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Abstract 

We consider an assembly system with exponential service times, and derive bounds for its 
average throughput and inventories. We also present an easily computed approximation for 
the throughput, and compare it to an existing approximation. 
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1. Introduction 

Assembly-like queues arise in many practical situations, including assembly 
lines in production plants (e.g. automobiles), mixing operations in chemical 
industries and data flow through computer systems (Dennis [6]). Despite their 
applicability, the literature on assembly-like queues is scarce, largely due to their 
analytical intractability. 

In this paper we consider assembly-like queues with random service times. 
Such systems have been studied in the literature (Lipper and Sengupta [14]) and 
their randomness arises due to variability in processing times, especially in those 
processes in which randomness is inherent - for example, balancing of automo- 
bile shafts (Monden [15]). Randomness would also be a natural assumption in the 
case of dataflow models of computer @stems mentioned above. 

In a predominantly theoretical study, Harrison [9] considered an assembly-like 
queue whose input processes are independent renewal processes and with no 
restriction on the queue size of customers of each type. Under  these assumptions, 
Harrison showed that the waiting time process does not converge in distribution 
to a non-defective limit. Latouche [13] showed that an assembly system with two 
Poisson arrivals and exponential service times, where the arrival rates depend on 
the excess of customers of one type over the other in such a way that the excess is 
bounded, is stable. Further, he indicated a matrix geometric technique based on 
the work of Neuts [16] for computing the stationary probability vector. Bonomi 
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[4] treated a similar system with more than two inputs, and gave an approximate 
procedure for computing throughput and mean queue lengths. 

Bhat [3] analyzed finite capacity assembly-like queues, with emphasis on 
deriving the response time distributions assuming that the steady state probabili- 
ties are available. He did not address the computational aspects of obtaining the 
steady state probabilities. Lipper and Sengupta [14] considered a model which is 
essentially that studied here, and gave an approximate method for computing the 
throughput and mean inventory. In this model, each input process is Poisson with 
finite waiting space, and service times are exponential. This is a more realistic 
model of assembly systems than the "bounded excess" model of Latouche. 

Although this model of assembly systems is clearly a Markov process, it 
generally requires a large state space and the 'curse of dimensionality' prevents us 
from obtaining analytical solutions in the case of reasonably large buffer sizes. In 
the absence of exact solutions, approximate methods and analytical bounds are 
the other alternatives for computing performance measures. The approximate 
method of Lipper and Sengupta provides one approach. However, because it is 
algorithmic in nature, their approach is not simple. It also does not provide error 
bounds. In this paper, we present some analytical bounds for throughput and 
inventory and also present an approximate solution very different from that of 
Lipper and Sengupta. Our approximate method is much easier to implement, and 
in some instances works better when compared to Lipper and Sengupta's for 
throughput. But our method is restricted to systems with two input sources, while 
Lipper and Sengupta's method works for more general systems. Their method 
also gives superior results for inventory. 

2. Model description 

The basic model of an assembly-like queueing system is depicted in fig. 1. 
Machines IM 1 and IM a are the input machines and AM is the assembly machine. 
We model the finite buffer space through bins. Machines IM 1 and IM a work to 
fill the bins, which then travel to AM where they are emptied. The empty bins 
travel back to machines IM 1 and IM 2 respectively. Travel times are considered to 
be negligible. 

For machine IM 1 to function it must have at least one empty bin in front of it. 
Machine IM 2 operates likewise. The bins of the two types do not mix - a full bin 
that came from machine IM 1 returns to machine IM~ when it is emptied. For 
machine AM to function, there must be at least one full bin in buffer B 1 (i.e. from 
machine IM1) and at least one full bin in buffer B a. Thus, this model also depicts 
a "' pull" or "kanban" inventory control system. 

Each bin may carry one or many components. For the assembly operation,we 
may need two components of one kind and one of the other, and here we assume 
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that the size of the bin is suitably scaled that exactly one bin of each type of 
components  is used for assembly. 

We have made the implicit assumption that a full bin remains at machine A M  
until the machine A M  completes its operation on the contents of that bin. 
Alternatively we could assume that a bin is released as soon as machine A M  
starts operation on its contents (i.e., the contents of the bin is transferred to the 
machine and the bin is freed). But this can be shown to be equivalent to the 
previous model with one additional bin in each buffer. Hence, there is no need to 
analyze this model separately. 

For the purpose of analysis, we now make the assumption that the service 
times are independent  exponential random variables,, with rates )t~, X 2 and ff for 
machines IM1, IM 2 and AM, respectively. Let N~(t) be the number  of bins in 
buffer B 1 waiting for service from machine A M  at time t and let N2(t) be  those in 
B 2 waiting for machine AM. Define a state (n~, n2) to mean that N~(t) = n~ and 
Nz(t ) = n 2. Let the total number  of bins in buffer B 1 be K~ and that in B 2 be K 2. 
These are referred to as the buffer sizes or capacities. 

The parameters X~, )t2, if, K 1 and K 2 completely describe this model. The 
performance measures we are concerned with are the steady state mean through- 
put  0, and the steady state average inventory in each buffer, denoted or a and J2.  
0 is defined to be the mean number  of service completions of machine A M  in 
unit time in steady state (actually, the mean steady state throughput of machines 
IM1, IM 2 and A M  are all equal). J l  is defined to be the steady state mean queue 
length of bins in buffer B 1 waiting for service at machine AM. J2  is similarly 
defined. In all the discussion to follow, we assume steady state operating 
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conditions. So mean throughput stands for the steady state mean throughput and 
likewise for mean inventories. 

To facilitate our discussion we make use of the following notat ion:  { X/Ix/1/K } 
stands for an M / M / 1 / K  queue with inter-arrival and service t ime rates given by 
X and /, respectively. O{ X/IX/1/K }, J { X / t x / 1 / K }  and po(X/ ix /1 /K} stand 
for the mean throughput ,  mean queue length and empty  probabil i ty of 
(X/Ix /1 /K}  respectively. ( X1/X2/>/K1/K 2} stands for the assembly system 
described above, and O{ X~/X2/tx/IK1/K2 }, Jl() t l /XZ/I~/K1/K2} and 
J 2 ( X l / X 2 / l x / K a / K 2 }  stand for the mean throughput  and the mean  inventories 
of {Xl/Aa/IX/K1/K2} respectively (where there is no ambiguity,  these are 
sometimes abbreviated as 0, -r and J2)- 

Letting P = X//, ,  f rom Gross and Harris [8] we have 

0 { A/Ix/1/K } = 

J{  2t/iz/1/K } = 

(1 - (1 - p ) / ( 1  - p~c+'))/a 

( K / ( K +  1))/~ 

p [ 1 - ( K +  1)p ~:+ KO K+'] 

/[(1-p)(1-px+l)] 
1(/2 

if p4= 1 

if p = l  

if p4= 1 

if p = l  

(1 - p ) / ( 1  - p~:+l) 
P~ = 1 / ( K + I )  

i f p r  

if p = l .  

3. Equivalence of the assembly system to a transfer line 

The first result we present is that the assembly system depicted in fig. 1 is 
equivalent (the nature of the equivalence is stated in theorem 1) to a transfer line 
of tandem queues with blocking. This equivalence is of practical interest because 
considerable effort has been devoted to the analysis of t andem queues (see Altiok 
[1], Buzacott [5], Gershwin and Schick [7], Hatcher  [10], Hillier and Boling [11] 
and H u n t  [12]). 

Consider the three machine transfer line with finite buffers between the 
machines shown in fig. 2. Machine IM~ works as long as there is an empty  bin in 
buffer B~. For machine A M '  to function, there must  be a full bin in buffer B~ 

Fig. 2. 
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and an empty bin in buffer Bs Machine IM'2 works as long as there is a full bin 
in Bs We define the number  of bins in B~ and B 2 to be K 1 and K2, respectively, 
the service times at IMp, IM;  and A M '  to be independent  exponential random 
variables with rates X 1, X 2 and if, respectively, NI'(I ) to be the number  of full 
bins in buffer B~ and Na'(t ) to be the number  of empty bins in buffer B 2 at time 
t. Clearly this represents an ordinary three machine transfer line with two finite 
buffers in between the machines. 

T H E O R E M  1 

The process {Nl'(t),  N2'(I); t > 0} is stochastically equivalent to the process 
{Nl(t) ,  N2(t); t >  0} described above in section 3. 

Proof 
Their equivalence can be seen by starting both the processes with the same 

initial state, and using the same sample path in both processes. The fact that the 
machines have exponential service times is not used here. As long as the 
successive service times at machines IM 1 and IM~ are the same, IM2 and IM 2 are 
the same, and AM and AM'  are the same, this equivalence holds. [] 

As a by-product, we see that the throughputs of both the assembly system and 
the transfer line are the same. Also the average steady state inventory in B~ is 
given by J l ,  and that in Bs is given by K 2 - J 2 -  

A version of this equivalence, where the processing times are deterministic but 
machines are subject to failure, is given in Ammar  [2]. 

co s u p p l y  

co s u p p l y  

Fig. 3. 

o~ demand 
AM [ v 

Zan 
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4. Upper bound for throughput 

Let { F1/Fz/G/K1//K2 ) denote an assembly system shown in fig. 3, where the 
successive service times of IM 1 are independent  and identically distr ibuted 
random variables (iid rv's) with cumulative distribution funct ion (cdf) F I, service 
times of IM 2 are iid rv's with cdf F2, service times of A M  are lid rv's with cdf G, 
buffer B 1 has a capacity of K 1 bins and B 2 has K 2 bins. F1, F 2 and G need not  
be exponential distributions. Let 0{ F~/Fz/G/K~/K2} denote  the steady state 
average throughput  of { F1/Fz/G/K1/K2). In the following, we use ~ st to 
mean "stochastically less than", as defined in Ross [17]. 

LEMMA 1 
F~ <<.~ F~ = Of F J & / G / I ( ~ / K ~  } > O{ F,, /F~/G/K1/K2 }. 

Proof 
We generate the 

&,~a2,~o~, 
&,,&~,&,, 

3 2 1 ,  8 2 2 ,  8 2 3 ,  

f,, f~, f,, f4 

successive service times at IMp, IMb, IM 2 and A M  as follows: 

~4, . . . - F ,  

~4, . . -  - F , ,  

~24, . . .  - F 2  

, . . .  ~ a 

where San and ,~,, are generated by choosing U1, /~2, U3, U4, --. to be indepen- 
dent  random variables uniformly distributed in [0, 1], and taking S . .  = F. 1(/).) 
and S~,n = FFI(0n)  (see fig. 4). Clearly S ~ . -  F a and Shn - Fb. Fur thermore,  since 
F. ~<st Fb ' it follows that 

Sa~ ~< Sbn for all n. (1) 

0 

Fa(X) 

0 San Sbn 
v 

X 

Fig. 4. 
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Let the successive service completion times of IMp, IM 2 and AM of the system 
(FJFz /G /Ka /K  2 } be denoted by (see fig. 3) 

Xal, L2 ,  s  2a4, -.. 

~1, L2, ~3, Ya4,-.- 

2a1, 2~2, 27a3, 2a4, -.. 

respectively, and those of IM e, IM 2 and AM of the system { FJF2/G/K1/K 2 } 
be denoted by 

2bl, 2b2, 2b3, 2b4, ... 
)'bl, )rb2, ~rb3, ~'-b4 , ... 

~1 ,  ~ 2 ,  Zb3, ~ 4 ,  ... 
respectively. Assuming that both systems start with all empty bins, we have 

al = Sal 
Xa.+X = J(a. + Sa.+l for 1 ~< n ~< K a - 1 

Xan+l=maX(Xan, Zan+l-K1)+Ln+l for n >~K1 

:~al = & 
)ran+l =Yan -}- ~'-~2n+l for 1 ~ y/~ K 2 -  1 

I>~.+1 = max{<.,  2~.+1_x~} + 4.+1 for n >- K2 

L . + a = m a x { L . ,  s  Yan+l} -]- L+I  for n >  1 

for ( Fa/F2/G/K1/K 2 }, and 

~1 = gbl 
Xbn+l=Xbn -}- Sbn+l for 1 ~<n~< K , -  1 

f(b.+l=maX{Xb., Zbn+l_&} + Sb,,+l f o r n > ~ K  1 

~,+1-~-~,-1-82,+1 for 1 ~ n ~ K 2 - 1  

I?b.+ 1 = max{ I~b., Zb.+ I_K= } + 5#2. + 1 for n>~K 2 

L . + I  = max{L. ,  s  :~bn+l} + L+I for n >_- 1 
for ( Fa/F2/G/K1/K 2 }. 

Suppose that for some positive integer m, we have 

Lm~' -bm 

(2) 

(2') 

(2") 

(3) 
(3') 

(3") 

(4) 

(5) 
(5') 

(5") 

(6) 
(6') 

(6") 

(7) 

(8) 
(9) 

(lO) 
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Clearly it holds for m = 1. By eqs. (2), (2'), (2"),^(5), (5'), (5"),  (8) and (1), it 
follows that J~ , ,+ l  ~< J~bm+ 1. Likewise ~ m + l  ~ Y~rn+ 1" These two inequalities, 
together with eqs. (4), (7) and (10) yield Zam+l <~ Zbm+l. 

Thus we have shown by induct ion that  for all n >~ 1, we have 

2~ 2b,. 
Since n / 2 , ,  converges to O(FJF2 /G/K1 /K2  } with probabil i ty one, and like- 
wise n/Zbn converges to 0( Fb/F2/G/K1/K2},  the l emma is proved. [] 

COROLLARY 1 
~k a ~ ~k b =~ O{ ~ k a / ~ 2 / ~ / K 1 / K  2 } ~ O{ ~ k b / ~ k 2 / ~ / K 1 / K  2 } 

Proof 
Let F~ be an exponential  distr ibution with rate Xa, and F b an exponential  

distribution with rate Xb, X a ~< X b ~ F b ~<,t Fa, and hence the conclusion follows 
from lemma 1. [] 

COROLLARY 2 
0{ ~ k l / ~ k 2 / ~ / g l / K  2 } ~ 0{ ~kl//~/,,1/K 1 } 

Proof 
{~k1/~/1/K1) is the same as {X~/m/I~/K1/K2} .  If F 1 is an exponential  

distribution with rate X 1, and G an exponential  distr ibution with rate/x, the latter 
may- also be written as { F 1 / I / G / K 1 / K  2 } where I is the unit  step funct ion at 
zero. F ~<st I for any cdf F of a positive r andom variable, 0{ F1/F2 /G/K1 /K  2 } = 
0 { F2 /F1 /G/K2/K  1 } by symmetry, and hence the conclusion follows f rom lemma 
1. [] 

LEMMA 2 
As /x increases to 

O{ Xl /X2/1/K1 + K2}. 

m, 0 { Xl/X 2/I;/K1/K2 } increases monotonical ly  to 

Proof 
Proof is analogous to the proof  of lemma 1 and corollary 2. [] 

F rom corollary 2 and lemma 2, we have that  0{ ~kl/~k2//-t/K1/g2} is always 
bounded  as follows: 

0 { Xl /XZ/ I~ /KI /K 2 } <~ 0 { X l / IX / I /K  ~ } 

o { X,/X2/ /K1/K2 } 0 { X / /1/IC2 } 

0 { ~kl/~k 2 / ~ / K 1 / K  2 } ~ 0 { ~ k l / ~ k 2 / 1 / g  1 -}- g 2 }. 

Therefore we have the following theorem. 
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THEOREM 2 
O( )`1/)`2/Iz/K1/K2} ~ 0ub , where 

0ub = man{ 0 { ) ` l / iX / I lK  1 }, 0 { ) ` 2 / / , / 1 / K 2  }, 0 { ) ` 1 / ) ` 2 / 1 / K 1  + K 2 } }. [] 

Also from corollary 2 and lemma 2, we see that asymptotically, as )`1 ~ oo or 
as )`2 ~ m or as/~ ~ oc, the upper bound becomes tight. So if we have any one 
of )`1, )'2 or/z large compared to the others, this upper bound will be fairly close 
to the actual throughput. 

Notice that even if the machines in the assembly system had general service 
times instead of exponentially distributed service times, we could derive an upper 
bound to the throughput analogous to that in theorem 2. However,  for computing 
the upper bound, we would need the throughput of a G I / G / 1 / K  queue. 

5. Lower bound for throughput 

We now derive two different lower bounds  on throughput. First we need the 
following result. Recall that Nl(t ) represents the number  of full bins in buffer B 1 
of the assembly system. Let N~ be the number  of full bins in B 1 of the assembly 
system in the steady state. 

LEMMA 3 
P ( N  1 --- 0) -GP0( ) ` , / / - t / I / K 1 }  

Proof 
Define Tl(t ) to be the time during [0, t] when N~(t) is equal to zero. Let To(t ) 

be the time during [0, t] that the queue ( ) ` l / i , / 1 / K  1 } is empty. By an argument 
similar to the one in the proof  of lemma 1, we can show that (Tl( t )}  is 
stochastically less than ( T0(t)}. Since 

Tl(t) 
P = o )  - l i m  - -  

t--, co t 

and 

t o ( t )  
Po ( )`~/~/1/K~ } = lim - -  

I~O0 t ' 

the lemma follows. [] 

This lemma leads directly to our first lower bound. 

LEMMA 4 
0ib 1 ~-~ ~[1 -- P0{ X 1 / / ~ / 1 / K 1  } -- Po{ ) ` 2 / / ~ / 1 / K 2  }] ~ 0 ( ) ` l / ) ` 2 / ~ / K 1 / K 2  } 
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Proof 

0 () t : t / ) t2/ /~/K1/K2 } =/z (1 - P ( N  1 = 0 or U 2 = 0)) 

>~ ~ ( 1 -  P( NI = O) - P(  N2 = O)) 

>//.t (1 - P0 { X1/I~/1/K1 } - Po ( )~ 2/1~/1/ K2 } ) 

by the previous lemma. [] 

Notice that as X 1 ~ 0% 01b I increases monotonical ly  to 0( Xl / iZ /1 /K  2 ) and as 
X 2 ~ 0% 01b 1 increases monotonical ly  to O(Xl/ iZ/1/K1),  so the bound  is tight 
for large X 1 or X 2. However, as /~  ~ oo, 01b 1 ~ --o0, which implies that  this 
bound  will perform poorly for the case where /~ >> X 1, X 2. However, if the 
assembly operation is the bottleneck, we will have ~ ~< X~, X 2. Hence,  this bound  
may be useful in practice. 

Next, we derive another lower bound  on th roughput  by considering an assem- 
bly system in which each machine processes k bins and shuts off until  the other 
machines have also completed k bins, where 

2 

(Ix] is defined to be the largest integer less than or equal to x.) After each 
machine completes k bins, the process is repeated.  If we start with k full bins in 
each buffer in front of machine AM, K 1 - k  bins in front  of machine  IM1, 
K 2 - k  bins in front of machine IM2, then processing k bins at each machine 
returns the system to this same state. The th roughput  of this system is a lower 
bound  on 0( X1/X2/I~/K1/K 2 ) and is given by 

k 
0162 = E [max ( Erlang()tl ,  k ) ,  Erlang(X1, k ) ,  Erlang(/z, k)  } ] '  

where Erlang(X, k) is a r andom variable which is the sum of k independent  
exponential  r andom variables each with rate X. 

LEMMA 5 

01b 2 <~ O{ Xl /X2/ l~ /g l /K2  } 

Proof 
The throughput  of the new system is easily found using the renewal reward 

process of Ross [17] to be 01b2. That  this th roughput  is a lower bound  to the 
throughput  of the original assembly system is shown by an argument  analogous 
to the proof  of lemma 1. [] 

01b 2 c a n  be computed  iteratively, as outl ined in appendix A. (In the case of an 
assembly system with general service times instead of exponentially distr ibuted 
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service times, we could derive a similar lower bound for the throughput.  However, 
instead of the iterative computat ion given in appendix A, we would have to 
compute the appropriate convolutions of distributions.) We have thus proven the 
following theorem. 

THEOREM 3 

O{)tl/)t2/ti/K1/K2} >/Olb , where Olb = m a x {  Olbl, Olb2}. [] 

HEURISTIC LOWER BOUND FOR THROUGHPUT 

We now give an approximate method for computing throughput  that, while not  
a demonstrable lower bound, virtually always underestimates throughput. We  will 
make use of this "heuristic lower bound"  to give a simple approximation of 
throughput. 

To motivate the heuristic lower bound, consider two separate transfer lines as 
shown in fig. 5. Let Nl(t ) be the number  of full bins in buffer  B 1 at time t and 
Nz(t ) that in B 2. The machines IM I, IM2, AM a and AM b are exponential servers 
with rates Ai, X2, /~ a n d / l  respectively. The buffer  size of B 1 is K 1 and that of B 2 
is K 2. 

It is clear that if machine AM b is deactivated whenever N~(t) = 0 and machine 
AM a is deactivated whenever Nz(t ) = 0, and the sample path of successive 
service times for AMa and AM b are the same, we again have { Nl( t  ), N2(t); t >~ 0} 
to be the same Markov process as we had earlier in the assembly system. 
Suppose, however, that transfer line b operates without any influence from the 
transfer line a, but  machine AM a is deactivated whenever Nz(t ) = 0. We let 0 a 

Line a 

co s upp!y ] ] J I oo d=J~nd 
i IMl m B1 ~ A~a i 

Line b 

co supply ~ co demand 
B 2 

Fig. 5. 
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represent the throughput of line a under these conditions and 0 b represent the 
throughput of line b when line a operates independent of line b and AM b is 
deactivated whenever Nl(t ) = 0. We can demonstrate that these throughputs 
represent lower bounds on the actual throughput. 

LEMMA 6 

0 a • 0 { Xl /~k2/~/K1/K 2 } 

Ob <~ 0 { X l / X g / ~ / K I / K  2 } 

Proof 
The proof follows from a similar argument to that given in the proof of lemma 

1. [] 

Unfortunately, computing 0 a and 0 b is essentially as difficult as computing 
O { ~ I / ~ 2 / t * / K 1 / K 2 }  , so these bounds are not of practical use. To develop an 
easily computable approximation to these bounds, further suppose that the effect 
of slowing down of line a due to Nz(t ) being zero in line b is captured by 
reducing the service rate of AM 1 by a factor of P(N 2 = 0) =P0{ 7t2/tx/1/K2} (in 
the steady state). To the extent that this is true, an approximation to 0a is given 
by 0{ )t l / /*[1 -- P0{ X 2 / l a / 1 / K  2 }] / I /K 1 }. Hence, this approximation should serve 
as a lower bound on the actual throughput, O( Xl/)t2/Ix/K1/K2 }. Extensive 
computations, summarized in section 8 show that .it does indeed consistently 
underestimate the throughput. Additionally, this approximation is very simple to 
compute. We simply compute Po{ X2/Iz/1/K2} (using standard results for the 
M / M / 1 / K  queue), set I~'=l~[1-po{X2/Ix/1/K2}], and then compute 
O{ Xl/IX'/1/K1} (again using the standard M / M / 1 / K  queue results). 

We define a heuristic lower bound for the throughput to be the larger of the 
approximations 0~ and 0b: 

0hl b = max{ 0 { ~ k l / ~  [1  - -  P0{ }t 2 / /* /1/K2 } ] / 1 / K  1 }, 

0 { )k 2//x [1 -- Po{ )kl / IX/1/gl  } ] / l / K 2  } }" 

As X, --, m,  0,~b 1' O{X2/~/1/K2}.  Likewise, as X 2 ---, oc, 0tab 1" 0 { ) k l / / - t / 1 /  
K~ }. 0ub and 01b also exhibited the same behavior, so for large values of Xl or X2, 
the bounds are all tight. But as / ,--+e, Ohlb'~max{O{)tl/)ta/1/K1}, 
O{ Xz /X , /1 /K2  } }. In this case, 0ub would be closer to 0{ Xl /X2 / t , /K1 /K  2 } than 
other bounds. 

6. Upper bound on inventory 

Any lower bound on the throughput yields an upper bound on the inventory. 
We state this as our next lemma. Clearly it is not an efficient upper bound. 
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LEMMA 7 

For  any lower bound  01b on 0{ )kl /~tz/ /x/K1/K2 } , 

01b 
~1 { ) k l / ~ k 2 / ~ / g l / K 2  } ~ K1 ~k 1 

Olb 

Proof 
Recall that N~ represents the number  of full bins in buffer B 1 of the assembly 

system in the steady state. Throughput  of the assembly system, being also the 
throughput of the input machine IMa, can be  written as 

0 ( ~kl/~k2//x/K1/K 2 } = ~t I [1 - P ( N  1 =/s  

It follows that P(N 1 r K1) = 1 - P(N 1 = K1) >/01b/h 1. N o w  

K1 

Jar1{ ~ k l / ~ k 2 / ~ / K 1 / / 2  } ---- s FIP(N 1 --~ El) 
n=l  

/qP(N1 = / q )  + - 1)P(/1 K1) 

~< K 1 -- 01b/~kl. 

The second inequality follows analogously to this one. [] 

7. Lower bound on inventory 

Similar to the upper bound  on the inventories, any upper  bound  on the 
throughput gives us a lower bound  on inventory. 

LEMMA 8 

For  any upper bound 0ub on 0( X1/Xz/I~/K1/K 2 ), 

(0 b) 
Jl{Xl /X2/ tx /Ka/K2} > 1 -  ~ K 1 -~=~lbla 

( 0 u b )  
,,r > 1 -- ~ K 2 =J~lb2a 

Proof 
As in lemma 7, O{~tl/)k2/t~/K1/K2} = Xl[1 - P ( N  1 = K1) ]. 

O{ Xl/X2/I~/K1/K 2 }, we have 

P ( N  1 = K1) >~ 1 - 0ub/X 1. 

If 0ub 
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Now, 
K1 

~J~l{ )k l /~k2 / /~ /g l /g2  ) = E riP(N1 = n) 
n=l 

>/Ka(1 - 0ub/Xl). 

The second inequahty follows analogously. [] 

Our next bound compares the inventory of the assembly system to that of a 
corresponding transfer line. 

LEMMA 9 

Jr1 { ~'1/~" 2/[J'/ K1/ K2 } >1 Jr{ 2t1/la/1/K1 } -= ~ 

o~2{ ~kl/~k 2/~/K1/K2 } >/J{ )t 2 / / , /1 /K2 } --- ~g'lb2b 

Proof 
The proof of this lemma is analogous to the proof of lemma 1. [] 

LEMMA 10 
Consider an assembly system with parameters ~1, X2, K1 and K2, with/x = oo. 

Let the mean inventories for this system be J/rlblc and O~1b2c. Then 
Jl{ ~q/)tz/l~/K1/K2 } >~ ~lblc and ~'~2{ )ti/)t2/l~/K1/K2 } >~ J~lb2c. 

Proof 
Again this is proved using arguments similar to those used in the proof of 

lemma 1. [] 

Computation of ~lblc and ~'lb2c are given in appendix B. 
The preceding three lemmas yield the following lower bound for the invento- 

ries in the assembly system. 

THEOREM 4 

o~ 1 { ~ l / ~ 2 / ~ / K 1 / K 2  } ~ max{ ~'~lbla, ~lblb, "~lblc } 

J2{ Xl/Xa/Ix/K1/K2 } > max{ JlbZa, Jlb2b, ~lb2c }" [] 

Heuristic upper bound for inventory 
Mimicking the heuristic for lower bound on throughput, we can derive the 

following heuristic for inventory in each buffer of the assembly system: 

~hubl ="~{ Xl//~ [1 -Po{ Xz/I~/1/K2 }]/I/K~ } 

olffhub 2 = J ( )k 2/~ [ 1 -- P0 { ~kl / /~ /1 /K 1 } ] / 1/K 2 }.  
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While this approximation tends to overestimate inventory, it does not do so 
consistently - there are cases where "if'hub1 ~ J J  ( ) k l / ) k 2 / ~ / K 1 / K 2 }  o r  J~hub2 

~r { ~k l/)k 2 / i t /  K 1 /  K 2 }. 

8. Computational results 

From extensive computations, we found that the average of 0ub and 0hi b gives 
a good approximation to O( )kl/)t2/l~/Ka/K2 }. A sample of computational 
results for the approximation to the throughput is presented in table 1. In this 
table, 0,o t is the actual throughput of the assembly system, computed by consider- 
ing the assembly system to be a Markov process and calculating its steady state 
probability distribution. 0Li p stands for the approximate value for the throughput 
as computed by Lipper and Sengupta [14], and 0ap r stands for the approximate 
value we are suggesting, i .e. 0ap r = (0ub ~- 0hlb)/2. 

From table 1 it is apparent that our approximation does better than the 
approximation given in Lipper and Sengupta [14] in some instances. Our ap- 
proach also yields bounds, since 0ub is a guaranteed upper bound and 0hl b seems 
to consistently underestimate the throughput (at least in all the computations we 
have done). In addition, our approximation is computationally very simple, which 
allows it to be used in routines to optimize the system performance with respect 
to variable system parameters. The closed form expressions given here are 
potentially useful as the basis for determining optimal buffer sizes. 

However, as pointed out earlier, our method works only for two inputs, 
whereas the approach of Lipper and Sengupta can handle more than two inputs 
to the assembly machine. Further work is needed to develop simple closed-form 
approximations for the case with more than two inputs and to refine the bounds 
and heuristics for average inventories. 

Appendix A 

C O M P U T I N G  01b 2 

To compute 01b2, w e  need to compute E[max{Erlang(X 1, n), Erlang()t2, n), 
Erlang(/;, n)} ], where the three random variables are mutually independent.  

Define Xm, m = 1, 2, 3 . . .  to be independent and exponentially distributed 
random variables, each with parameter )t 1. Similarly define Ym to be independent 
and exponentially distributed random variables with parameter X 2, and Z m to be 
independent and exponentially distributed random variables with parameter ~. 
Let 

i j k 

x <i) = E xm, r(+> = E Ym, Z = E 
m = l  m = l  m--1 
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Also define T(i, j, k )=  E[max{ X {i), Y(J), Z(/~))] .  Using this definition, our 
aim is to compute T(n, n, n). 

If i > 0, j > 0 and k > 0, by conditioning on rain{ X 1, 171, Z1 }, we can write 

1 X1 - + T ( i -  1 j, k) r(i ,  j,  k) X1 + k 2 + / ~  kl + X 2 + / ~  

r( i  j, k -  1). X2 T(i j - l ,  k ) +  X I + X 2 +  # , 
q- ~kl_}r ~ ' 

Extending this to the general case, we can write 

1 + r ( i -  1, j, k) T(i, j, k)=I{i>o, j>O,k>O ) X~+X2+/x  X l + X 2 + / ~  

# T(i, j ,  k - 1 ) t  ~k2 T( i, j - 1, k) + X~ + ~k 2 ~- Is 
+ X~ + X2 +/~ ) 

1 X1 T ( i -  1, j, O) 
q - I ( i > ~  k=O} ~t 1 q-~t~ 2 + X l _ ~  X 2 

X2 T(i, j-1,0,)} 
+ X 1 +X~-~ 

1 + - - T ( i - l , O ,  k) 
+ I f i > O , J  =O,k>O} ~k I q--~-~ X1 q- IZ 

l* V(i, O, k - 1 ) }  
+ Xl +-------fi 

{ 1 + - - T ( O ,  j - 1  k) 
-~ [ ( i = O, j > O , k > O } ~k 2 _1_-~---~ ~k 2 ..~ ~ 

/* V(O, j ,  k -  1)t 
~- X2 .-{--~---~ ) 

q- I f i  > O,j=O,k=O} 

+ I ( i=O, j> O,k=O} 

+ l ( i=O, j -O ,k>  O} 

. L+ r ( i -  1, o, o)} 

1 } + r(0, j -  1, 0) 

+T(O,O,  k - l )  . 

Given that T(0, 0, 0) = 0, T(1, 0, 0) = 1/X~, T(0, 1, 0) = 1 / •  2 and T(0, 0, 1) 
= 1// , ,  we can compute any T(i, j, k) iteratively. Thus we can compute 
T(n, n, n). 
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Appendix B 

COMPUTING Jiblc AND Jlb2c 

We are given an assembly system (Xl/?tz/Ix/K1/K2) with /x = m. Clearly 
Nl(t ) and N2(t ) cannot both be non-zero at the same time. Hence we can denote 
the state (Nl(t), N2(t)) using a single variable N(t), where 

N(t) > O~ Nl(t) = N(t ), N 2 ( t ) = 0  

U(t) < 0 ~  NI( / )  = 0 ,  U2(t ) = - X ( t )  and 

N(t) = O ~  NI(t) = N2(t)=O. 

Thus we have a Markov process (N( t ) ;  t >t 0) on the state space { - K 2 ,  K 2 + 
1 , . . . ,  - 1 ,  0, 1 , . . . ,  K 1 - 1, K1}. 
- K 2 , . . .  , K~ } are given by 

=  (o)o 

where 

j0 = )kl/•2, and ~r(0) = 

Now 

K1 

~ , b l c =  E k g r ( k )  = 
k=l  

Its steady state probabilities ( r r (k) ;  k =  

O(1--PK1)--KlOKI+'(1--O) if 0=~1 
( 1 - 0 )  2 

K I ( K  1 + 1 ) / 2  if O = 1. 

O~'lb2c is obtained from the above expression by replacing K 1 by K 2 and 0 by 
o = 1 / 0 .  
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