
THEOREMS ON ESTIMATES IN THE NEIGHBORHOOD OF A SINGULAR 

POINT OF A MAPPING 

E. R. Avakov 

i. Two Statements. i. Let X and Y be Banach spaces, F: X ~ Y be a mapping of X into 
Y, x, be a fixed point of X, and U be a neighborhood of this point. We set M(x,) = {x e 
UIF(x) = F(x,)}. It is required to find an upper estimate for the distance p(x, M(x,)) in 
terms of the quantity IIF(x) - F(x,)ll, where x is a point in U. The following linear esti- 
mate is well known in the case where the mapping F is regular at the point x, (if F is 
Frechet-differentiable at x,, then this means that ImF'(x,) = Y): 

O(x,M(x,) )<gl lF(x)--F(x , ) l[  V x ~ U .  ( 1 . t )  

Estimate (1.1) follows at once from the Lyusternik theorem [i, p. 41; 2]. The most complete 
investigation of this type of linear estimates in the regular case is offered in [2]. At 
the same time, in the nonregular, singular, case (ImF'(x,) ~ Y) estimate (i.i) is not valid 
in general. This is seen readily by the example of the function f(x) = xl 2 + x22 - x32 for 
x, = 0. 

2. Let X be a topological space, Y and Z be Banach spaces, W and U respectively be 
neighborhoods of the point (x,, z,) in X • Z and of the point (x,, y,) in X x y, and F be a 
mapping of U into Z such that F(x,, y,) = z,. It is required to prove the existence of a 
mapping ~: U + Y such that 

f ( x , ~ ( z , z ) ) = z  V ( x , z ) ~ W ,  

and to obtain an upper estimate for [I~ (x, z) - y, ll in terms of the quantity i{F(x, y,) - zL 
In the regular case [if the mapping y + F(x,, y) is Frechet-differentiable, then this means 
that ImF (x.~, y.) = Z] the implicit function theorem of [3, p. 161] gives complete solution 
of the above-posed problem. In the same manner as in the first case, we are interested in 
the nonregular case, to which the theorem of [3] is not applicable. 

To investigate both the problems under consideration we prove at first a general esti- 
mation theorem that is meaningful in the nonregular case. 

2. Estimation Theorem. Let V and W be Banach spaces, ~ (V, W) be the space of continu- 
ous linear mappings of V into W, and ~ ((V, V), W) be the space of continuous bilinear map- 
pings. Both these spaces are Banach spaces with respect to the following norms: 

II A I t =  sup {ll Aull Ill vii < t}, A ~ ~ (V, W); 
v ~ V  

II B II = sup { II B (~ ,  u=)II III ~1 [[ ~ t ,  I] ~ 11 ~ l } ,  
B ~ Z ((V, V), W). 

We f i x  mappings  A e Z (V, W) and B e ~ ( (V,  V),  W). L e t  us suppose  t h a t  t h e  s u b s p a c e  
L = ImA is closed and complemented. Then there exist a closed subspace N and continuous 
projections P! and P2 such that W = L + N, N N L = {0}, ImP1 = L, ImP2 = N, KerP1 = N, and 
Ker P2 = L. For an arbitrary fixed h e V we introduce the linear mapping 

G(h): V - ~ L  • N = Z ,  ( 2 . 1 )  
G (h) x = (Ax, P2B (h, x)). ( 2 . 2 )  

Let us suppose that ImG(h) = Z. Then, by the lenmaa on the right inverse operator [2], we 
conclude that there exist a mapping A: Z ~ V and a constant C = C(h) > 0 such that 

G (h).A = Iz, ( 2 . 3 )  
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il A (z)II < { c  II z I I ,  

where I Z is the identity operator from Z into Z, z = (v~, v2), 
max{ilv~II, llv211}. Let us set 

K = max {32C ~[ ]P~I I j IB[ I ,  2C, t}. 

( 2 . a )  

v z ~ L, v 2 e N, and Ilzll = 

( 2 . 5 )  

THEOREM i. Let U be a topological space, V and W be Banach spaces, T be a neighbor- 
hood of a point (u,, v,) in U • V, and ~ be a mapping of T into W. Suppose that the follow- 
ing conditions are fulfilled: 

I) The mapping u + ~ (u, v) is continuous at the point u, for all v from a neighbor- 
hood of v,. 

2) (The quadratic approximation condition.) There exist mappings A ~ ~ (V, W) and B 
((V, W), a number 6 > 0, and a neighborhood S of the point u, such that the conditions 

u e S and ilVll ~ 6 imply that 

(u, v.  -5 ~) = ~ (u, v.)  + AY -5[B (G~) /2  -5 ~ (u, ~), 

where ~(u, V) satisfies the estimate 

II ~ (u, y')  - -  ~ (u, ~") II < ~ (l[ Y' II + II ~" I1 ) (11 ~' - -  ~" 1[ ), 
= const ~<~ 1/{32 (I1 P~ tI + tl P~ tl ) C}; 

3) The mappings h and B from condition 2) and a point h e V, ilhll = i, are such that 
ImA is a closed complemented subspace of W and 

Im G (h) = Z, 

where G(h) and Z are from (2.1) and (2.2). 

Then there exist neighborhoods U 0 and V 0 of the points u, and v, respectively and a 
number e > 0 such that for arbitrary u e U0 and v ~ V0\{v,}, satisfying the conditions 

a) II(v - v,)IIv - v, II -! - hll ~ e, 

b) if ImA ~ W, then 

Ilv --  v,  l i~>K [ [ I P x ( ~ ( u , v ) - - ~ ( u . , . v . ) ) [ I  + llP~(~(u,~)--~(u..,.))lt] 
il ~ :  r.ir 

there exists a point r(u, v) ~ V, for which 

~" (u, v + r (u, v)) = ~" (u. ,  v.); 
II r (u, v)II ~< 

< K [111'1 (5" (u, v) - -  ~ (u.v .))  II + II P~ (~ ("I~7-----~.ll ~) - -  ~- ('*' ~*)) Ir ] . 

Proof. 
v" e V such that Ifv' - 
tion: 

( 2 . 6 )  

( 2 . 7 )  

We easily obtain the following inequality, valid for all p ~ V, u e S, and v', 
v, ll ~ 6 and lJv" - v, ll ~ 6, from condition 3) by identity transforma- 

II ~ (u, v') - -  ~ (u, v") - -  A Iv' - -  v"] - -  B (p, v' - -  v") - -  
- -  U2B (v' + v" - -  2 (p -5 v , ) ,  v" - -  v") II < 

< ~ [11 v ' - - v ,  ll - s l l  v " - - v ,  ll ]ll v ' - -  v"ll 

We i n t r o d u c e  t h e  f o l l o w i n g  c o n s t a n t s ,  m a p p i n g s ,  and n e i g h b o r h o o d s :  

e = i / ( t6C (l[ P2 [I II B II + t)), 
R = min { i / ( t6C (1[ P1 [I [[ B [[ -5 1)), 6/2}, 

(u, v) = ~ (u, v) - -  ~ (u , ,  v , ) ,  
-5 P2~ (u, u) A ( u , v ) = l l P l ~ ( u , v ) l l  IJ~-~ , l l  ' 

Uo = {u ~ S Ill ~" (u, v . )  - -  ~" (u . ,  v.)II < R/4C},  
Vo = {v ~ V I lt v - -  v .  II < R,  II ~ (u, v) - -  ~" (u, v.)II < R/4C V u  ~ S) .  

( 2 . 8 )  

(2.9) 
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Without loss of generality we will assume that the conditions u e S and Itv - v ,  II 
that (u, v) e T. 

By virtue of conditions i) and 3), the neighborhoods U 0 and V 0 are nonempty. 
an arbitrary point (u, v) e U 0 x V 0 that satisfies conditions a) and b). 

Let us set p = IIv - v, Uh, v 0 = v, and 

( P~(~(u,%_~)) ) 
v .  = v,,-1 - -  M P i  ( ~  (u, v~_0), tl ~ - ~.  ii 
(1~ = t .  2 . . . .  ), 

where M is the right inverse operator from (2.3), (2.4). 
sides of Eq. (2.10). By virtue of (2.3), we get 

2R imply 

We fix 

( 2 . 1 o )  

We apply the mapping G(h) to both 

A (u n - -  u/ l_l)  ----- - -  P l  ( ~  (/2, u n - 1 ) ) ,  
P~.B (p ,  v,, - -  v , _ l )  = - -  P~. ( ~  (u,  v , ,_l)  ). 

By induction we prove the relation 

A (u, v,,) < h (u, v)12 n. 

( 2 . 1 1 )  

( 2 . 1 2 )  

(2.13) 

Relation (2.13) is obvious for n = 0. 
first m elements v 0, v I ..... v m. Then, by virtue of (2.4) and (2.10), we have 

It vi+~ - -  vi II < CA (u, vi) < Ca (u, v)12 ~, 
i 

II vi+l - -  v II < Y'~=0 II v~+l - v~ 11 < 2CA (u, v), 

I I v * + x - - v ,  I I - . < 2 C A ( u , v ) + I I v - - v ~ I I  ( i = 0 ,  t . . . . .  m) .  

We show that 

Let us suppose that relation (2.13) is valid for the 

(2.14) 

( 2 . 1 5 )  

(2.16) 

II vi+~ - - v ,  II < 2R (i = 0, t . . . . .  m).  ( 2 . 1 7 )  

At f i r s t ,  l e t  ImA = W. Then P1 = IW, P2 = 0 ,  and A(u,  v )  = I I ~ ( u ,  v )  - ~ ( u , ,  v , ) l l .  H e n c e ,  
by  v i r t u e  o f  t h e  d e f i n i t i o n s  o f  t h e  s e t s  U0 and V0, ( 2 . 1 7 )  f o l l o w s  a t  o n c e  f r o m  ( 2 . 1 6 ) .  L e t  
us  s u p p o s e  t h a t  ImA ~ W. From c o n d i t i o n  b ) ,  r e l a t i o n  ( 2 . 1 6 ) ,  and t h e  d e f i n i t i o n  o f  t h e  c o n -  
s t a n t  K we conclude that 

II Vi+I 

Since l J v -  v ,  II ~ R, relation (2.17) is fulfilled in this case. 
(2.13) for n = m + 1 it is sufficient to prove the relations 

tl P l  (@ (u, um+l))N-.< A (u, v)!2m+L 

II P= ( ~  (u, v.,+~))II < A (u, u)II v - -  v.  II 12 ','+~'- 

By virtue of (2.17) and the choice of R, inequality (2.8) is valid for v' = Vm+ l and v" = 
v m. Using this inequality, relations (2.11) and (2.14) for n = i + 1 = m + i, and the def- 
initions of the constants ~ and R, we conclude that 

il P ,  ( ~  (u, vm+~) - y (u , ,  v . ) )II  < 

< II sq II II Y (u, v,,,+~) - -  ~" (u, v.,) - -  A ( v , . + l  - -  z.,~+) II < 
< II P~ II II B 11 II v,,,+l + v., - -  2v.  II II v ,~§  - -  v ,~  11!2 + 

+ II P~ II 13 (11 v,,,+~ - -  v .  II + II v,,, - -  v .  II)II v.,+~ - -  v,,, II < A (u, v)12'~+t 

If ImA = W, then (2.13) follows from the above inequality. Now let ImA ~ W. Then, by vir- 
tue of estimate (2.8) for v' = Vm+l, v" = Vm, and p = fly - v, llh, relations (2.12), (2.14), 
(2.15), and (2.17) for n = i + 1 = m + i, definitions of the constants $, K, and e, and con- 
ditions 3a) and 3b) of Theorem i, we get 

II P2 (:7 (u, v,.,~) - :7 (u . ,  v . ) ) I I  = II P~ (:7 (u, v,,,+~) - :7 (u, v.,) 
- -  A (v>,,+~ - -  v,,,)) + P.2 (.~ (u, v. ,)  - -  y (u . ,  ~,,))II < 

< I1P~ II 11-7" (u, v,,,+,) - .7 (u, v,,,) - A  (v,,§ - v,,,)-- B (p, v,,~+~ - v,,,)I1 < 
< (Vo I1P~. II II B II (11 v.,+~ -- v II + II v,,, - -  v II + 

- -  v ,  II < (2C/K + 1)tl v - -  u ,  It < 211 v - -  v ,  N. ( 2 . 1 8 )  

Further, to prove inequality 
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+ 2 II v - -  v,  - -  p ll) CA (u, v,,) -{- 4 IIP.+ II ~ II v - v,  I[ CA (u, v,,+) < A (u, v)II v - -  v,  1['2"'+t 

Thus, (2.13) is proved for all n ~ 0. Hence we conclude that 

lira I1:7 (u, v,J - -  :7 (u ,u , )[ l  = U. ( 2 . 1 9 )  

On the other hand, by virtue of (2.4), (2.10), and (2.13), we have 

II u.+x - -  u,, II < C~ (u, v) 2 -~ (n = 0 ,  I . . . .  ), ( 2 . 2 0 )  

T h e r e f o r e ,  s i n c e  t h e  s p a c e  V i s  B a n a c h ,  t h e  l i m i t  g ( u , v )  = lim v + , ~ V  e x i s t s .  We s e t  r ( u ,  

v )  = g ( u ,  v )  - v .  By v i r t u e  o f  c o n d i t i o n  3)  and t h e  d e f i n i t i o n s  o f  t h e  s e t s  U0 and V0, t h e  
mapp ing  v + ~ ( u ,  v )  i s  c o n t i n u o u s  a t  e a c h  p o i n t  v �9 V0 f o r  a l l  u �9 U0. H e n c e ,  by  v i r t u e  
o f  ( 2 . 1 9 )  and ( 2 . 2 0 ) ,  we g e t  a s s e r t i o n s  ( 2 . 5 )  and  ( 2 . 7 ) .  The t h e o r e m  i s  p r o v e d .  

3. Estimation of the Distance from a Level Surface of a Mapping. 

THEOREM 2. Let X and Y be Banach spaces, V' be a neighborhod of a point x, �9 X, and F 
be a mapping of V' into Y. Suppose that the following conditions are fulfilled: 

I) (The quadratic approximation conditions.) There exist mappings A �9 ~ (X, Y) and 
B �9 ~ ((X, X), Y) and a number 6 > 0 such that the condition ii~II ~ ~ implies that 

F ( x ,  §  ~ ~(:r) ,  

where ~(~') satisfies the estimate 

II ~ ( z ' )  - -  ~ (~")I! < ~ (11 ~' II + II :~" II )11 :z' - -  ~" I1, 
= const < t/(32 (]1 Pa {I + [I P2 II ) C), 

PI: Y ~ L, P2: Y + N being continuous projections and C being the constant from (2.4). 

2) The mappings A and B from condition i) and a point h �9 V, lihl[ = i, are such that L = 
ImA is a closed complemented subspace of Y and 

Im G (h) = L • N d-~--Z. 

H e r e  G ( h ) ,  L,  and  N a r e  d e f i n e d  i n  t h e  same manne r  a s  i n  ( 2 . 1 ) - ( 2 . 2 ) .  

Then t h e r e  e x i s t  num be r s  E = E(h )  > 0 and  K = K(h)  > 0 and  a n e i g h b o r h o o d  V 0 ~ V' o f  
t h e  p o i n t  x ,  s u c h  t h a t  f o r  e a c h  p o i n t  x �9 V0, s a t i s f y i n g  t h e  c o n d i t i o n  il(x - x , ) / l l x  - xell - 
hll g E, t h e r e  e x i s t s  a p o i n t  r ( x )  = r ( x ,  h ) ,  f o r  w h i c h  

F (x + r (x)) = F (x,), ( 3 . 1 )  

II r (x)II -.< K [11 P1 (F (x) - -  F (x,))II + II P2 (F (x) - -  F (z.))  111/21. ( 3 . 2 )  

Proof. Let us set V = X, W = Y, v = x, and ~ (u, v) = F(x). We observe that, in the 
case under consideration, the mapping does not depend on the first variable. Hence condi- 
tions i) and 2) imply that conditions 1)-3) of Theorem 1 are fulfilled. For the introduced 
mappings and sets we defin~ the constants C, K, E, and R and the neighborhood V0 by the for- 
mulas of Sec. I. We fix an arbitrary point x �9 V 0 such that li(x - x,)/llx - x,l[ - hll ~ e. 
We set R(x) = IIPI(F(x) - F(x,))II + IIP2(F(x) - F(x,))ll I/2. If Ux - x, ll ~ KR(x), then asser- 
tions (3.1)-(3.2) are obviously fulfilled with r(x) = x, - x. Now let llx - x, tl 
Then 

II x - -  x .  II ~> U [[I Pl  ( f  (x) - -  F (x.)) [I ~ [I P, (F (x) --  F (z.)) If l 

Relation (3.3) means that condition b) of Theorem 
all conditions of Theorem 1 are fulfilled for the 
Consequently, there exists a point r(x) = r(x, h) 

KR(x). 

( 3 . 3 )  

I is fulfilled for the point v = x. Thus, 
mappings and spaces under consideration. 
e X such that 

F (z + r (x)) = F (x.) ,  (3.4) 

II r (x) I[ • K [[I P~ (F (x) - -  F (x , ) ) I I / -  [I P2 (F]l~._ z - ~ ( x )  - -  F (x.)) [l ] . (3.5) 
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Estimate (3.3) follows from the last relation and inequality (3.2). The theorem is proved. 

Remark I. Let a mapping F: X ~ Y be twice Frechet-differentiable at a point x,. Sup- 
pose that L = ImF'(x,) is a closed complemented subspace of Y, N is its complement, and Pi: 
Y + L and P2: Y ~ N are continuous projections. We introduce a linear mapping (h e X) 

G (x.,h): X - + L  • N = Z ,  
G (z , ,  h) x = (F" (z ,)  x, F" (z ,)  [h, x]). 

Then we can set h = F'(x,), B = F"(x,), and G(h) = G(x,, h) in conditions l) and 2) of Theo- 
rem 2. Indeed, to prove the inequality in condition 2) of Theorem 2, it is sufficient to 
apply the mean-value theorem to the mapping F0(x) = F(x) - A(x - x,) - B(x - x,, x - x,)/2. 

Remark 2. If the mapping F is regular at the point x,, then ImF'(x,) = Y and, conse- 
quently, P= = 0. Then the mapping G(x,, h) is an epimorphism for each h �9 X, since it can 
be identified with the mapping F'(x,). In this case, relations (3.1)-(3.2) give the asser- 
tions of the Lyusternik theorem [i, p. 41]. 

We introduce the sets 

H @.) = {h ~ X,  F' (x.) h = 0, F (x.)  [h, h] E Im F (x.)}, 
Ho ~ . )  = {h ~ H (x.), I m  G (x, ,  h) = L • N}, 

and let TM(x,) denote the cone of tangental directions to the set M(x,) at the point x,. 

COROLLARY i. Let X and Y be Banach spaces, U 0 be a neighborhood of a point x0 e X, and 
F be a twice Frechet-differentiable (at the point x,) mapping of U 0 into Y such that ImF'(x,) 
is a closed complemented subspace of Y. Then 

H o (x.) ~ TM (x.) _~ H ~ . ) .  ( 3 . 5 )  

Proof. Let h �9 TM(x,). Then, by the definition of a tangential direction, there exist 
a 8 > 0 and a mapping r: [-8, 8] + X, such that x, + th + r(t) �9 M(x,), r(t) = o(t). There- 
fore, 0 = F(x, + th + r(t)) - F(x,) = tF'(x,)[h] + F'(x,)[r(t)] + t2F"(x,)[h, h] + o(t 2) 
Vt �9 [-6, 6]. Hence 

F' (x,) [h] = 0, 
- -F '  (x,) [r (t)/t 2] ---- F" (x.) [h, h] + o (t2)/t 2. 

P a s s i n g  t o  t h e  l i m i t  a t  t + 0 i n  t h e  l a s t  e q u a t i o n ,  we c o n c l u d e  t h a t  lira ( - - F '  (x.) [r (t) t-~]) 
t ~0  

e x i s t s  and  b e l o n g s  t o  I m F ' ( x , ) ,  s i n c e  lira [F" (x,)  [h, h|  + o (t ~) t -el = F"  (x,) [h, h], e x i s t s ,  a n d ,  by 
t-*O 

t h e  c o n d i t i o n ,  t h e  s u b s p a c e  I m F ' ( x , )  i s  c l o s e d .  T h u s ,  t h e  r i g h t - h a n d  p a r t  o f  i n c l u s i o n  
( 3 . 5 )  i s  p r o v e d .  

Now l e t  h ~ H 0 ( x , ) .  W i t h o u t  l o s s  o f  g e n e r a l i t y  we c a n  a s s u m e  t h a t  Ilhll = 1. L e t  u s  
c o n s i d e r  t h e  p o i n t  x ( t )  = x ,  + t h .  Then t h e r e  o b v f o u s l y  e x i s t s  a number  8 > 0 s u c h  t h a t  
x ( t )  �9 V 0 f o r  t �9 [ - 6 ,  6 ] ,  w h e r e  V 0 i s  t h e  n e i g h b o r h o o d  f r o m  t h e  c o n d i t i o n s  o f  T h e o r e m  2,  
a n d ,  m o r e o v e r ,  ( x ( t )  - x , ) l l x ( t )  - x ,  t1-1 = h t t t t  -1 H e n c e  i t  f o l l o w s  f r o m  t h e  d e f i n i t i o n  o f  
t h e  s e t  H 0 ( x , )  t h a t  a l l  c o n d i t i o n s  o f  T h e o r e m  2 a r e  f u l f i l l e d .  Bu t  t h e n ,  by  v i r t u e : ' o f  t h e  
d e f i n i t i o n s  o f  t h e  s e t s  H ( x , )  and  H 0 ( x , ) ,  we c o n c l u d e  f r o m  r e l a t i o n s  ( 3 . i ) - ( 3 . 2 ) t h a t  ~ ihere  
e x i s t s  a m a p p i n g  r ( t ) :  [ - 8 ,  8] ~ X s u c h  t h a t  

F (x ,  ~'  th + ~ (t)) = F (x . ) ,  
II r (t)][ 

< K [11 P~ (F (x (t)) - -  F (x,))II § II P~ (F (x (t)) - -  f (x,))II xn < 
~.< { II P~ II II rE' (x,) [h] + t2F"i (x,) [h, h] + o (t 2) ll} + 

+ II Pe (F' (x,)  [thl) + t2P~ (F" (x.)  [h, hi) § o (t 2) lI ~n = o (t). 

The corollary is proved. 

Definition I. The mapping F is said to be 2-regular at the point x, if it is twice 
Frechet-differentiable at this point, the subspace ImF'(x,) is closed and complemented, 
and 

/ t  (~,) \ {o} = Ho (x.) \ {o}. ( 3 . 7 )  
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If the mapping F is 2-regular at the point x,, then Corollary i gives complete descrip- 

tion of the cone of tangential directions TM(x,) = H(x,). 

Condition (3.7) is weaker than the condition of regularity of the mapping F at the 
point x,. Indeed, if ImF'(x,) = Y, then, as remarked above, the mapping G(x,, h) is an 
epimorphism V h ~ X and, consequently, (3.7) is fulfilled. On the other hand, the regular- 
ity of the mapping F at the point x, does not follow from (3.7). In order to show this, it 
it sufficient to consider the function F(x) = xl = + x2 = - x3 2 at the point x, = 0. 

We return to the investigation of the estimate of distance, in which we are interested. 
It follows obviously from Theorem 2 that 

p (x, M (x,)) .~< K [11 Pl (F (x) - -  F ( x , ) ) I t  + II P~ (F (x) - -  F (x.))II ~/~ 1 ( 3 . 8 )  

However, it is asserted in Tneorem 2 that estimate (3.8) is valid not for each point x in a 
certain neighborhood V 0 of the point x0, but only for those points x, for which II(x - x,)/ 
lJx - x, li - hll ~ e, where h is a fixed point of X such that ImG(x,, h) = Z. It may turn out 
that if there are enough such regular points h ~ X, then estimate (3.8) is valid for each 
point x in U 0. In the finite-dimensional case, as will be shown below, for this the 2- 
regularity of the mapping F at the point x, is sufficient. 

Let us suppose that the mapping F is twice Frechet-differentiable at the point x, ~ X 
and ImF'(x,) is a closed complemented subspace of Y. We introduce the sets 

H ~ (x.) = {h ~ X III F (x.) h II < ~, 

H~(x,) = { h ~ H  ~(x , )  I G ( x , , h )  = L • N}. 

Let h ~ H0a(x,). Then there exist a right inverse operator Ah: L x N ~ X and a constant 
C(h) > 0 such that 

G ( x , , h )  o Ah = Iz,  IlA,~(z) ll ~<C(h)  llz[I. 

Definition 2. The mapping F is said to be strongly 2-regular at the point x, if it is 
twice Frechet-differentiable at this point, the subspace Im F'(x,) is closed and complement- 
ed, and there exist constantsC > 0 and a > 0 and a family of right inverse operators {Ah}, 
h ~ H0~(x,), llh~l = i, such that 

H~ (x,) \ {0} = H~ (x,) \ {0}, 

t lA, ,(z)  l l < O l l z l l  V h ~ H ~ ( x . ) ,  I l h l t = l .  

THEOREM 3. L e t  X and Y be Banach s p a c e s ,  V f be a n e i g h b o r h o o d  o f  a p o i n t  x ,  e X, and 
F be a mapping of the neighborhood V' and Y that is twice Frechet-differentiable at the 
point x,. Suppose that F is strongly 2-regular at x,. 

Then there exist a number K > 0, a neighborhood V 0 of the point x,, and a mapping x 
r(x) of the set V 0 into X such that 

F (x + r(x)) = F (x.), ( 3 . 9 )  

II r (x)ll < K1 [11Pl (F (x ) - -F  (x.)) II + 11 P2 (F (z) - - F  (z.)) I11/2] ( 3 .10  ) 

for all x ~ V 0. 

Proof. Since F is strongly 2-regular at x,, there exist constants c > 0, and ~ > 0 
such that for each element h ~ Ha(x,), flhli = i, there exists a right inverse operator A h, 
for which the estimate llAh(z)fl ~ CllzH is valid. Therefore, by virtue of Remark i, we con- 
clude that for each point h ~ H~(x,), fJhll = i, the conditions of Theorem 2 are fulfilled, 
and the constant K > 0 and the neighborhood V 0 of x, in the assertion of Theorem 2 do not 
depend on h. Since F is twice Frechet-differentiable at x,, there exists a neighborhood 
V I ~ V 2 of this point such that for each x E V I 

fl F (x) - -  F (x , )  - -  F' (x , )  (x - -  x , ) t l  < (a/2)f l  x - -  x ,  ]1, 

II F (x) - -  F ( x , )  - -  F '  ( x , )  ( x - -  x , )  - ( t / 2 ) F "  ( x , )  ( x - -  x , ,  x - -  x , ) l l  ~< ( ~ / 2 ) [ I  x - -  x ,  II ~ 

(3.11) 

(3.12) 
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Let us set h = (x - x,)/llx - x, ll and ~ (x) = F(x) - F(x,). We fix an arbitrary point x 
U l, llx - x,l[ ~ I. If fix - x, ll ~ (2/~)(llP1(~(x))ll + llP2(~ (x))I11/2), then, taking r(x) = 
x, - x, we get assertions (3.9) and (3.10) with the constant K I = max {K, 2/a} 

Let 

II x - -  x ,  II ~> (2/a) [11P~ (~  (x))II + II P2 (~  (x))II 'q .  ( 3 . 1 3 )  

Without loss of generality we can assume that a ~ 2. Then it follows from (3.13) that llx - 
x, ll ~ (2/a) ll~(x)ll. Therefore, by virtue of (3.11), 

II F '  (x,) h II < I1 ~ (x)II II x - -  x ,  II -~ § a/2 < a.  

Let us set y = P1~(x)/llx - x, ll 2 - F'(x,)h/lix - x, il ~ Im F'(x,). 
and (3.13) we conclude that 

Since ~ ~ 2, from (3.12) 

II F "  ( x , )  [h, k] - -  y II < II P2 ~ (x)Illll x - -  x ,  II 2 + ~!2 < a.  

T h u s ,  ( x  - x , ) / / I x  - x, /I  = h ~ H ~ ( x , ) ,  a n d  we c a n  u s e  T h e o r e m  2 ,  f r o m  w h i c h  r e l a t i o n s  ( 3 . 9 ) -  
(3.10) follow. The theorem is proved. 

Remark 3. Let X = R n, Y = R m, F: R n + R m, and F = (f, f2 ..... fm)" Then we can show 
that the condition of strong 2-regularity is equivalent to the condition of 2-regularity. 
Thus, in the finite-dimensional case, for the validity of (3.9)-(3.10) it is sufficient 
that the mapping F is 2-regular at x,. 

4. Implicit Function Theorem. 

THEOREM 4. Let X be a topological space, Y and Z be Banach spaces, T be a neighborhood 
of a point (x,, y,) in X x y, F be a mapping of T into Z, and F(x,, y,) = z,. Suppose that 
the following conditions are fulfilled: 

i) The mapping x + F(x, y,) is continuous at x,. 

2) (The quadratic approximation condition.) There exist mappings A e s (Y, Z) and B e 
((Y, Y), Z), a number 6 > 0, and a neighborhood S of the point x, such that if u e S and 

I1~11 ~ ~, then - -  

Y ( x , y .  q - g )  = F ( z , y . )  + A ~  + B ( ~ , g ) / 2  q - o ( x , y ) ,  

where ~(x, y) satisfies the estimate 

I1 ~ (x, y ' )  - -  ~ (x,  y" ) I I  < ~ (11 Y' II + I1 g" II )11 ~' - -  g" II, 
? = cons t  ~< I / ( t 6  (11 Px II + 11 P ,  II) K), 

PI: Z ~ L and P2: Z ~ N being continuous projections and K being the constant from (2.5). 

3) The mappings A and B from condition 2) are such that L = ImA is a closed complement- 
ed subspace of z and there exists an element h e y, llhll = I, for which 

G(h) h = O ,  I m G ( h ) = L  X Nd-LZ. 

Here G(h), L, and N are defined in the same manner as in (2.1)-(2.2). 

Then there exist a number K I > 0, a neighborhood U' of the point (x,, z,) in X • Z, and 
a mapping 9: U' ~ Y such that 

F (x, r (=, z)) = z, ( 4 . 1 )  

II ~ (x, z) - - y .  II-.< K1 [11Pl (F (x, y . )  - -  z)ll +11 P2 (F (x, y . )  - -  z) IIlI~1. ( 4 . 2 )  

P r o o f .  L e t  u s  s e t  U = X x Z ,  V = Y, W = Z ,  v = y ,  u = ( x ,  y ) ,  a n d ~  ( u ,  v )  = F ( x ,  y )  - 
z. Then conditions 1)-3) of Theorem 1 are fulfilled for the so-defined spaces U, V, and W 
and the mapping ~. We fix h from condition 2) of Theorem 4 and set ~ (x, t) = F(x, y, + 
th) - F(x, y,). It follows from condition 3) that there exists a number to > 0 such that 

!', F (x, y, + t h ) -  F (x, g,) - -  tAh - -  (1/2) t2B (h, h)II < ~,t ~ 

for all t e (0, t o ) and x e S. We choose a number t z ~ (0, to) such that 

(4.3) 
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t l < 2 / K ( I I B I t §  y,  §  V t ~ ( 0 ,  tl), ( 4 . 4 )  

where V 0 is the neighborhood from the assertion of Theorem i. It follows from the equation 
G(h)h = 0 that Ah = 0 and P2B(h, h) = 0. Hence, by virtue of (4.3), (4.4), and the defini- 
tion of the constant y > 0, it is easy to show that 

II Px (~ (x, 0)II -.< t /K,  
II P2 (~ (x, t))ll < t~/K Vt  ~ (0, h). (4 .5 )  

Let us set 

R (x, z) = F @, y , )  - -  z, 
t (x, z) = K max {11Pl (R @, z))H, II P2 (R (x, z))lll/=}, ( 4 . 6 )  
U' = {(z, z) ~ U0 It  (z, z) < tl},i 
y(z,  z) = y ,  + t (z, z) h. 

S i n c e  t ( x ,  z)  ~ (0 ,  t l )  f o r  (x ,  z)  e U ' ,  we can show by v i r t u e  o f  r e l a t i o n s  ( 4 . 6 )  and t h e  
definition of the point h that for the points u = (x, z) ~ U' and v = y(x, z) conditions a) 
and b) of Theorem 1 are valid for ~ (u, v) = F(x, y) - z. Thus, in the case under consider- 
ation, all conditions of Theorem 1 are fulfilled. Therefore, there exists a mapping r: U' 
Y such that 

F (x, y (x, z) + r (z, z)) = z, 
II r (x, z)II < K Ill Pl  (F (x, y (x, z)) - -  z)11 + (4.7) + II P~ (F (x, y (x, z)) - -  z)II/t (z, z)l. 

Let us set @ (x, z) = y(x, z) + r(x, z). Then the assertions of the theorem follow from 
(4.6), (4.7), and condition b) of Theorem 1 for v = y(x, z). 
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