
ASYMPTOTIC PROPERTIES OF KRAWTCHOUK POLYNOMIALS 

I. I. Sharapudinov 

i. The classical Krawtchouk orthogonal polynomials of a discrete variable can be defined 
with the help of the following equation: 

i n Kn(x)=Kn(x;N , - '  ( - - )  An[r  (x_n"~,'(~_._PxqN-X+nN' ], P ) = ~  z + i )  ( 1 )  

where O < p < t ,  q = t - - p ,  r (z) is the Euler gan~a-function, 

NI pXqN-X 
p(x)~p(:r;N,p)---- r ( , + t ) r ( N - - z + t )  ' 

h i  (z) = I (z + t) - -  I (x), 
a"l  (z) = A (A"-V (x)) (n > i) .  

The difference properties of these polynomials have been rather well-studied (see, for 
example, [i]). Recurrence relations of a different kind and connections with the other class- 
ical orthogonal polynomials have been established. Krawtchouk polynomials in a definite sense 
are the discrete analog of Hermite polynomials. Let us make note of [2], where the properties 
of Krawtchouk polynomials are considered in connection with their applications to coding theory. 
In particular, the asymptotic propertie$ of the zeros of Kn(x; N, p) were considered for fixed 
n and N ~ ~. 

On the other hand, the problem of the asymptotic properties of the Krawtchouk polynomials 
Kn(x; N, p), for which the degree n grows along with N, has remained uninvestigated. In con- 
nection with this let us observe that the corresponding problem for the classical orthogonal 
polynomials of a continuous variable (Hermite, Laguerre and Jacobi polynomials) was exhaust- 
ively investigated in the words of Darboux, Stieltjes, S. N. Bernshtein, Szego et al. (see 
[3]). The basic instrument of analysis of asymptotic properties in these works was the dif- 
ferential equation which the corresponding classical orthogonal polynomials satisfy. The dif- 
ferential equation imposes a very harsh condition on the behavior of its solutions and in 
the final account it plays a decisive role in the analysis of the asymptotic properties of 
Hermite, Laguerre and Jacobi polynomials. As to the classical orthogonal polynomials of a 
discrete variable, they then are the solutions of the corresponding difference equations which 
leave for their solutions incomparably "greater freedom" on the intervals contained between 
the points of the discontinuity of the corresponding weight function, and this circumstance 
materially hardens the analysis of the asymptotic properties of the orthogonal polynomials 
of a discrete variable. It turned out that the asymptotic properties of the Krawtchouk poly- 
nomials Kn(x; N, p) essentially depends on the restrictions imposed on the growth of n (de- 
pending on N). In this paper we study the asymptotic properties of the Krawtchouk polynomials 
Kn(x; N, p) for n = O(N 17s) and their zeros for n = o(N1/~). 

2. Let Q = Np + (2Np~*ISQ, 

R m (X) = ( - -  I) m ex' d~m {e-X'}. 

(2) 
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The basic result of this paper is the following 

THEOREM. Let p be a fixed number, 0 < p < i, A z and A 2 two positive constants. Then 
uniformly with respect to 

--A~n x / ~ < x < A ~ n  ~/~, O.~< n <  A~N~I ~(N = 1, 2 . . . .  ) (3)  

we have (N + =) 

+ o  . (4) 

Proof. Let us take advantage of the following discrete analogue of the Leibnitz formula: 

~ . ]  ?1 "1$ " A n] (x) g (x) =/_.~__~ (k) An-~/(x) A+g (x + n - -  k), ( 5 )  

w h i c h  c a n  b e  e a s i l y  e s t a b l i s h e d  b y  i n d u c t i o n .  L e t t i n g  x [ ~  ffi 1 ,  x [  n ]  = x ( x  - -  1)  . . . .  ( x  --  
n + i) (n > I), we find from (i) and (5) 

( - -  q)" x["]] p (x) K.  (x) = ~ a" [p (x) 

__ (--q)= ~-~" (n'lA._+p(x)A~(z + n--k)[=]= 
- -  n! / '~ ,=o\k]  

(Here we used the fact that nix [m] = m[s163 Let An/(X) = / (x Jr h) -- I (z), A~I (x) = 

A h (A~-If (x)) (n ~ 2). Letting h-----I/(2Npq)Vs and using the known formula 

(0 < 8 < I) we have due to (2) and (6) 

I,,, ~v (x) = (2uN pq)*" ex'/' (-~p )n/' (-- t ) ~. 

----- eX'/' ( - -  t)n Z~ffi.o (n[+])a/2 (q/P)+~' (Z .-~ " - -  k)' ''+] 
( 2r,,N pq ) 11~ dn-~ 

N~/'kt (Np) "-to 2 ( ' '~)/a ((n - -  k)!) ~/2 dt~ "~ p (~'~) ( 7 ) 

(t+ = x + h (n - -  k)e~, 0 < e~ < 1). 

Let SN(~) be such that 

A'~f (x) = h"/eq (x "4- nhe) 

~xp ( - -  p + aN (t~)). ( 8 )  
p (~) = (2gNpt/)z/s 

Using the integral theorem of Cauchy and the representation (8), we find 

(2=tNpq)~ d ' ' ~  2(,,_k)/,((n_k)l)m dt~ p(T~) ((._k)!)Vz(2aNpq)V~ ~ p(~)d~ 

~ 

where c k is a closed contour, containing t k. 

2 

(2~Npq) ' / ' ( ( n -  k):)v= [ t ~ " e - ~  d ~  

L �9 ~ -7?~'-~+1 + t=ffi 2(n_~)t2~i (2~Npq) 1/~ % ( t ~ - - ~ ,  
se 

(p (~)  - -  e-~ /(2rtN pq) 11~) d~. .] 
+ % (,q.- %)" 

J 

__ ( - -  t) n-k e-t~/Z,~_~ (t~.) -+ ! (t~ - -  ~,~),~-~+t ((n -- k)D i/'z e -~ (e sm''k) -- I) d~l. 

=Q._~(t~y r,,_~(t~) (0<k<n), 

From (7) and (8) we deduce 

/ . .  s (x) = ( ~  1)* e~'/~ [ q .  (to) L .  + 
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where 

Z n ("t~])"n ( q t"/~ -Jc k! N ~/' -- Qn-~Ln-~ + 
k = l  

(n[~])3/~. 

--___ (-- t)n eX'/s [qn (to) L,  -5 B~ + B2], 

Ln_ ~ = (:~ -5 n - -  k) t"-~]/(Np) '~-k. 

Let  us  e v a l u a t e  [~-~ (tk)l, I L,-~ t and .  I Qn-~ (t~)l" 
g a m m a - f u n c t i o n  [4 ,  p .  83] 

We need the asymptotic 

lnF(z)  = ( z - -  + )  l n z - -  z -F + In (2~;) -5 Ro(Z ), 

formula 

(9) 

for the Euler 

(io) 

where [ a r g z  l<m~/2, 

We have from 

Letting 

k(z) k ( z ) = s u p ]  z2 
I -% ('-) I < 12--i'ZF ' ,,>~o, ~T%-~ [. 

(i0) for x =zlN, p(z) = N!p'qN-zl(F(z +l)P(N--z +i)) 

I In (2~N'~ ( i  - -  x)) + Ro (N) - -  Ro (z) - -  Ro (N - -  z). 

we have  .H (p) : /-/" (p) : 0, H" (p) : t / (pq) .  

H ( x ) : ~ l n ' C  + T  ( i - - z ) l n  t - - x  q ' 

T h e r e f o r e  [5 ,  p .  99] 

where 

On the other hand, 

/ / ( ~ ) :  i 
2-W (~ - PP + r (% 

~ Ir(r)l< [~--PP-~q~, if ]~--p[<Tmm{p,q} �9 

since T (I -- x) -- pq = (p -- x)(x -- q), then 

(11) 

(12) 

(13) 

(14) 

Hence, 

we find for 

where 

In (r (1 - -  w)) ----- In (pq) § In (l  § 

taking into account 

( , . - . )  ( ,  - q) ) 
Pq Pq �9 

I 

] (p - -  x)(x - -  q) ] <~ pq/2 

In (x(i - -  x)) ---- In (pq) '~ .  D (x), 
(15) 

I D (x) ] < % I (P -- x) (x -- q)[. (16) 
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Composing (12), (13), and (15), we have (~ = z/N) 

N 2 i 
In p (z) ----- -- ~ -  (t --  p) ~- -~- In (2nNpq) 

+ 1 t  0 ( N )  - -  R e  (z) - -  R e  ( N  - -  z)  - -  N r  ( t )  - -  D (x)/2. 
Hence,  l e t t i n g  z = ~ =  Np q- (2Npq)*/2~ , we a r r i v e  a t  t h e  r e p r e s e n t a t i o n  ( 8 ) ,  in  which 

"-7 2pq ~n 2 

Let us evaluate lSN(~k)I on the circle c k with center at t k and radius d~ = (n--k)/2)v= (k<n). 
From condition (3) of the theorem, it follows that for sufficiently large N 

lxI~ 'X-(2Npq)  ~ ' : -  \-~'1 -- (2Npq)z/, " (18) 

For ~ = t~ + d~e ir (0 / / = ~ / N  we have  from (18) T ~ 2 n ) ,  t~ = x + (n -- k)hO~, t 

~ . . . p q ~ . l  
Ix--pl-- - ( -~-)at~l t  ~ + d~e~ [ .~ - f - ~ - ~ -  min {p, q}, (19) 

I(P-- T)(T--q)]< ~ (]P--q[2t- P'~--f ) '~  pq 
2 ' (20) 

I~ - q l <  t, 

I t  f o l l o w s  from (19) and (20) t h a t  f o r  x = ~k/N, t he  c o n d i t i o n s ,  f o r  t h e  o b s e r v a n c e  of  which 
t h e  bounds (14) and (16) were p roved ,  a r e  s a t i s f i e d .  F u r t h e r ,  f rom (18) we o b t a i n  

Re (-~) > N p -- (2N pq)*'21~ ~ I >/Np -- + N pq:= N p (l - -  q/2), 

Re (N - - ~ )  ~ Nq (1 --  p/2), 

I Im (gk)l < (Nnpq)':'', l ira (N- -  ~ )  I < (Nnpq)*& 

(21) 

(22)  

(23) 

From (19)-(23) and from the condition of the theorem, it follows as well for large enough 
N that 

v fNp Re (~:)>//( ~-~-P)' --  Nnpq-----,,pk-- W. - -nq)>O,  

. o ( ( N -  = 

Observing that for Re (z 2) > 0 

and composing (11), (14), (16), 
k)hO~, ~ = t~ + d~e% x =~k /N  

sup = t 

(17), (i9)-(26), we obtain for 

l ,gN ( ~ )  l ~<~.. ~ ~- 12Np (I  - -  q/2) -~- 12Nq ('I - -  p/2) -}- "d (pq)*~, N ] [ X l + 2C 

t / 2pq \11z/,  f n \1/2 - 1/2 
nu--~-k--Tf-) ~la'l+[--:f -) -~n/(2pqN))-~G~v,n(x). 

From (27), in turn, we find 

I esN(~k) - -  1 ] < aN, x (x) e ~N, ~(*). 

Then, using the Stieltjes formula, we have (k < n) 

(24) 

(25) 

( 2 6 )  

t~ = x + ( n  - -  

n 

( 2 ~ q ) " ) ~  + 

( 2 7 )  

(28) 
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~"-'~7V--~ ) - ~  S~ (t~ - ~),,-~+x' ] dg~ [ ------ 

. . . .  ,.,I, a~-t~'l~ ~:~ . co,r162 p --__. tin-- ~j.~ e < 2r~ (n- -  k) (n-~)/z So e-(tk/za/z+~l/2d1~ 

((n -- k)!) 11~ 12~ e-(tt:+@; cos m),+d~ sin' (p dr D 
2 ~  (n -- k)  (r~-/O12 0 

( n - -  k )! l / ~  ed~-t~ a k)) 1/4 e_t~ /~+l/(u(n_~ ) ) 
(.  _ k)(~_~)/., < (2~ (n -- 

(29)  

We find from (27)-(29) for sufficiently large N (t~ = x -~ h (n -- k)0~, 0 < O~ < i) 

I r,,-~ (t~) 1 < aN,,, (z)ea~,,,(-) (2:x (n - -  k))l/ae-t~J2+ll(2a(n-~)), 

where x and n satisfy (3). 

For Ln_ k we have from (9) 

Hence, 
o (N~/3)) 

To estimate 

Then for 

/ 2q \11~ \n-~ rt-k / 2q 1112 , (.< Ln_k = exp ( Z , : x  ]n ( t -[- k-~- ) x_j_ 

/ /  2q \a/~ ( n -  <exp[t--~) x(n--k)-~ ~;)'). 

l - j - n - - k  -1) 

it follows that uniformly with respect to 0 ~ k 5 n we have the estimate (n = 

o ({ " ~  W ~ L . _ , = I +  

Ien_k(tk)l let us use the following known [3, p. 

max e-"l: [ H m (z) [ = O ((2"m!)a/~ m-,m). 
--~<z<~ 

IQn_k(tk)[ we obtain (0 < k < n) 

I Qn-~ (t~) I = 0 ((n - k)-Vn)e-t~'/'. 
Also, for k : n 

I q0 (t.) I = e-'~. 
Further, since 

(3o) 

d {e-"H. (z)} = -- e-~H.+, (z), 
d z  

then by Lagrange's theorem we find (x < q < t 0) 

e-t~H,, (to) = e-~'H, (x) -- e-~Hn+ I (~)nhO0, 

and for x = O (n I/s) andx < t _< x + nh 

exp((x2-- , ' ) /2)= t q- @~-)1": exp (0 (~-)1/') . 

From (9 ) ,  (31),  (32),  (35) and (26) we also have 

2503 result (m ~ i): 

(31) 

(32)  

(33) 

(34) 

(35) 

(36)  

~ - x t / 2  

ex'J~Lnqn (to) = ( - -  ) (2%!)1/2 / / .  (x) + 

(x = 0 (n*/2), n = 0 (N1/8)). 

(37) 

In order to estimate the sum BI, figuring in (9), we represent it in the following manner 
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Then from (31), (33), and (36) we have 

(x = 0 (nu~), n = 0 (NVS)). 

(38) 

( 3 9 )  

For BI" we have from (31), (33), (34), and (36) 

e~'/s l B1[ = O ._,V~,,'ff \'TN',v / / = 

_ _ " /  t I qn 3\[rtlz]/s / /  qn s \ * l s l \  

where [n/2] is the integer part of n/2. 

Finally, for the sum B2 [see (9)] from (27), (30), (31), and (36) we find 

(40) 

e~': I B~ I =  0 ( n ' / ~ v . ,  (x)) = 0 ~, ~ , ' W -  ( 4 1 )  

(z = 0 (n~/D, n = 0 (N*/D). 

Juxtaposing (9) and (37)-(41), we arrive at (4). The theorem is proved. 

Let xj, N = xj, N (n, p) (j = i, 2, ..., n) be the zeros of In,N(X) situated in decreasing 
order: xm, N > x2, N > ... > Xn, N. Then by (2) xl, N > x2, N > . > Xn, N are the zeros of the 
Krawtchouk polynomial Kn(t). Then, let z~ = zj (n) (I < ] ~ n q- i; be the points of the extrema 
of the function Z~ (x) = exp (--x2/2)H~ (x) such that zj > zi+ x (i .~< ] ~< n). 

COROLLARY i. If ~={qN}~,~]N>0,~N--+0(N--~), then for all sufficiently large N 

Z] > ~,N > ZJ+ 1 (t < ] < n, t .-~ n < qNN~4). (42) 

The proof of this corollary immediately stems form the asymptotic formula (4) and from 
the fact that the least maximum of IZn(x)I in succession is not less (see [3, Theorems 7.6.3 
and 8.22.9]) than (2nn!)i/2n -I/~ and [see (45)] ~+1, z~ = O(nl/~). 

Let xj = x/(n) (l<].~<n) be the zeros of the Hermite polynomial Hn(x) , arranged in de- 
creasing order: xm>x~>..o>Xn~ 0~ii~2~..o the zeros of the Airy function (see [3, 
p, 32]). Below we need the following (see [3, p~ 141]): 

x.~ (n) = (2n + 1) 113 - -  6 -*'8 (2n + t)  -1/~ (iv + e , )  

(8 ,  ~ 0 (n - -  ~ ) ) .  
(43) 

COROLLARY 2. Let ~={~N}~, ~N> 0, ~N -~0 (N-~oo). Then uniformly with respect to 
1 ~ n E ~N NI/~ (N = i, 2, ...) for the least zero of the Krawtchouk polynomial, we have 

g., N = Np (t - -  (2q/(Np))*/2xl (n)) q- 0 (nT/'). 

P r o o f .  S i n c e  Xn, N = Np + (2Npq) l /2Xn ,N,  t h e n  f o r  t h e  p r o o f  o f  C o r o l l a r y  2 i t  i s  s u f -  
f i c i e n t  t o  o b t a i n  f o r  I < n < ~NN 1/4 ( N - +  oo) t h e  e s t i m a t e  

The function Zn(x) is even (odd) if n is even (odd) and satisfies Zn(X) + (2n + i -- x2)Zn(x) = 
0. Therefore, we have 
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- - ( 2 n  + 1)*/~ G z~+l < xn = - - x ,  < z .  < x ._ ,  = - -x~.  

On the other hand, using the asymptotic formula (see [3, p. 208]) 

(45) 

Zn (x) --- 3*;s=-3t~2n/2+~/~ (n !)x/~ n-,t~.  
�9 {A (t) + 0 (n-~'3)}, x---- (2n -}- 1) v~ - -  2-x'23-V~n-X/~t, 

(46) 

where t = 0(i), A(t) is the Airy function, we conclude that IZn(zn) [ and Zn(zn+1) I in succes- 
sion are no less than (2nn!)i/2n -I/I=. Then, since Z$(x) =--(2n Jr i--x~)Zn(x), the function 
[Zn(x) I is convex (upwards) for x n < x < and for < < _ _ Xn_ ~ Zn+ ~ _ x _ x n. Since due to (43) and 
(45) Iz~--xnl = O (n-V~) (k = n, n r l), then from the indicated properties of Zn(x) we find 

I Z. (z)l((x -- Xn)(2"n!)*/*)l >/A3nl /n ,  x ~ [z~+l, zn], (47) 

where 0 < A s is an absolute constant. It follows from (47) that if n ffi o(Ni/4), then by (4) 
in the neighborhood (x n -- 6n, x n + 6n), where 6 n = 8 n (N) = (nS+V2/fF) I/2, the function In,N(X) 
for sufficiently large N changes sign, that is, in this neighborhood there is contained at 
least one zero of In,N(X). The estimate (44) will be established if we show that this zero 
coincides with Xn, N. With this object, let us consider Z$(x) =--xlfn(x)o-x~2jrH$(x)e-x'/~. 
Using the fact that H~ (x) = 2nH._1(x ), H.+, (x) = 2xH.(~ --2nH._,(x), we, hence, have 

1 Z~, (x) = nZ,,_, (x) - -  - ~  Z , m  (x). 
(48) 

Let us use (46) twice, replacing at first n by n -- i, and then by n + i. Correspondingly, 
for x we have the representation, x = (2k + I)*/~ -- 2-*/~3-a/81r'*/'t~ (k = n-- I, n Jr- I) , where I in-, -- 
%+* I = O (.-I18). Hence. in turn, we find nS/*' I A (in_,) -- A (in+l) [ = O (n*/12). Therefore. ob- 

serving that n*/g/(n _ I)I/,2 _ {n Jr I) 5/.2 ~- O (.-r/,2), we deduce from (46) and (48) for X ~ [zn+,, z n] 

I Z'. (x) I < A4 (2"n!)*/2n */*', (49) 

where 0 < A~ is a constant�9 

Due to the theorem on the mean wehave(k ffi n, n + i) 

Zn (gi') I I Zn (Z~.) -- Z n (xn) = ] Zn (~)I (~ ~ (Zn+l, ZB))" (50) 

Juxtaposing (46),>(49), and (50), we conclude that there is an absolute constant A 5 > 0, for 
which IZk -- Xnl _ Asn-I/8. This means that for sufficinetly large N there will be (xn--6n, x n 

+ 8n)E (zn+,, zn). Indeed, this follows from the fact that 6 n = 6 n (N)= o (n-*/4) =o(n-I/e)-----o([z~-- 

znD (n =0 (An/t)) �9 Since, in accord with Corollary i Xn.N ~ (Zn+,, Zn) and x~,N ~ (zn+ I, 

Zn) (k~= n), all the more x~,N f~ (x n" 6., z n Jr 8n) (k =it= n). So, an, N ~ (zn -- 6n, z. + 8n). In 
this way. (44) and along with it Corollary 2 are proved. 

3. Let us note one application of Corollary 2 to coding theory. Following [2], let us 
introduce some necessary notation. Let E~ be the space of sequences of length N from the ele- 
ments {0, i, .... m -- i} with the Hamming metric. M(~, D) the maximal cardinality of a D-code 
~TcE~,D(E~,M) the magnitude, inverse for M (E~, D), equal to the maximal number D such 
that there exists a D-code W c E~ of cardinality M. In the notation adopted in this paper, 
let us formulate one result established in [2]: that is. the hound (m ~ 2) 

861 



where ~.,N-I =~=,N-x(n,(m--l)/m) is the smallest zero of Kn(x; N -- 1, (m -- 1)/m). For fixed 
n and N @ ~, it was proved in [2] that 

o m - -  i s  ( 2 'W~z (n))+O(t). (52) D(E~, ZL(m-- I / ( [ ) )  < m I N k ~ - - k ~ ]  i 

COROLLARY 3. Let m> 2, ~ = {~N}~, ~N > 0~ ~]N-* 0(N-. oo). Then uniformly with respect 

to i ~< " < ~]~/~14 (N = I, 2 .... ) we have 

D(E"'Z~.o(m--I)'(I~))"-< m ~ (,2Z- I, 

If we let p = (m -- l)/m, q = l/m, then the assertion of Corollary 3 immediately follows 
from Corollary 2 and (51) It is clear that (53) is a generalization of (52) to the case 
when n grows along with NI remaining no more than o(N1/~). 

In conclusion, the author thanks B. S. Kashin for the statement of the problem. 
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