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i. By AP we shall denote the algebra of uniform, almost periodic functions, defined 
on the real axis R, by M(f) the Bohr mean of the function f �9 AP, by ~(X) the coefficient 
of e iXx of its Fourier series, i.e., M(fe-iXx), and by AP W the subclass of AP, consisting 
of functions with an absolutely convergent Fourier series. By the spectrum of f �9 AP we 
shall mean ~(f) = {X �9 R : f(X) ~ 0}. We set AP t = {f �9 AP: iX ~ 0 VE �9 n(f)}, APw• = 
AP t n AP w. The elements of AP t admit a continuous extension to functions that are analytic 
and bounded in ~i = {~: tim ~ > 0}. 

As in [2, 3], by a P-factorization of an n x n matrix-valued function G, defined on 
R , we mean the representation 

G = G§ (1) 

where A(x) = diag[eiX1 x, ..., eiXn x], Xj �9 R , *  

G~I~Ap+, G ~ A P  -. (2) 

Replacing condition (2) by the more rigid requirement G+ il �9 APw +, G • �9 APw-, we obtain 
the definition of a Pv-factorization. The P- and Pw-factorizations have been studied in 
[2-5] in connection with the investigation of the solvability of singular integral equa- 
tions and equations of convolution type on systems of intervals. 

An obvious necessary condition for P- (Pw-) factorization is G • �9 AP (APw). If the 
matrix-valued function G is periodic with period ~, then by the formula X(~) = G(~ in ~/2~i) 
one associates to it a matrix-valued function on the unit circumference T. Moreover, the 
condition G �9 AP is equivalent to the continuity of X. Being continuous and nonsingular, 
the matrix X admits (see [6, 7]) the factorization 

X (~) = X+ (~) D (~) X_ (~). (3) 

Here X+ +I- and X_-+l belong to the Hardy classes Hp (inside and outside T , respectively) for 
all p < ~, D(~) = diag[~ <I .... , ~Kn], while K l, ..., <n (�9 Z) are the so-called partial 
indices of the matrix X. The P-factorization of a periodic matrix-valued function G is 
equivalent to the fact that X is factorizable in C, i.e., the factors X• from (3) are con- 
tinuous up to T, while the Pw-factorizability of G is equivalent to the fact that X• are 
in the Wiener algebra W of matrix-valued functions with absolutely convergent Fourier series. 

Thus, the P- and Pw-factorization can be considered as some analogue of the factoriza- 
tion (in C and W, respectively) of matrix-valued functions defined on T. This analogy is 
not complete. Thus, one has constructed examples of matrices of the form 

[ e ix~ 0 ] 

Z (x)  = ,_,,~ e ~ . , .  2.'~.=i Ck e -i~,x , 

(-k<=~<x), (4) 

for m = 3, which do not admit P-factorization [3, 8] (the existence of such matrices for 
m = 5 has been proved also in [9]), while the factorizability in C or W can be ensured 
by conditions on the smoothness of the matrix. 

Nevertheless, the formulations of a series of results on factorization in C(W) can be 
carried over directly to P- (Pw-) factorization, although the proof of some of them require 

*Here and in the sequel, the membership of a matrix-valued function to some functional class 
will be understood elementwise. 
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the use of essentially different methods. We give those results which will be used in 
the sequel. 

THEOREM A [2, 3]. The numbers lj (we shall call them partial P-indices) are deter- 
mined from the P-factorizable matrix-valued function G to within a permutation. Their 
sum coincides with l(G), the almost-periodic index (mean motion) of the function det G. 
The partial P-indices are stable with respect to small perturbations of G, preserving the 
P-factorizability, if and only if %l = -.. = In. In this case an invariant of the P- 
factorization is also the quantity d(G) = M(G+)M(G_). 

THEOREM B [i0, ii]. The conditions G ~ A P w ,  inf{l(G(x) h,h)I-I!hl!-~: h ~ C ~ { 0 } ,  
x~R}~0 are sufficient for the Pw-factorizability of G. Moreover, all of its partial 
P-indices coincide among themselves and with the quantity l((Gh, h)) for any h e C n \{0}. 

Here we give some new results on P-factorizations, suggested by its analogy with the 
factorization in C. The symbol & will mark the end of a proof. 

2. In this section we consider the P-factorizability of matrix-valued functions of 
class AP W, with partial P-indices that coincide among themselves. For G e AP with Fourier 

series l~(Xj)ei%j x we set 

Thus ,  G e AP W i f  and o n l y  i f  IIGII W < ~. 

H e r e ,  f o r  a n u m e r i c a l  m a t r i x  A, by IAI we d e n o t e  i t s  l a r g e s t  s - n u m b e r ,  i . e . ,  t h e  s q u a r e  
root of the largest eigenvalue of A*A. 

THEOREM i. Let F be an n • n matrix-valued function of class AP W. The following 
statements are equivalent: i) F is Pw-factorizable with zero partial P-indices; 2) F is 
P-factorizable with zero partial P-indices; 3) there exists a matrix-valued function X+, 
belonging to the class AP + together with its inverse, such that 

II 1 - -  X+F II < 1; (5) 

4) there exists a matrix-valued function X_, belonging to the class AP- together with its 
inverse, such that 

II I - -  FX_ II < t .  ( 6 )  

Proof. The implication i) + 2) is obvious. Assume that 2) is satisfied, i.e., F = 

F+F_, F+ • e Ap + and F_ • e AP-. We set X+ = BF_*F+ -I, where B is a constant from the in- 

terval (0, ,F_ll-2). Then llI- X+Fil =ilI - ~F_*F_~ < i. Thus, 2) + 3). 

If, however, 3) holds, then, by a small perturbation of X+ in the metric of AP, one 
can achieve that X+ • e APw + and that, as before, inequality (5) should hold. In this case 
the factor X+ does not affect Pw-factorizability and the values of the partial P-indices. 
Therefore, without loss of generality we shall assume that instead of (5) we have 

[ l I - -  F [ [ <  t .  ( 7 )  

The Pw-factorizability with zero partial P-indices of a matrix F e APw, satisfying relation 
(7), follows from Theorem B. 

Thus, 3)~ i) and, therefore, the statements 1)-3) are equivalent. The equivalence 
of the statements i), 2), 4) is established in a similar manner. 

Regarding the analogue of Theorem 1 for factorization in C, see [12]. It is clear 
that Theorem 1 remains valid if instead of the vanishing of the partial P-indices we require 
only that they be equal among themselves and if in the inequalities (5), (6) we replace F 

by F exp ( i~(F)x 

THEOREM 2. Assume that the matrix-valued function G e Ap W is P-factorizable. Then: 
i) For the preservation of P-factorizability under small (in the metric of AP) perturba- 
tions, not leading out from AP w, it is necessary and sufficient that the partial P-indices 
of G should coincide among themselves. 2) If this condition is satisfied, then the 
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factorization factors G• and the matrix d(G) depend continuously (in the metric of AP W) 
on G. 

Proof. i) Sufficiency follows from Theorem 1 and the stability of the inequality 
(4) with respect to small perturbations of F. 

In order to prove necessity, we consider a matrix G e APw, represented in the form 
(i), having at least two distinct partial P-indices. Without loss of generality we can 
assume that 11 > 12. We set I = i/2(I l - 12) and G e = G+T e diag[ei(ll+12)x/2z, Ell3 x, 

..., eilnx]Te-iG_. Here T e = diag[l, e, i ..... i], while Z is a matrix of the form (4). 
Then Gg - G = e(G I -- G), so that JIG e - GII + 0 for e + 0. At the same time, for any e # 0 
the matrix G does not admit P-factorization together with Z. 

2) By virtue of the implication 2) ~I) of Theorem i, the matrix G is Pw-factorizable. 
But then, from the smallness of liF - GJIw, there follows the smallness of llI- G+-le -iVx- 
FG_-IHW, where 9 = (l(G)/n). Therefore, it is sufficient to consider the case G = I. But 
for 

II I - -  FItw < t (8) 

the factorization factors of the matrix F can be computed by the formulas 

F;  ~ Q E~=o X tI, F2 ~ = ( k=o Y~I) Q-~" (9)  

Here Q is an arbitrary nonsingular matrix, the operators X and y act on matrix-valued func- 
tions f e Ap W according to the rules X/ = P+(/(E--I)), Y/ = P_((F--I)/), P• are the pro- 

jections corresponding to the decomposition of AP W into the direct sum of APw + with A~ = 

{~ ~ APw: M(~) = 0}. Condition (8) ensures the absolute convergence of the series (9) in 
the metric AP W. If we take Q = I, then max{JlF• - Ill W, JIF• -I - IIIw} ~ const'liF - IlL W. Tak- 
ing into account the relation M(Y f) = 0, from (9) we obtain 

))i 
d(F) = k=0M(X~I , 

which p roves  t h e  c o n t i n u o u s  dependence  of  d(F)  on F. A 

Formula  ( 9 ) ,  used  in  t h e  p r o o f ,  f o l l o w s  from t h e  known ( s e e ,  f o r  example ,  [6 ] )  g e n e r a l  
lemma on the factorization of elements, close to the identity, of an abstract splitting 
Banach algebra. For n = i, from the explicit formulas for the factorization factors there 
follows that d(F) = exp M(in Fe-il(F)x). Thus, in this case the mapping d is continuous 
also in the metric of AP; moreover, it can be extended by continuity to the set of all 
invertible elements of AP. This fact has been used at the investigation of scalar singu- 
lar integral equations with semi-almost-periodic discontinuities of the coefficients [13]. 
The author does not know whether the corresponding refinement of Theorem 2 for n > i is 
valid or not. Nevertheless, one can obtain definite restriction on the set of the limit 
values of d (G=) for JG~ - Gll + 0; see [3]. 

3. Together with each P-factorizable matrix-valued function G, also its adjoint ad- 
mits a P-factorization. Moreover, the P-factorization of G* is obtained from (i) by the 
operation of taking adjoints: 

~* =GIA-1G~. (10) 

Consequently, the partial P-indices of G and G* are obtained from each other by changing 
the signs. Therefore, for a Hermitian P-factorizable matrix-valued function, to each posi- 
tive partial P-index lj there corresponds the negative -lj with the same multiplicity. The 
corresponding assertiofl for factorization in C has been mentioned in [14]. It turns out 
that for P-factorizable matrix-valued functions, the analogue of the result from [15, [16] 
on a special factorization form is also valid. 

THEOREM 3. If the Hermitian matrix-valued function G with signature a is Pw-factori- 
zable, then there exists its representation in the form 

where A0 • e APw +, 

(7 = A0o Ao*, (11)  
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Ao (~)  = 

e_i).mX " " " e~ mx 1 e~L,x 
J 

[I~ 0 ], the dimensions I+(~0)of the blocks of the matrix J are determined from 
J = __ It_ 

the conditions I0 = L + l_ = n--2m, l+--l_ = ~, while 11 ..... ~m (m ~ 0) are all the positive 
partial P-indices of G. 

Proof. Without loss of generality we can assume that ~i ~ --. ~ Xm, while the expon- 
ents of the diagonal elements of the matrix A are arranged in nonincreasing order. Let 
vl < -.. < ~k be all the distinct positive partial P-indices of G, and let l~ ..... i~ be 
their multiplicity (li+ -.- + l~ = m). We denote also v_ s = -v s (s = i, ..., k), v 0 = 0. 

Comparing (i) and (I0), from the Hermitian property of G we obtain 

where @ = G_ *-I G+ e APw +. Moreover, 

(I)A---- A-I ( I  )*, (12) 

G = G ~ A G _ .  (13) 

We assume that in APw + there exists an invertible matrix-valued function ~: 

~ A  = ~ A o V * .  (14) 

Then, setting A 0 = G_*T, from (13) we obtain the representation (ii). 

It remains to prove the solvability of equation (14) with respect to ~ in the indi- 
cated class. For this we represent @, ~ in the block form @ = (@r,s)r,s=_k k, ~ = 

(~r.s)r,s=_k r (the blocks are numbered from left to right and from below upwards), where 

@r,r, Tr,r are square matrices of order Ifrl. Relation (12) is equivalent to the following 
one: 

~r,s (z) = ~ ,  -r (z) e i~vs-vr) x. (15) 

Therefore, ~r,s = 0 and s < r and 

~ (~r ,s )  C [0, vs - -  vT] f o r  s > r .  ( 1 6 )  

In particular, the blocks @r,r are constant. From the nonsingularity of G• and from the 
block-triangular structure of #, just proved, there follows the nonsingularity of these 
blocks. 

Equation (14) is equivalent to the system 

~=_~ -~* -i~_x ~ e-~sX 
V~,_~a~w_~,~e ~ = ' ,~ ' (17) 

w h e r e  J0  = J a n d  J~  = (6i, l-~+x)l,j=l, l = ll~l f o r  ~ # 0 .  T h e  r e l a t i o n  ( 1 2 ) ,  i n  c o m b i n a t i o n  w i t h  
the Hermitian property of ~A0~*, allows us to restrict ourselves to those values of the 
indices r, s (= -k .... , k) for which r + s ~ 0. 

We subject the desired matrix ~ to the additional condition 

Va,~ = 0 for ~ ~- ~> 0. 

Then for s < r both parts of (17) vanish and one has to achieve the validity of (17) for 
s ~ r. We partition the remaining equations of (17) into groups, placing in the jth group 
those for which s - r = j (j = 0 ..... 2k). 

The zeroth group consists of the equations 
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~ Y ~ , - r J ~ - r , ~  = ~ r , ,  (r = t , . . . ,  k) ,  

1g ooJ~F* = ~oo" 

All of them are solvable in the class of constant nonsingular matrices (for the first 
k equations this is obvious, while for the last one has to make use of the Hermitian prop- 
erty of ~00, resulting from (15), and of the equality of the signatures of the matrices G 
and ~A). 

Now we assume that all the equations of the jth groups have been solved for j ~ J0 
and the spectrum of the obtained ~,8 (= + ~ ~ -J0) is concentrated in [0, o_$ - v~]. Each 
equation of the (J0 + l)th group can be rewritten in the form 

V/r,-rJr ~t -~, r (X) e '%-v , )~  -q- Vfr._s (x) ] ~ * s  s = (1), ~ (x) - -  X~ s-~ .7 * �9 . . . .  ~=,+1 /Itr. -~ (x) av/_~,a (x)e  '%-v~)~ ( 1 8 )  

By v i r t u e  o f  t h e  a s s u m p t i o n  a n d  o f  ( 1 6 ) ,  t h e  r i g h t - h a n d  s i d e  o f  t h e  e q u a l i t y  ( 1 8 )  r e p r e s e n t s  
a m a t r i x - v a l u e d  f u n c t i o n  o f  c l a s s  AP W w i t h  s p e c t r u m  i n  [ 0 ,  v s - O r ] .  The  s a m e  i s  t r u e  
for the matrix ~r,-s, determined from (18), if for r ~ -s one sets ~-s,r = 0. 

If, however, r = -s (which is possible only for odd J0), then Eq. (18) can be rewrit- 
ten in the following manner: 

~u " e~','r x _ r v.* . . - ~ = x  2Re ( ~g~,r (x) J r  r,-r Ozvrx) = (I')r.-r (x) - -  ~'-~17~-1 ~ r , - a  (x) J•"Yr, a (x) e �9 

The right-hand side of this equation is Hermitian, which can be easily seen on the basis 
of (15) and by replacing the summation index = by-~. Since the spectrum of all the terms 
of the right-hand side is concentrated in [-o s, Os], it can be represented in the form 
2Re X, where X e Ap W and ~(X) c [0, ~s]" It remains to set ~r,r(X) = eiVsxX(x) ~r,_r*-IJr . 

Thus, under the made assumption, all the equations of the (J0 + l)th group are solv- 
able and the obtained solutions ~r,s(S - r = J0 + i) are matrix-valued functions of the 
class AP W with spectrum in [0, o_ s - Or]. Thus, we have proved the existence of a matrix 

e APw +, satisfying (14). This matrix is invertible in APw+ since det �9 = H det ~r,-r is 
a nonzero constant. 

COROLLARY I. Let N be a Hermitian-positive matrix-valued function of class AP W. Then, 
under the condition N -I e L~, it can be represented in the form 

N = N+N~, (19) 

where N+ • e APw +. 

Indeed, in the Hermitian-positive case, the requirement N -I e L~ guarantees the PW- 
factorizability of N by virtue of Theorem B. However, the special form (19) of the PW- 
factorization is ensured by Theorem 3 by taking into account that for s = n we necessarily 
have m = l_ = 0, l+ = n, i.e., A 0 = I. 

Thus, for each matrix-valued function G, invertible in APw, one can determine matrix- 
valued functions At, A=, invertible in APw +, such that 

A1AI = w * ,  A=AI = c * c .  . (20) 

The matrices Aj are determined by the conditions (20) to within a right constant unitary 
factor. The matrix-valued functions 

U1 = A~IG, U:  = GA~ -1 ( 2 1 )  

are unitary (see [17]), P- or Pw-factorizable only simultaneously with G, and have the 
same collection of partial P-indices. In connection with this we mention that, for unitary- 
valued matrices, Theorem 1 has a simpler form: 

COROLLARY 2. Let F be a unitary matrix-valued function of class AP W. For its P- 
(equivalently: PW-) factorizability with zero partial P-indices it is necessary and suffi- 
cient that there exist a matrix-valued function X, belonging together with its inverse to 
the class AP + or AP-, such that lIF - XII < i. 

Besides (20), (21), at the investigation of P-factorizability, there exist other meth- 
ods for passing from arbitrary invertible matrices from AP W to unitary ones. One can, for 
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example, determine the matrix-valued functions B I, B2, invertible in APw +, from the rela- 
tions BIBI* = (GG*) I/2, B2B2* = (G'G) I/2 and to set U = BI-IGB2 *-I. The matrix-valued 

function U is unitary-valued since U*U = B2-1G * (BIBI*)-IGB2 *-I = B2-1G * (GG*)-!/2GB2 *-I = 

B2-1(G*G)I/2B2*-z = I. 

If the values of G are normal, then GG* = G*G and, without loss of generality, we 
can assume that B l = B 2. In this case, the quadratic forms, determined by the matrices 
G and U, are congruent. In particular, for a Hermitian G, the matrix U will be simul- 
taneously Hermitian and unitary. We give a criterion for the Pw-factorizability of such 
matrices. 

THEOREM 4. Assume that the matrix-valued function G e Ap w is simultaneously Hermitian 
and unitary and that for all x �9 R , the eigenspace ~ (x), corresponding to the eigenvalue 
i, of the matrix G(x) forms with some fixed subspace ~ C  n a-maximal angle, not exceed- 
ing ~/4 - e. Then G is Pw-factorizable with zero partial P-indices. 

Proof. We select in C ~ an orthonormal basis so that the first k = dim ~ of its ele- 
ments should form a basis in ~. The matrix in this basis of the operator of multiplica- 
tion by G(x) will be denoted by A(x) and we partition it into blocks in accordance with 
the decomposition C n = ~• 

* (x)] JAn (x) A~I 
A (x)  = [A_.~ (~) A_._. (~)J " 

The square of the operator cosine of the angle between ~ and ~ (x) is given by the matrix 
1/2(1 + A11), and, by assumption, its spectrum is separated from 1/2. In other words, the 
matrix A11(x) is uniformly positive. By considering the angle between ~• and ~ (x)• we 

establish the uniform negativity of A22(x.). But then _;,_~ A has a uniformly positive 

real part and, by virtue of Theorem B, it is Pw-factorizable. At the same time, also the 
matrix G is Pw-factorizable, differing only by constant factors. A 

An analogue of Theorem 4 for factorizations of type (3) is formulated in [8]. 
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WEAKLY EXTREMAL PROPERTIES OF BANACH SPACES 

V. P. Fonf 

In this article we will be interested in theorems of the form: 

THEOREM A. Let X be a Banach space and let some condition P = P(f) be satisfied for 
all linear functionals f �9 X*. Then assertion Q holds. Or, briefly 

( V / ~  x * p  (0) ~ O. 

The classical Banach-Steinhaus theorem is of that form: if a sequence {Xn* } of ele- 
ments of a Banach space X satisfy the condition Vf~X* sup If(z~) l<oo, then the sequence 

{Xn} is bounded in norm. 

The principal goal of this article, arising under the influence of [I] (although Theo- 
rem i, basic for all applications, was proved earlier by the author [see 2, Theorem 2.2.3]), 
is to clear up under which restrictions on the Banach space X one can substitute for the 
condition Vf e X R, p(f) the weaker 

Vl ~ ext U (x*) p ([), 

where ext U(X ~) is the set of extreme points of the unit ball U(X ~) of the space X ~. 

It is interesting that for all types of theorems of the form A, such a sufficient 
restriction on the space X (and for separable X it is also necessary) always turns out to 
be X ~ c o , i.e., the space X does not contain subspaces isomorphic to c o (it is understood, 
except for cases when no restrictions are required, Choquet's theorem "works"). 

Before passing to a presentation of the results, we recall that a subset B of the 
unit ball U(X*) of the dual Banach space X* is said to be total if Vx �9 X\0, sup{{f(x) l: 
f �9 B} > 0; a subset B c U(X *) is said to be normalizing if 
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