Pz., the squared 
coefficient of variation of the output rate CR 2-, and the mean cell delay; we also 
investigate the trade-offs as functions of the regulator parameters Br, B n and r. 
In this investigation there is no peak rate control, i.e., the peak rate constraint is 
relaxed. The on-off  source model is used and the effect of the mean length and 
variability of the on a n d  off periods on the regulator performance are also 
reported. Finally, the accuracy of the fluid model and the analytical results are 
validated through computer simulation. 
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10-1 

10 -3 
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10 9 
0 4 8 12 16 20 

B--" 

Fig. 6. Cell loss probability as a function of  token rate r and total buffer  space B. Source 
parameters:  a = 0.35/0.65, /3--1,  )~ = 1. Token rate r = 0.5, 0.44, 0.39 for p = 0.7, 0.8, 0.9 

respectively. 

In the exact source-regulator model, the source alternates between the on 
state and the off state. During the on state, whose mean duration is 1/[3 
seconds, the source transmits cells (fixed length packets) at a constant (peak) 
rate of A cells/second. The tokens arrive at the token bank at a constant rate of 
r tokens/sec.  In all the examples considered here 1/[3 and 1/or are set to 0.350 
sec and 0.650 sec respectively and A is set to 62.5 cells/sec. In the approximat- 
ing fluid model we adapt the convention used by Anick, Mitra and Sondhi [1] 
and let the unit of time be the mean length of the on period and the unit of 
information be the average amount generated by the source during the on 
period. Thus, according to this convention, the source peak rate and mean rate 
are equal to 1 and 0.35 unit of information per unit of time respectively. Note 
that the unit of information is equivalent to 21.875 cells. These units are 
employed in figs. 6-10. 

We first examine the effect of r and the total buffer size B( = B r + B D) on the 
cell loss probability Pz.. Figure 6 shows that as r approaches the source mean 
rate, i.e. as p approaches 1, the buffer size B required to achieve a desired 
value of PL increases sharply. For Pt. equal to 10 -5, for example, and as r 
decreases from 0.5 to 0.389, the required buffer size B increases from 10.8 to 
17.8 units. This is an undesirable feature since the larger requirement of B 
translates in general into larger mean cell delay and less control on the 
variability of the output rate. However, as we will see below, the inherent 
flexibility in partitioning B into B T and B n provides a mean for achieving a 
reasonable compromise between mean delay and output rate variability while 
keeping the loss constant. We take note of an interesting phenomenon associ- 
ated with fluid models. If in the model of the source the mean cycle time is 
reduced by a factor while keeping constant the ratio of the mean on and off 
periods, i.e. the jitteriness of the source is increased, then it is an easily verified 
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Fig. 7. The  t rade-off  between delay and burstiness of  output  rate R t controlled by the partitioning 
of  B into B r and B D. (a) B = 10, Pr = 2.26•  10 -5, r = 0.5; (b) B = 30, PL = 5.0X 10 -5, r -- 0.39. 

Source parameters  same as in fig. 6. 

fact that in the units of our convention there is no change in the buffer 
requirements to achieve a given probability of loss. However, since the unit of 
information is equal to a number of cells which is smaller by the same factor, the 
buffer requirement in absolute terms is reduced by this factor. Note that as the 
mean cycle time approaches zero, all correlations in the source rate are 
removed, the rate approaches a constant value equal to the mean source rate 
and PL approaches zero. 

The trade-off between mean cell delay and the squared coefficient of varia- 
tion of the output rate, Cv2,h is displayed in figs. 7(a) and (b) for r equal to 0.5 
and 0.39 respectively. In fig. 7(a) the total buffer space B is set to 10 units of 
information (giving a loss probability of 2.26 x 10 -5) and the mean delay and 
CvZ,# are plotted as functions of B r. As Br  increases from zero to B, the mean 
delay decreases from a maximum value of 2.165 units of time to zero, while coZ, h 
increases from 0.65 to a maximum value approaching Q2,s, the squared coeffi- 
cient of variation of the uncontrolled source rate. Similar qualitative results are 
also observed in fig. 7(b). Note the monotonicity and concavity of C~2,~. It is 
noteworthy that in order to achieve control on the variability, B r should have a 
value of the order of one unit of information. 

The dependence of the regulator performance on the variability of the on and 
off periods is investigated next. To generate an on period distribution with 
squared coefficient of variation larger than one, we have chosen the hyperexpo- 
nential distribution with balanced means (see, for example, Kuehn [24]). The 
source model consists of three states: two on states during each of which the 
source rate is constant, and an off state. The sojourn time in each of the three 
states is exponentially distributed. The analysis of this model is a straight-for- 
ward generalization of the two state on-off  source model. In particular the 
eigenvalues and eigenvectors are all real. As fig. 8 depicts, the loss probability is 
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Fig. 8. The effect of the squared coefficient of variation of length of burst (i.e., on period) on cell 
loss probability. Mean burst length, mean silent period and source rate same as in fig. 6. 

quite sensitive to the change in the squared coefficient of variation of the on 
period. For example, for p equal to 0.7, PL increases by about two orders of 
magnitude as the squared coefficient of variations of the on period is increased 
from 1 to 1.44 while keeping B fixed at 18 units. In fig. 9 the loss probability is 
shown to depend in a similar manner on the coefficient of variation of the off 
period. Figure 10 elaborates on the theme of fig. 7. The tradeoff implicit in the 
data of fig. 7 is shown to depend on the squared coefficient of variation of the 
(hyperexponentially distributed) burst length. Observe that while a higher value 
of the latter parameter gives higher delay, the variability of the output rate 
process (as well as its mean) is lower. All of the data presented in figs. 8, 9 and 
10 suggest that at least the second moment of the on and off periods needs to be 
specified as part of the declared parameters at the connection-setup phase in 
order to accurately predict the characteristics of the regulated traffic. 

1 0  "1 

10 -3 

10 .5 

10 -7 

2 v OF SILENT PERIOD= 

2-56 J ~ v ~  
1 . 9 6 - / / ~  " 
1.44--/ \ ~ -  

4 8 12 16 
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Fig. 9. The effect of the squared coefficient of variation of the silent (i.e., off) period on cell loss 
probability. Mean burst length, mean'silent period and source rate same as in fig. 6. 
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Fig. 10. The dependence of the trade-off between delay and burstiness of output rate on the 
squared coefficient of variation of the burst length, r -- 0.5 and 0.39 in (a) and (b); mean burst 

length, mean silent period and source rate same as in fig. 6. 

To  val idate  the  accuracy o f  the  s tochast ic  f luid m o d e l  and its applicabil i ty to  
A T M  networks ,  extensive  s imulat ion  o f  the  actual  source-regulator  m o d e l  de-  
scribed above  was  performed.  Table  1 provides  a c o m p a r i s o n  b e t w e e n  the  
analytical  and s imulat ion  results for the  m e a n  data buffer,  the  m e a n  token  
buffer,  the  t h r o u g h p u t  ( R )  and the  s tandard dev ia t ion  o f  the  regulator  ou tput  
rate R t. The  t o k e n  rate r is f ixed at 0 .4324 wh ich  corresponds  to p = 0.81, and 
the  total  buffer space  B is set  to  44, 88 and 176 units .  In each  o f  the  three  cases,  
three  different  partit ions o f  B into  B r and B D are cons idered .  W e  observe  that  
there  is exce l l ent  agreement  b e t w e e n  the  analyt ical  results  based  o n  the  stochas-  

Table 1 
Results from simulation of source-regulator with ATM characteristics compared to analytic 
results from approximating stochastic fluid model. 1//3--0.35 sec, 1 /a  = 0.65 see, h = 62.5 
cells/sec, r = 27.03 cell/sec; hence p = 0.81 

B B r Mean data buffer Mean token buffer Throughput, (R)  Std. Dev (R) 
content content 

Anal- Simulation Anal- Simulation Anal- Simulation Anal- Simulation 
ysis ysis ysis ysis 

44 11 8.08 8.72+0.91 4.21 4.72+0.26 20.16 20.36+1.83 19.37 20.14+2.68 
44 22 3.68 3.97-t-0.48 10.82 11.20+0.84 20.16 20.21+0.64 23.62 23.31+0.38 
44 33 1.13 1.25+0.05 19.27 19.24+0.46 20.16 20.20+0.52 26.43 25.81+0.38 

88 22 11.25 12.08+0.40 8.90 9.12+0.45 21.38 21.53+0.07 21.58 21.74+0.51 
88 44 4.33 4.73+0.40 23.97 23.86+0.45 21.38 21.55+0.06 25.90 25.50+0.51 
88 66 1.07 1.18+0.17 42.72 42.32+0.57 21.38 21.59+0.14 28.16 27.24+1.38 

176 44 10.24 11.52+0.94 22.10 21.99+0.59 21.82 22.07+0.16 24.92 24.38+1.83 
176 88 2.81 3.18+0.55 58.67 58.01+0.21 21.82 22.08+0.15 28.29 27.44+1.41 
176 132 0.50 0.44+0.19 100.36 99.23+0.31 21.82 22.05+0.13 29.39 28.57+1.43 
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tic fluid model and simulation results. The accuracy of the fluid model is due to 
the constancy of the cell length and of the cell arrival rate during bursts in the 
model being simulated, as well as on the fact that the cell interarrival time 
during the on period is much smaller than the duration of the on period, a 
condition which typically exists in high speed networks. 

4. Buffer distributions just before and after source transitions 

A high level goal of the rest of the paper is to characterize the output of the 
access regulator in sufficient detail for it to be a well-identified "source" for 
other devices, such as the statistical multiplexer, further downstream in the 
network. This characterization exploits knowledge of the stationary state distri- 
bution of the source-regulator system, F(~), whose calculation was the subject 
of section 2. This section gives the virtual buffer content distribution just before 
and after epochs at which the source makes transitions. These results are used 
later in this paper and in the sequel. The results presented in this section make 
use of the conditional PASTA results in van Doorn and Regterschot [10] and 
van Doorn, Jagers and de Wit [11]. There are analogous results by Neuts [32] on 
the probability of states immediately before and after transitions of an M / M / 1  
queue in a Markovian environment. 

Let E n (n = 1, 2, . . . )  denote the epochs at which the source process S t 
(t >1 0) makes transitions and let X,, = Se.-o. Let ql , - . . ,  qN denote the station- 
ary state probabilities of the discrete-time Markov chain {X,,, n = 1, 2, ...  }. It is 
known (see, for instance, Keilson [18] and van Doorn and Regterschot [10]) that 

wi~--------L-i (1 <~i<<.N) (4.1) 
qi = (W, I ~) , ' 

where 

~i = -Mii  = E M i i  (4.2) 
j4:i 

and w, see (2.6), is the stationary state distribution of the source. Let 

G[-(n ,~)  A=Pr[x,,=i, WE_o<~] (l  <~i<~U;O~<~B)  (4.3) 

and 

GT(~) = lim GF(n,  ~). (4.4) 
n - - ) ~  

Similarly, 

G+(n,  ~) A= rr[SE,+o=i ' WE,+ ~ ~<~] (4.5) 

and 

G+(~) = lim G+(n,  ~). (4.6) 
n --a+ 00 
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An important bridge to the distribution F(~:) is provided by the following 
result from conditional PASTA (van Doom and Regterschot [10]): 

1 1 
~Gi-  ( ~ ) = -~ F~( ~ ). (4.7) 

Our primary interest is in {G+(5)} which is related to {G/-(~)} thus: 
N 

G+(~) .= E Gy-Tji, (I <~i<~N;O<~<~B), (4.8) 
j=l  

where T is the transition matrix of the aforementioned discrete-time Markov 
chain {X,,, n = 1, 2, . . .  }. Specifically, 

1 
Tij = ~ij "~ -~iMiy, (4.9) 

where 6~y is Kronecker's delta function. It is straightforward to obtain (4.8). 
The main result of this section is on the stationary distribution of the virtual 

buffer content just after a transitions epoch of the source. 

PROPOSITION 4.1 

Hi(~ ) A= lim Pr[WE.+o ~ ~ l SE.+o=i] = -  
n .---> o ~  

1 
E Fj (~:) Mji. (4.10) 

wi]J,i j~.~i  

Proof 
1 

Hi(~ ) = ~//G+(~:), from Bayes rule, 

1 N 
= -  E GF(~:)Tj/, from (4.8), 

qi i=1  

N q; 1 
---- E -2- ,Z-, Fj(~)Tji, from (4.7), 

j = l  t t i r v j  

1 N 
-- E l . L j F j ( ~ ) T j i ,  from (4.1), 

witzi y=l 

which gives (4.10) on substituting (4.9). [] 

The intuitive argument underlying the proposition is that the conditional 
distribution of the virtual buffer content just before a transition epoch of the 
source is, on account of the memory-less property of the exponentially dis- 
tributed dwell times at the state, identical to the conditional virtual buffer 
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content distribution at any point during the sojourn in the state before the 
transition. 

The proposition allows us to calculate the token and data buffer distributions 
just after a source state transition from knowledge of F(~). For instance, the 
conditional token buffer distribution 

lim Pr[Yen+0 <<.ylSen+o=i] = lim Pr[W&+0 > Br- -y lSe~+o=i]  
n ----) 00 n - - + O 0  

= 1 - H i ( B T - y )  (l<i<~N;O<.<y<<.Br). 
(4.11) 

In particular, the stationary probability that the token buffer is empty just after 
the source makes a transition to state i is 

lira Pr[ Yen +o = O I SEn +o = i] = 1 - Hi( BT ). (4.12) 

On substituting the expression for Hi(.)  given in proposition 4.1, the desired 
result is obtained. 

In the special case of on-off  sources, see section 2(2), 

1 1 
HI(~: ) = ~-aF2(~), H2(~)=  ~ f F l ( ~ )  , (4.13) 

where w and F(~) are given in (2.17) and (2.22). In particular, the stationary 
conditional probability that the token buffer content does not exceed y just 
after the source has made a transition to the "on" state, is 

1 - F I ( B T - y ) / w  1, (4.14) 

and that the token buffer is empty is 

1 - F I ( B T ) / W  1. (4.15) 

5. Mean busy and blocking periods of the buffer in a general storage system 

The system considered in this section, see fig. 11, is a general data storage 
system and the analysis calculates the mean period that the buffer is non-empty, 

Aggregate Mark0v 
Modulatecl 

Fluid Source 

N'-state CTMC, Q 

state-dependent rates, T 

fluid flow 

Buffer [ i ~- c, channel 
capacity 

loss 
(due to full buffer) 

Fig. 11. A general storage system. 
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i.e. its busy period, and the complementary mean empty period. Also calculated 
are the mean blocking and non-blocking periods. The results obtained here are 
used later in connection with the regulator and, in the sequel, with the statistical 
multiplexer. The results are also of independent interest. Prior results on the 
mean blocking period for a particular system, packet voice, are given by Li [25], 
and Neuts [32] gives results on the characterization of the blocking and non- 
blocking periods by independent phase-type processes. For our purposes here 
all sources have been merged into one aggregate Markov Modulated Fluid 
Source with N '  states and irreducible generator Q. This source generates fluid 
at the constant rate of y~ when in state o-. The state space of the source is 
~ /=  {1, 2 , . . . ,  N'}~ the source state and buffer content at time t are denoted by 
-~t and X t respectively. The buffer capacity is B and the transmission capacity 
of the outgoing channel is c. The buffer capacity B may be infinite. 

Let the stationary state distribution be denoted by ~-(x) where ~-(x)= 
{%,(x) [tr ~ J }  and 

"tr,~(x)= l i m P r ( ~ t = o ' ,  X t < x )  ( O < x < B ) .  (5.1) 
t---~ Qo 

The governing differential equations are easily obtained (compare with (2.4)) 

d 
(7~-C)~xxTr~(x) = E 7r,~,(x)Q~,~ ( 0 < x < B ) .  (5.2) 

c r ' E o ,  a 

The term (7~ - c) gives the drift rate of the buffer content when the source state 
is tr and the buffer is neither empty nor full. I n  this section we will not be 
concerned with any method for calculating ~-(x) and it is assumed to be known. 

The source states are grouped in two sets depending upon whether a state 
gives a downward or a upward drift to the buffer content; the subscripts D and 
U serve as mnemonics. 

<c}, J .  > c} (5.3) 
and it is assumed for simplicity that 3'~ :/: c, Vtr. Let 

~r D( x ) = {~r~.( x ) l o" e .JD}, ~r u( X ) = {rr,,( x ) l o" e .Ju}  (5.4) 

and let QDD, QDU, QUD, Quu  denote the submatrices obtained by partitioning 
Q. Finally, let p denote the stationary probability vector associated with Q, i.e., 
pQ = 0, and let PD and Pv represent its partitions. 

(1) EMPTY PERIODS OF THE BUFFER 
For o- ~ J D  and o-' ~ o:D, let T~ ,  denote the cumulative time spent by the 

source in state ~r' during an empty period of the buffer, conditioned on the 
event that at the start of the period the source state is ~r. It is known (Howard 
[17]) that the steady-state mean of {T,~,,,}, 

(T) = _ Q ; 1 ,  (5.5) 

where the elements of T are {T~,}. 
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Let % (o-~ J D)  denote the stationary probability that the source state, 
Nt = o- at the onset of the buffer's empty period. Also let q = {q~, Io-~ JD} SO 
that, in particular, 

(q ,  1) = 1. (5.6) 

It is a simple fact that 

rrD(0) = aq (T), (5.7) 

where a is some constant of proportionality. From (5.5), (5.6) and (5.7), 

a = --('n'D(0)QDD , 1). (5.8) 

Hence, making use of (5.5) and (5.7), 

1 
q =  (~.D(0)Qm~ ' 1)rro(O)QoD. (5.9) 

Now let t~ denote the stationary expected cumulative time that ~, = o- during 
the buffer's empty period, and t = {t,~ l o- ~ o~D}. Obviously, 

t = q ( T ) .  (5.10) 

Hence from (5.5) and (5.9), 

- 1  
t =  (~.z~(0)Qm), 1) rrD(0)" (5.11) 

It is almost always easier to compute the right hand quantity by noting that 

('arD(0)Qz~D, 1) + (rrD(0)QD~, 1) = 0. (5.12) 

Hence we obtain 

PROPOSITION 5.1 

t,~, stationary mean cumulative time that Nt = o- 

during empty period of buffer 

(~rD(0)QDu, 1) 
(o" ~ , Jo )  (5.13) 

t, stationary mean empty period of buffer = 
(rro(O)QDu, 1>'  

where 7r(0), the stationary probability of empty buffer = E ,  ~ j~%(0). [] 

(5.14) 

In the special case that the Markov chain controlling the source is birth-and- 
death, Q is tridiagonal. In this case let o-* denote the special state at the 
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boundary of ' i n  and ' f u ,  that is, o- * ~ , f n  and (o-* + 1) ~ J u .  Then, 

t~ %.(0)Q~**, .+ 1 and ~ = %.(0)Q~. ,~ .+  1 (5.15) 

(2) MEAN BUSY PERIOD OF THE BUFFER 

The buffer alternates between empty and busy (i.e. non-empty) periods. Let 
denote mean busy period for the buffer in fig. 11. A simple renewal-theoretic 
argument gives 

rr(0) = ~ + ~ ,  (5.16) 

and from (5.14), 

= 1 - 7r(0) (5.17) 
(~o(O)Qnv,  1 )"  

(3) MEAN BLOCKING AND NON-BLOCKING PERIODS OF THE BUFFER 

By a symmetrical chain of reasoning it is straightforward to obtain an 
expression, analogous to (5.13), for the stationary mean blocking period of the 
buffer. Let l,~ denote the s tat iona~ mean cumulative time that 2t  = o- during a 
blocking period of the buffer, and l denote the stationary mean blocking period. 
We have 

PROPOSITION 5.2 

1)' (cr  au) (5.18) 

and 

1 - ~r(B) (5.19) 
i= ({pv_rtv(B)}Qvn, 1 ) ,  

where p is the stationary distribution of the source state and {1 -zr(B)} is the 
stationary probability of the buffer being full, i.e. 7r(B) = E,~j 'rro.(B).  [] 

Finally, let ~ denote the stationary mean period that the buffer is non-block- 
hag. It is obtained from the relation 

i 
1 - - a - (B)=  i +g, '  (5.20) 

since both sides of the expression give the fraction of time that the buffer is full. 
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6. Mean busy and blocking periods of the buffers in the regulator 

We use the results of the preceding section to obtain explicit expressions for 
the mean empty and busy periods of the token buffer, as well as the mean 
blocking periods of the token and data buffers. The empty periods of the token 
buffer are of particular importance since during these periods the output rate 
process, R t = r. T h e  blocking periods of the data buffer are similarly important 
in characterizing the output rate process of marked packets, L t .  

As fig. 12 shows, the empty period of the token buffer is identical to the busy 
period of the data buffer, if the latter exists, and remains meaningful even in the 
absence of a data buffer. Let t r  and br  respectively denote the mean empty and 
busy periods of the token buffer. Similarly tD and bD may be defined for the 
data buffer; clearly tT  = bo and b r  = tD. 

The results in this section on the calculation of tT and b r  are in two parts. In 
the first part, section 6(1), we allow the data buffer, i.e. B D > 0, but place 
restrictions On the source, while in the second part, section 6(2), the data buffer 
does not exist but the source is not restricted. The restriction on the source in 
the first part is that either [ J u  I = 1 or l i d  I = 1, i.e., there is either a 
unique source state giving upward drift to the virtual buffer content, or a unique 
state giving downward drift. This restriction is satisfied, for instance, by on-off 
sources in which the on period is exponentially distributed while the off period 
is more generally distributed, say hyperexponentially. It is also satisfied if the 
distribution of the on period is more general while the off period is exponen- 
tially distributed. (Both these cases are represented in the numerical studies 
reported in section 3.) 

In the second part, section 6(2), no such restriction is placed on the source 
model characterized by (M, h); however, B D = 0. Finally, in section 6(3) the 
mean blocking periods of the data and token buffers are calculated without 
restrictions on either the source or the data buffer. 

X t = B o, blockingperiod Y t = B r, blockingperiod 
of data buffer, of token buffer. 

B =BT+BIg- 

Wt 

0 

- I 

//" > t, time ~ 

Y,=0, XI>0 :~,t Y,>0, X,=O -~'~ 

empty period of token buffer, busy period of token buffer, 
busy period of data buffer empty period of data buffer 

Fig. 12. Illustration of the busy, empty and blocking periods of the buffers in the access regulator. 
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(1) WITH DATA BUFFER 
Our first observation is that 

Pr(W ~< BT) = tT + b------~' (6.1) 

where, recall from section 2, the virtual buffer content, W t = X t - Yt + BT. The 
proof of (6.1) is based on a simple and familiar renewal-theoretic argument. By 
definition, see (2.3), 

Pr(W ~< BT. ) = e ( B r ) .  (6.2) 

Now suppose that I J r  I = 1 and consider the calculation of tr. The key 
observation is that the empty period of the token buffer is identical in distribu- 
tion to the busy period of a new construct, a data storage system as described in 
section 5 with a Markov Modulated Fluid Source characterized by (M, A), 
channel capacity r and, importantly, a buffer of size B D. This equivalence is 
critically dependent on the uniqueness of the source state at the commencement 
of the periods in the respective systems. It is for this reason that we need to 
assume I J r  I = 1. Now (5.17) has given a formula for the mean busy period of 
the general data storage system. Translating (5.17) to the source-regulator 
system, we obtain 

1 - F(0; Bo) 
tT= (Fo(0; BD)Mou, 1 ) '  (6.3) 

in which we have introduced the general notation {F~(~; B)} to denote the 
solution, to be obtained as prescribed in section 2, for the equilibrium joint 
distribution for the system with a source characterized by (M, A) and an access 
regulator with token rate r and total buffer space B. Hence, to obtain tT from 
(6.3) we need to solve anew for the equilibrium joint distribution with total 
buffer space B D. 

Moreover, from (6.1) and (6.2), the busy period of the token buffer of 
regulator 

F(BT; B) 
~)T= -tT 1 -- F ( B T ;  B )  ' (6.4) 

where F(~; B) = (F(~; B), 1), and is therefore identical to F(~) calculated in 
section 2. This completes the treatment for the case I o~ U I = 1. 

Now suppose that [ J o  I = 1. The key observation in this case is that the 
busy period of the token buffer is identical in distribution to the non-blocking 
period of a new construct, a data storage system as described in section 5, with a 
Markov Modulated Fluid Source characterized by (M, A), channel capacity r 
and, importantly, a buffer of size B T. Once again the equivalence is critically 
dependent on the uniqueness of the source state at the commencement of the 
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periods in the respective sytems, which follows from l i d  1= 1. Translating 
(5.19) and (5.20) for the non-blocking period in the general system to the 
source-regulator system, gives 

F(BT; BT) 
I)T= ({wv-Fu(BT; BT)}MuD, 1)" (6.5) 

Finally, i T is obtained from the above and (6.4). This completes the treatment of 
the case I J n  I = 1. 

Now consider the special case of on-off  sources with one on state and one off 
state, i.e. l J r  I = I , f n  I = 1. From (6.3), 

1 - F ( 0 ;  BD) 
iT=  aFl(0;  BD ) , (6.6) 

which, together with (2.22) and (2.23), gives the following enlightening expres- 
sion 

1 p 1 
iT=  - - { 1  --exp(zBn) } + exp(ZBD), (6.7) 

a l - p  -~ 

where z and p have been given in (2.18). Finally, from (6.4) and (6.7), 

1 --p(exp(zBr) ) (6.8) 
b z =  a ( 1 - p )  exp(ZBT)" 

The reader may verify that identical expressions for i T and bT are obtained 
from (6.5) and (6.4), and that in the limit as B D ~ 0 and B T ~ O, the above 
expressions give i T = 1/fl and bT = l /a ,  respectively. 

(2) WITHOUT DATA BUFFER 
This case, where BD = 0, is simpler, and expressions for b r  and i T are 

obtained from a straightforward application of the results in the preceding 
section. This is because the empty period of the token buffer is identical in 
distribution to the blocking period of a new construct, a data storage system as 
described in section 5 with a Markov Modulated Fluid Source characterized by 
(M, a)  and, importantly, a buffer of size B T. In a symmetrical manner, the busy 
period of the token buffer is now identical in distribution to the non-blocking 
period of the construct. 

Hence by a simple translation of the result in (5.19) we obtain 

1 - F ( B r ;  Br)  
i t =  ({wv-Fu(Br;  Br)}MuD, 1) '  (6.9) 

and, from (5.20) 

F ( B r ;  BT) 
br=iT 1 -F (Br ;  Br) " (6.10) 
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(3) MEAN BLOCKING PERIODS OF THE TOKEN AND DATA BUFFERS 
Let  i T and i D respectively deno te  the m e a n  blocking per iods  of  the token and 

data  buffers. Now i r is also the  m e a n  empty  per iod  of  a da ta  storage system (as 
in section 5 ) w i t h  a source character ize by (M, A) and a buffer  of size B. 
In terpre t ing  the  result  in (5.14) in the  context  of  the regulator  in section 2 gives 

iT = F (0 ;  B) 
<FD(O; B ) M D v ,  I ) "  (6.11) 

Similarly, f rom (5.19), 

1 - F ( B ; B )  

iD= ( { w u - F v ( B ;  B ) } M v D ,  1 ) "  (6.12) 

The  reader  may verify that  for two-state o n - o f f  sources, the above expres- 
sions reduce  to 1lot and 1//3 respectively. 

7. Characterization of the rate process R t at output of regulator 

In this section we p roceed  with the  characterizat ion of Rt ,  the  rate of priority 
cells depar t ing  f rom the regulator .  The  main  result  of  the  section is the 
distr ibut ion of per iods when  R t = v i or, equivalently, the  sojourn t ime of the 
process g-2 t in state i (i ~ Jay) .  Dur ing  any such per iod  the  ou tpu t  rate exceeds 
the  token  rate r. The  calculation of these  distribution makes  use of the  results in 
section 4. 

Recal l  f rom the convent ions establ ished in section 2 that  the state space of  
the  process g2 t is {1, 2 , . . . ,  N + 1}; when  f ~ t  = i, the  ou tpu t  rate  R t = v i. For  
i ~ {1, 2 , . . . ,  N} the  rate v i is simply the  rate of  the source in state i subject to 
peak  rate control,  i.e., v i = A i A ~, and, finally, vtr = r. See fig. 13. 

Le t  T,,,i denote  the  length  of  the  n th  sojourn of  the  process g2 t in state i, i.e., 
dur ing this sojourn R t = O i ( n  = 1, 2, . . .  ). Let  ~n,i(t) = Pr(Tn,i < t) and g'i(t) = 
lim,,__,=a/',,,i(t). Hence  gri(t) denotes  the  steady state distr ibution of  T/, 

~ i ( t ) = P r ( T i < . < t )  ( l < i < N + l ) .  (7.1) 

Rt v2=X^~ 

V 3 = r  

V 1 = 0  

time, t 
Fig. 13. Sample path of R t sketched for on-off source. Note that transitions from R t = 0 to 

R t = r, as well as transitions from R t = r to R t = A A ~ cannot occur. 



A.L Elwalid, D. Mitra / Rate-based congestion control 57 

Recall from (2.5) that J D  is the set of source states with data generation 
rates less than r. Clearly sojourn of the process/2 t in state i, i ~ JD ,  is entirely 
determined by the source's sojourn in the state. Hence in this case, 

a/:'i(t)= 1 - e x p ( - / z i t )  ( i~o#D),  (7.2) 

where, see (4.2), ~i = - M u .  
The preceding section has given the mean empty period of the token buffer, 

tr ,  see (6.5). This quantity is equal to the mean sojourn time of the output 
process in state (N + 1), (TN+I). In this paper this is all the information we give 
on TN+ 1" 

The rest of this section is devoted to the calculation of gti(t), i ~ J t r ,  the 
distribution of periods during which the output rate of the regulator exceeds the 
token rate r. We first obtain general expressions and this is followed by more 
explicit expressions for on-off  sources. 

(1) DISTRIBUTIONS OF PERIODS WHEN OUTPUT RATE EXCEEDS TOKEN RATE 
The periods of interest here, T/ (i ~ Jatr) , begin with those epochs of transi- 

tions of the source to state i for which the token buffer is not empty. This is 
because an output rate v/, which exceeds the token rate r, can only be sustained 
while the token buffer is not empty. Consequently, also, the sojourn is termi- 
nated when either the token buffer becomes empty or the source makes a 
transition. Calculation of gti(t) amounts to determining the outcome of a race 
between these two events. Specifically, T/= min(T/, T/") where T/ is the expo- 
nentially distributed time to a transition of the source from state i to some other 
state, and T/" is the time for the token buffer to empty. During the sojourn of 
interest, the token buffer is depleted at a net (deterministic) rate of (A i - r), and 
hence T/" is simply Ye+o/(Ai - r), where Ye+o is the token buffer content just 
after the source transition marking the start of the sojourn; as previously noted, 
the sojourn's start requires YE+0 > 0. Observe that Ye+o and T / ( and  therefore 
T/ and T/") are mutually independent random variables. 

We now make use of the expressions in section 4 giving the distribution of the 
token buffer content just after a source transition epoch. First note that for 
i ~ o#v, 

Pr(T/" ~<t)= 1 if t > B r / ( A i - r  ). (7.3) 

For t < BT/ (A  i - r), 

Pr(T/" ~< t) = Pr(Ye+ 0 <<.t(Ai-r) l  Se+0-- i , YE+0 > 0) 

Pr(0 < Ye +o ~< t(,~i - -  r) l Se +o = i) 

Pr(0 < YE +O ] Se +o = i) 

= [Hi (Br)  - Hi{Br-  t (X i -  r)}]/Hi(Br), (7.4) 
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from (4.11) and (4.12). Hence from the expression in proposition 4.1, 

P r ( T / " ~ < t ) = l -  • F j { B T - t ( A i - r ) } M j i /  ~ ,  Fj(Br)Myi,  (7.5) 
j e , ~ i  j e , / ~ i  

where {Fi(~:)}, the stationary state distribution of the system composed of the 
source and regulator, has been calculated in section 2. Note that the distribution 
Pr(T/" ~< t) has value 0 at t = 0 and exhibits a jump at t = BT/ (A  i - r). Now 

1 -- alri(t ) = rr(T~ > t) = Pr (T/>  t)Pr(T/" > t), 

and Pr(T/' > t) = exp(-txit)  where ix i = - M  u. Hence we have, 

PROPOSITION 7.1 
For i ~ oz  U, 

~_~ F i { B T - t ( A i - r ) } M j i  

1 - rlti(t ) = exp(- /z i t )  j ~ i  
E Fy(BT)Mj i  

if t <  

= 0  if t >  - -  

BT 

( A i -  r ) '  

B T 

Ai - -  r " 

(7.6) 

[] 

(2) ON-OFF SOURCES 
For the special case of on-off  sources, where only v 2 exceeds r, see fig. 13, 

we obtain on substituting Fa(.) given in (2.22), 

A { B T - t ( A  - r ) }  
1 -  ~2( t )  = Pr(T2 > t) = e x p ( - f l t )  A--~r) , if t < B T / ( A - r ) ,  

(7.7) 

where A(.) is defined in (2.21). Also, the mean period, 

1 f B # ( X - r ) e x p ( - ~ t ) A { B T - t ( h - r ) }  dt 
(Tz) - A(BT)~ o 

1 - exp(zBT) 
= (7.8) 

Note that for on-off  sources ~i(t), i ~ " /v ,  does not depend on the size of 
the data buffer BD. 

8. Approximate Markovian characterization of output of regulator 

This section gives an approximate Markovian characterization of the process 
~t ,  see section 2(3). Thereby the priority and marked cell streams are character- 
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ized as coupled Markov Modulated Fluid Sources. The characterization allows 
us to separate the analysis of the access regulator from the rest of the network, 
including the statistical multiplexer, and thus achieve a decomposition which is 
essential for tractability of the entire integrated system. The characterization 
given here approximates the distributions of the sojourn time in the various 
states of the output rate processes by exponential distributions with means 
which are the previously calculated exact values. 

In the characterization given here, a N0-state continuous time Markov chain 
with generator G controls the fluid source. For each state i (1 ~< i < N 0) there 
exists two rates, v/(1) and v~ (2), corresponding to the flow of priority and marked 
ceils, respectively. Thus the coupled Markov modulated fluid source is here 
characterized by  (G; v ~ v(z)). Notice the fundamentally important feature of 
coupling between the two streams. Bursty sources are more likely to generate 
marked cells at a high rate precisely when they are generating priority cells at a 
high rate. This feature is not lost in our model. 

The results presented here are for the case of on-off  sources. Moreover we 
assume for simplicity that the data buffer is not present, i.e. B D = 0. The reader 
will find that the expressions given earlier in this paper, together with the line of 
reasoning given below, allow such an approximate Markovian characterization 
to be obtained for general Markovian sources. 

It will be shown below that the approximate Markovian characterization has 
the remarkable property that its rate processes have moments which exactly 
equal the moments of the actual rate processes. 

Notice that all the transitions depicted in fig. 5 for two-state on-off  sources 
are reflected in fig. 14. Also note that the flow rates of the priority cells (Rt) and 
marked cells (Zt) which are shown in the figure are exact in each of the three 
states depicted. The parameters 0 and p are derived below; a and/3 are from 

S t = o f f  
Rt=Lt=O 

St=on, Yt>0 
RI=  ~.Aff , Lt=3.--XA~ 

o~ 

Fig. 14. The approximate Markovian characterization of the rate processes of priority (R t) and 
marked (L t) cells at output of regulator, for on-off sources. 
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the model of the on-off  source, see (2.16). For the characterization in fig. 14 we 
have N O = 3, [-o 

c,= (1-v)o 
a 0 ] v ( 1 ) = [ 0 , a ^ 3 , r ]  
-o  p o ,  ' (8.1) 
0 - /3 ] v (2) = [0, a - ,~  ^ ~, a - r ] .  

Now consider the parameters 0 and p. Section 7(2) has given the distribution 
grz(.) for T 2 which is the time during which S t = on and Yt > 0. We let 1/0 
denote the mean, i.e., from (7.8), 

1 - exp(zBT) 
1 /0  = ( T  2) = ,SA(Br ) , (8.2) 

where z and A(.) are defined in (2.18) and (2.21). We also let p denote the 
probability that the token buffer empties before the source makes a transition 
from on to off, i.e., 

p = Pr(T~' < T~). (8.3) 

From (7.7), 

Pr(T~ > t ) =  exp( - f l t )  (8.4) 

and 

Pr(T~' > t ) = A { B T - t ( A - - r ) } / A ( B T )  if t < B T / ( A - r ) ,  

= 0  if t > Br / (A - r ) .  (8.5) 

Hence, from (8.3)-(8.5), 

1 - exp(ZBT) 
p = 1 -  (8.6) 

a(B ) 

In summary, the approximate Markovian characterization is complete with 0 
and p specified in (8.2) and (8.6). 

Now consider the equilibrium state dis tr ibut ion,  of the characterization in 
fig. 14. Since sG = 0, we have 

110 s = -  -- ,  1, , (8.7) 
c o g  

where c = 1 + O/a +pO/f l .  On substituting the expression for 0 and p in (8.2) 
and (8.6), we obtain 

PROPOSITION 8.1 

The equilibrium state probabilities of the approximate Markovian characteri- 
zation in fig. 14 are 

fl oe 1 - - exp ( zBT)  a exp(ZBT) 
s , =  ; s 2 = - -  , s 3 = ~ ( 1 - p ) _  a(BT ) [] a +/3 a + ]3 A(BT) 

(8.8) 
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The following important observation on these formulas may be made: these 
probabilities are identical to their actual, natural counterparts whose exact 
values have been calculated in section 2. This observation is now summarized. 

PROPOSITION 8.2 
For B D = 0 and two-state on-off sources, the analysis in section 2(2) has 

obtained 

Pr(R = 0, L =0)  = Pr(S =off) =/3/(a +/3), (8.9,i) 

Pr(R =A A 0, L =A - A  A 0) = P r ( S = o n ,  Y> 0) =F2(BT) 

ot 1 - exp( ZBT ) 
a +/3 A(BT) ' (8.9,ii) 

Pr(R = r ,  L = A - r )  =Pr(S=on, Y=O)=wz-F2(BT)  

ot exp( zBT) 
= ~ ( 1 - - p )  A(BT ) (8.9,iii) 

Hence, comparison with (8.8) shows that the following correspondences exists 
between the above stationary probabilities for the output rates of the access 
regulator, and the stationary probabilities of the approximate Markovian charac- 
terization, 

S 1 =Pr (R  =0 ,  L =0);  s2=Pr(R =A A0, L = h  - h  A0); 

s 3 = e r ( R = r , L = A - r ) .  [] (8.10) 

A corollary to the above correspondences is that all the stationary moments 
of the actual rate processes are identical to the corresponding moments of the 
approximate Markovian characterization. This is easily seen from the following 
expressions for (R m) and (Lm), the ruth stationary moments of the output rate 
processes R t and L t (m = 1, 2, . . .): 

( R  m) = ( A  A 0) m Pr (S  = on,  Y > 0 )  q-r m Pr(S = on, Y=O)  

= (A A U)̂ ms2 q- rms3" (8.11) 

( L " )  = ( A - A  A0) m Pr(S = on, Y> 0 )+  ( A - r )  m Pr(S = on, Y=0)  

= ( A - A  A0)m%+(A -r)ms3. (8.12) 

In the sequel to this paper we study congestion control strategies based on 
loss priorities which are employed by network nodes. The analyses there rely on 
the results of this paper on the Markovian source approximation of the output 
of the regulator and the coupling between the priority and marked cells. 
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