THEOREMS ON ESTIMATES IN THE NEIGHBORHOOD OF A SINGULAR POINT OF A MAPPING

 \mathbf{a} and \mathbf{a}

E. R. Avakov

1. Two Statements. 1. Let X and Y be Banach spaces, $F: X \rightarrow Y$ be a mapping of X into Y, x_{x} be a fixed point of X, and U be a neighborhood of this point. We set $M(x_{x}) = \{x \in$ $U[F(x) = F(x_x)].$ It is required to find an upper estimate for the distance $\rho(x, M(x_x))$ in terms of the quantity $\|F(x) - F(x_x)\|$, where x is a point in U. The following linear estimate is well known in the case where the mapping F is regular at the point x_{x} (if F is Frechet-differentiable at x_{x} , then this means that $Im F'(x_{x}) = Y$:

$$
\rho(x, M(x_*)) \leqslant K \| F(x) - F(x_*) \| \quad \forall x \in U. \tag{1.1}
$$

Estimate (1.1) follows at once from the Lyusternik theorem [1, p. 41; 2]. The most complete investigation of this type of linear estimates in the regular case is offered in [2]. At the same time, in the nonregular, singular, case $(\text{Im} F'(x)) \neq Y$ estimate (1.1) is not valid in general. This is seen readily by the example of the function $f(x) = x_1^2 + x_2^2 - x_3^2$ for $x_{2} = 0$.

2. Let X be a topological space, Y and Z be Banach spaces, W and U respectively be neighborhoods of the point (x_x, z_x) in X \times Z and of the point (x_x, y_x) in X \times Y, and F be a mapping of U into Z such that $F(x_k, y_k) = z_k$. It is required to prove the existence of a mapping $\varphi: U \rightarrow Y$ such that

$$
F(x, \varphi(x, z)) = z \quad \forall (x, z) \in W,
$$

and to obtain an upper estimate for $\|\varphi(x, z) - y_x\|$ in terms of the quantity $\|F(x, y_x) - z\|$. In the regular case [if the mapping $y \rightarrow F(x_x, y)$ is Frechet-differentiable, then this means that Im $F_v(x_x, y_x) = Z$] the implicit function theorem of [3, p. 161] gives complete solution of the above-posed problem. In the same manner as in the first case, we are interested in the nonregular case, to which the theorem of [3] is not applicable.

To investigate both the problems under consideration we prove at first a general estimation theorem that is meaningful in the nonregular case.

2. Estimation Theorem. Let V and W be Banach spaces, $\mathscr{L}(V, W)$ be the space of continuous linear mappings of V into W, and $\mathcal{L}((V, V), W)$ be the space of continuous bilinear mappings. Both these spaces are Banach spaces with respect to the following norms:

$$
\| \Lambda \| = \sup_{v \in V} \{ \| \Lambda v \| \| v \| \leq 1 \}, \quad \Lambda \subseteq \mathcal{L} (V, W);
$$

\n
$$
\| B \| = \sup \{ \| B (v_1, v_2) \| \| v_1 \| \leq 1, \| v_2 \| \leq 1 \},
$$

\n
$$
B \in \mathcal{L} ((V, V), W).
$$

We fix mappings $\Lambda \in \mathcal{L}$ (V, W) and $B \in \mathcal{L}$ (V, V), W). Let us suppose that the subspace $L = Im \Lambda$ is closed and complemented. Then there exist a closed subspace N and continuous projections P₁ and P₂ such that W = L + N, N \cap L = {0}, Im P₁ = L, Im P₂ = N, Ker P₁ = N, and Ker $P_2 = L$. For an arbitrary fixed $h \in V$ we introduce the linear mapping

$$
G(h): V \to L \times N = Z,
$$
\n^(2.1)

$$
G(h) x = (\Lambda x, P_2 B(h, x)).
$$
 (2.2)

Let us suppose that $Im G(h) = Z$. Then, by the lemma on the right inverse operator [2], we conclude that there exist a mapping A: $Z \rightarrow V$ and a constant $C = C(h) > 0$ such that

$$
G(h) \cdot A = I_Z,\tag{2.3}
$$

V. I. Lenin Moscow State Pedagogical Institute. Translated from Matematicheskie Zametki, Vol. 47, No. 5, pp. 3-13, May, 1990. Original article submitted June 12, 1987; revision submitted June 12, 1989.

$$
\|A(z)\| \leqslant C \|z\|,
$$
\n^(2.4)

where I_Z is the identity operator from Z into Z, $z = (v_1, v_2)$, $v_1 \in L$, $v_2 \in N$, and $\|z\| = 1$ $max{||v_1||, ||v_2||}.$ Let us set

$$
K = \max \{ 32C^2 || P_2 || || B || , 2C, 1 \}. \tag{2.5}
$$

THEOREM i. Let U be a topological space, V and W be Banach spaces, T be a neighborhood of a point (u_x, v_x) in U \times V, and F be a mapping of T into W. Suppose that the following conditions are fulfilled:

1) The mapping $u \rightarrow \mathcal{F}(u, v)$ is continuous at the point u_x for all v from a neighborhood of v_* .

2) (The quadratic approximation condition.) There exist mappings $\Lambda \in \mathcal{L}(V, W)$ and $B \in$ $\mathscr L$ ((V, W), a number $\delta > 0$, and a neighborhood S of the point $u_{\mathscr H}$ such that the conditions $u \in S$ and $\|\nabla\| \leq \delta$ imply that

 $\mathcal{F}(u, v_* + \overline{v}) = \mathcal{F}(u, v_*) + \Lambda \overline{v} + \overline{g} \cdot (\overline{v}, \overline{v})/2 + \omega (u, \overline{v}),$

where $\omega(u, \overline{v})$ satisfies the estimate

 $\|\omega(u, \bar{v}') - \omega(u, \bar{v}'')\| \leq \beta \left(\|\bar{v}'\| + \|\bar{v}''\| \right) \left(\|\bar{v}' - \bar{v}''\| \right),$ $\beta = \text{const} \leq 1/\{32 (\|P_1\| + \|P_2\|) C\};$

3) The mappings Λ and B from condition 2) and a point $h \in V$, $\|h\| = 1$, are such that ImA is a closed complemented subspace of W and

$$
\text{Im } G(h) = Z,
$$

where $G(h)$ and Z are from (2.1) and (2.2) .

Then there exist neighborhoods U₀ and V₀ of the points u_x and v_x respectively and a number $\varepsilon > 0$ such that for arbitrary $u \in U_0$ and $v \in V_0 \setminus \{v_{\kappa}\}\)$, satisfying the conditions

a) $\| (v - v_x) \| v - v_x \|^{-1} - h \| \le \varepsilon$,

b) if $\text{Im}\,\Lambda \neq W$, then

$$
||v-v_*|| \geqslant K \left[|| P_1(\mathcal{F}(u,v)-\mathcal{F}(u_*,v_*)) || + \frac{|| P_2(\mathcal{F}(u,v)-\mathcal{F}(u_*,v_*)) ||}{||v-v_*||} \right];
$$

there exists a point $r(u, v) \in V$, for which

$$
\mathcal{F}(u, v + r(u, v)) = \mathcal{F}(u_*, v_*);
$$
\n
$$
\|r(u, v)\| \leq (2.6)
$$

$$
\leqslant K \left[\left\| P_1(\mathcal{F}(u,v) - \mathcal{F}(u_* v_*)) \right\| + \frac{\left\| P_2(\mathcal{F}(u,v) - \mathcal{F}(u_*, v_*)) \right\|}{\left\| v - v_* \right\|} \right]. \tag{2.7}
$$

Proof. We easily obtain the following inequality, valid for all $p \in V$, $u \in S$, and v' , ${\tt v}''\; \in\; {\tt V}$ such that $\|{\tt v}^\prime\; -\; {\tt v}_{{\tt v}}\|~\leq\; \delta$ and $\|{\tt v}^{\prime\prime}\; -\; {\tt v}_{{\tt v}}\|~\leq\; \delta$, from condition 3) by identity transformation:

$$
\|\mathcal{F}(u, v') - \mathcal{F}(u, v'') - \Lambda [v' - v''] - B (p, v' - v'') -\n- \frac{1}{2} B (v' + v'' - 2 (p + v_*), v' - v'')\| \leq\n\leq \beta [\|v' - v_*\| + \|v'' - v_*\|] \|\|v' - v''\|.
$$
\n(2.8)

We introduce the following constants, mappings, and neighborhoods:

$$
\varepsilon = 1/(16C \ (|| P_2 || || B || + 1)),
$$

\n
$$
R = \min \{1/(16C \ (|| P_1 || || B || + 1)), 6/2\},
$$

\n
$$
\mathcal{I}(u, v) = \mathcal{F}(u, v) - \mathcal{F}(u_*, v_*,),
$$

\n
$$
\Delta(u, v) = || P_1 \mathcal{D}(u, v) || + \left\| \frac{P_2 \mathcal{D}(u, v)}{||v - v_*||} \right\|,
$$

\n
$$
U_0 = \{u \in S \ || \mathcal{F}(u, v_*) - \mathcal{F}(u_*, v_*)|| \le R/4C\},
$$

\n
$$
V_0 = \{v \in V \ || v - v_* || \le R, || \mathcal{F}(u, v) - \mathcal{F}(u, v_*)|| \le R/4C \ \forall u \in S\}.
$$
\n(2.9)

Without loss of generality we will assume that the conditions $\mathbf{u} \in \mathbf{S}$ and $\|\mathbf{v} - \mathbf{v}_\infty\| \leq 2\mathbf{R}$ imply that $(u, v) \in T$.

By virtue of conditions 1) and 3), the neighborhoods $\mathsf{U_{0}}$ and $\mathsf{V_{0}}$ are nonempty. We fix an arbitrary point (u, v) $\in U_0 \times V_0$ that satisfies conditions a) and b).

Let us set $p = ||v - v_{*}||$ h, $v_{0} = v$, and

$$
v_n = v_{n-1} - M \left(P_1 \left(\mathcal{D} \left(u, v_{n-1} \right) \right), \frac{P_2 \left(\mathcal{D} \left(u, v_{n-1} \right) \right)}{\| v - v_{*} \|} \right) \tag{2.10}
$$
\n
$$
(n = 1, 2, \ldots),
$$

where M is the right inverse operator from (2.3), (2.4). We apply the mapping G(h) to both sides of Eq. (2.10) . By virtue of (2.3) , we get

$$
\Lambda (v_n - v_{n-1}) = - P_1 (\mathcal{D} (u, v_{n-1})), \qquad (2.11)
$$

$$
P_2B(p, v_n - v_{n-1}) = -P_2(\mathcal{D}(u, v_{n-1})).
$$
\n(2.12)

By induction we prove the relation

$$
\Delta (u, v_n) \leqslant \Delta (u, v)/2^n. \tag{2.13}
$$

Relation (2.13) is obvious for $n = 0$. Let us suppose that relation (2.13) is valid for the first m elements v_0 , v_1 , ..., v_m . Then, by virtue of (2.4) and (2.10), we have

$$
\|v_{i+1} - v_i\| \leqslant C\Delta \ (u, v_i) \leqslant C\Delta \ (u, v)/2^i,
$$
\n
$$
(2.14)
$$

$$
||v_{i+1} - v|| \leqslant \sum_{s=0}^{i} ||v_{s+1} - v_s|| \leqslant 2C\Delta(u, v),
$$
\n(2.15)

$$
\|v_{i+1} - v_*\| \leqslant 2C\Delta \ (u, v) + \|v - v_*\| \quad (i = 0, 1, \ldots, m). \tag{2.16}
$$

We show that

$$
||v_{i+1} - v_*|| \leq 2R \quad (i = 0, 1, \dots, m). \tag{2.17}
$$

At first, let $\text{Im }\Lambda = \text{W}$. Then $P_1 = I_W$, $P_2 = 0$, and $\Delta(u, v) = \|\mathcal{F}(u, v) - \mathcal{F}(u_k, v_k)\|$. Hence, by virtue of the definitions of the sets U_0 and V_0 , (2.17) follows at once from (2.16). Let us suppose that Im $\Lambda \neq W$. From condition b), relation (2.16), and the definition of the constant K we conclude that

$$
\|v_{i+1} - v_{*}\| \leqslant (2C/K + 1) \|v - v_{*}\| \leqslant 2 \|v - v_{*}\|.
$$
\n(2.18)

Since $\|v-v_{\hat{x}}\|$ ≤ R, relation (2.17) is fulfilled in this case. Further, to prove inequality (2.13) for $n = m + 1$ it is sufficient to prove the relations

$$
|| P_1 (\mathcal{D} (u, v_{m+1})) || \leq \Delta (u, v) / 2^{m+2},
$$

$$
|| P_2 (\mathcal{D} (u, v_{m+1})) || \leq \Delta (u, v) || v - v_* || / 2^{m+2}.
$$

By virtue of (2.17) and the choice of R, inequality (2.8) is valid for $v' = v_{m+1}$ and $v'' =$ v_m . Using this inequality, relations (2.11) and (2.14) for $n = i + 1 = m + 1$, and the definitions of the constants β and R, we conclude that

$$
|| P_1 (\mathcal{F} (u, v_{m+1}) - \mathcal{F} (u_*, v_*))|| \leq
$$

\n
$$
\leq || P_1 || || \mathcal{F} (u, v_{m+1}) - \mathcal{F} (u, v_m) - \Lambda (v_{m+1} - v_m) || \leq
$$

\n
$$
\leq || P_1 || || B || || v_{m+1} + v_m - 2v_* || || v_{m+1} - v_m ||/2 +
$$

\n
$$
+ || P_1 || \beta (|| v_{m+1} - v_* || + || v_m - v_* ||) || v_{m+1} - v_m || \leq \Delta (u, v) / 2^{m+2}.
$$

If Im $\Lambda = W$, then (2.13) follows from the above inequality. Now let Im $\Lambda \neq W$. Then, by virtue of estimate (2.8) for $v' = v_{m+1}$, $v'' = v_m$, and $p = ||v - v_x||$, relations (2.12), (2.14), (2.15), and (2.17) for $n = i + 1 = m + 1$, definitions of the constants β , K, and ε , and conditions 3a) and 3b) of Theorem 1, we get

$$
|| P_2 (\mathcal{F} (u, v_{m+1}) - \mathcal{F} (u_*, v_*)) || = || P_2 (\mathcal{F} (u, v_{m+1}) - \mathcal{F} (u, v_m) -- \Lambda (v_{m+1} - v_m)) + P_2 (\mathcal{F} (u, v_m) - \mathcal{F} (u_*, v_*)) || \leqslant \leqslant || P_2 || || \mathcal{F} (u, v_{m+1}) - \mathcal{F} (u, v_m) - \Lambda (v_{m+1} - v_m) - B (p, v_{m+1} - v_m) || \leqslant \leqslant \frac{(1/2)}{2} || P_2 || || B || (|| v_{m+1} - v || + || v_m - v || +
$$

 λ and λ

 $+ 2 ||v - v_* - p ||) C \Delta (u, v_m) + 4 ||P_2|| \beta ||v - v_*|| C \Delta (u, v_m) \leq \Delta (u, v) ||v - v_*||^{2^{m+2}}.$

Thus, (2.13) is proved for all $n \ge 0$. Hence we conclude that

$$
\lim_{n \to \infty} \|\mathcal{F}(u, v_n) - \mathcal{F}(u_* v_*)\| = 0.
$$
\n(2.19)

On the other hand, by virtue of (2.4) , (2.10) , and (2.13) , we have

$$
\|v_{n+1}-v_n\| \leqslant C\Delta \ (u,v)\ 2^{-n} \quad (n=0,\,1,\,\ldots), \qquad (2.20)
$$

Therefore, since the space V is Banach, the limit $g(u,v) = \lim v_n \in V$ exists. We set r(u,

v) = $g(u, v) - v$. By virtue of condition 3) and the definitions of the sets U_0 and V_0 , the mapping $v \to \tilde{f}(u, v)$ is continuous at each point $v \in V_0$ for all $u \in U_0$. Hence, by virtue of (2.19) and (2.20) , we get assertions (2.6) and (2.7) . The theorem is proved.

3. Estimation of the Distance from a Level Surface of a Mapping.

THEOREM 2. Let X and Y be Banach spaces, V' be a neighborhod of a point $x_x \in X$, and F be a mapping of V' into Y. Suppose that the following conditions are fulfilled:

1) (The quadratic approximation conditions.) There exist mappings $\Lambda \in \mathcal{L} (X, Y)$ and $B \in \mathcal{L}$ ((X, X), Y) and a number $\delta > 0$ such that the condition $\|\overline{x}\| \leq \delta$ implies that

$$
F(x_* + \tau) = F(x_*) + \Lambda \tau + B(\tau, \tau) + \omega(\tau).
$$

where $\omega(\overline{x}')$ satisfies the estimate

$$
\begin{array}{l}\n\parallel \omega (\bar{x}') - \omega (\bar{x}'') \parallel \leqslant \beta \left(\parallel \bar{x}' \parallel + \parallel \bar{x}'' \parallel \right) \parallel \bar{x}' - \bar{x}'' \parallel, \\
\beta = \text{const} \leqslant 1/(32 \left(\parallel P_1 \parallel + \parallel P_2 \parallel \right) C),\n\end{array}
$$

 $P_1: Y \rightarrow L$, $P_2: Y \rightarrow N$ being continuous projections and C being the constant from (2.4) .

2) The mappings Λ and B from condition 1) and a point $h \in V$, $\|h\| = 1$, are such that $L =$ ImA is a closed complemented subspace of Y and

$$
\text{Im } G \ (h) = L \times N \stackrel{\text{df}}{=} Z.
$$

Here $G(h)$, L, and N are defined in the same manner as in $(2.1)-(2.2)$.

Then there exist numbers $\varepsilon = \varepsilon(h) > 0$ and $K = K(h) > 0$ and a neighborhood $V_0 \subseteq V'$ of the point x_x such that for each point $x \in V_0$, satisfying the condition $\|(x - x_x)/\|x - x_x\|$ h| $\leq \varepsilon$, there exists a point $r(x) = r(x, h)$, for which

$$
F\left(x+r\left(x\right)\right)=F\left(x_{*}\right),\tag{3.1}
$$

$$
\| r(x) \| \leqslant K \left[\| P_1 \left(F(x) - F(x_*) \right) \| + \| P_2 \left(F(x) - F(x_*) \right) \|^{1/2} \right]. \tag{3.2}
$$

<u>Proof</u>. Let us set $V = X$, $W = Y$, $v = x$, and $\mathcal{F}(u, v) = F(x)$. We observe that, in the case under consideration, the mapping does not depend on the first variable. Hence conditions i) and 2) imply that conditions 1)-3) of Theorem 1 are fulfilled. For the introduced mappings and sets we define the constants C, K, ε , and R and the neighborhood V₀ by the formulas of Sec. 1. We fix an arbitrary point $x \in V_0$ such that $\|(x - x_{\hat{x}})/\|x - x_{\hat{x}}\| - h\| \leq \varepsilon.$ We set $R(x) = \|P_1(F(x) - F(x_2))\| + \|P_2(F(x) - F(x_2))\|^{1/2}$. If $\|x - x_2\| \le KR(x)$, then assertions (3.1)-(3.2) are obviously fulfilled with $r(x) = x_x - x$. Now let $||x - x_x|| \geq KR(x)$. Then

$$
||x - x_*|| \geqslant K \left[|| P_1(F(x) - F(x_*)) || + \frac{|| P_2(F(x) - F(x_*)) ||}{|| x - x_* ||} \right].
$$
\n(3.3)

Relation (3.3) means that condition b) of Theorem I is fulfilled for the point v = x. Thus, all conditions of Theorem 1 are fulfilled for the mappings and spaces under consideration. Consequently, there exists a point $r(x) = r(x, h) \in X$ such that

$$
F(x + r(x)) = F(x_*)
$$
\n(3.4)

$$
||r(x)|| \leq K \left[||P_1(F(x) - F(x_*))|| + \frac{||P_2(F(x) - F(x_*))||}{||x - x_*||} \right].
$$
\n(3.5)

Estimate (3.3) follows from the last relation and inequality (3.2). The theorem is proved.

Remark 1. Let a mapping F: $X \rightarrow Y$ be twice Frechet-differentiable at a point x_x . Suppose that $L = Im F'(x_k)$ is a closed complemented subspace of Y, N is its complement, and P₁: $Y \rightarrow L$ and $P_2: Y \rightarrow N$ are continuous projections. We introduce a linear mapping $(h \in X)$

$$
G(x_*, h): X \to L \times N = Z,
$$

\n
$$
G(x_*, h) x = (F'(x_*) x, F''(x_*) [h, x]).
$$

Then we can set $\Lambda = F'(x_x)$, $B = F''(x_x)$, and $G(h) = G(x_x, h)$ in conditions 1) and 2) of Theorem 2. Indeed, to prove the inequality in condition 2) of Theorem 2, it is sufficient to apply the mean-value theorem to the mapping $F_0(x) = F(x) - \Lambda(x - x_x) - B(x - x_x, x - x_x)/2$.

Remark 2. If the mapping F is regular at the point $x_{\hat{x}}$, then $Im F'(x_{\hat{x}}) = Y$ and, consequently, $P_2 = 0$. Then the mapping $G(x_k, h)$ is an epimorphism for each $h \in X$, since it can be identified with the mapping $F'(x_x)$. In this case, relations $(3.1)-(3.2)$ give the assertions of the Lyusternik theorem [1, p. 41].

We introduce the sets

$$
H(x_*) = \{h \in X, F'(x_*) \mid h = 0, F''(x_*) \mid h, h \in \text{Im } F'(x_*)\},
$$

\n
$$
H_0(x_*) = \{h \in H(x_*), \text{Im } G(x_*, h) = L \times N\},
$$

and let TM(x_x) denote the cone of tangental directions to the set M(x_x) at the point x_x.

COROLLARY 1. Let X and Y be Banach spaces, U_0 be a neighborhood of a point $x_0 \in X$, and F be a twice Frechet-differentiable (at the point x_x) mapping of U₀ into Y such that ImF'(x_x) is a closed complemented subspace of Y. Then

$$
H_{\theta}(x_*) \subseteq \text{TM}(x_*) \subseteq H(x_*)\tag{3.6}
$$

Proof. Let $h \in TM(x_x)$. Then, by the definition of a tangential direction, there exist a $\delta > 0$ and a mapping r: $[-\delta, \delta] \rightarrow X$, such that $x_{\dot{x}} + th + r(t) \in M(x_{\dot{x}})$, $r(t) = o(t)$. Therefore, $0 = F(x_x + th + r(t)) - F(x_x) = tF'(x_x)[h] + F'(x_x)[r(t)] + t^2F''(x_x)[h, h] + o(t^2)$ $\forall t \in [-\delta, \delta].$ Hence

$$
F'(x_*) [h] = 0,
$$

-
$$
F'(x_*) [r(t)/t^2] = F''(x_*) [h, h] + o(t^2)/t^2.
$$

Passing to the limit at $t \to 0$ in the last equation, we conclude that $\lim_{t \to \infty} (-F'(x_*) [r(t) t^{-2}])$ t~0 exists and belongs to $\text{Im } F'(x_{\star})$, since $\lim_{t\to 0} [F''(x_*)\,|h,\,h] + o(t^2)\,t^{-2}] = F''(x_*)\,|h,\,h],$ exists, and, by the condition, the subspace $Im F'(x_x)$ is closed. Thus, the right-hand part of inclusion (3.5) is proved.

Now let $h \in H_0(x_k)$. Without loss of generality we can assume that $||h|| = 1$. Let us consider the point $x(t) = x_x + th$. Then there obviously exists a number $\delta > 0$ such that x(t) ϵ V₀ for t ϵ [-6, 6], where V₀ is the neighborhood from the conditions of Theorem 2, and, moreover, $(x(t) - x_x) \|x(t) - x_x\|^{-1} = h t |t|^{-1}$. Hence it follows from the definition of the set $H_0(x_x)$ that all conditions of Theorem 2 are fulfilled. But then, by virtue of the definitions of the sets $H(x_x)$ and $H_0(x_x)$, we conclude from relations (3.1)-(3.2) that there exists a mapping $r(t)$: $[-\delta, \delta] \rightarrow X$ such that

$$
F(x_{*} + ih + r(t)) = F(x_{*}),
$$

\n
$$
\| r(t) \| \leq
$$

\n
$$
\leq K \leq || P_{1} (F(x(t)) - F(x_{*})) || + || P_{2} (F(x(t)) - F(x_{*})) ||^{1/2} \leq
$$

\n
$$
\leq || P_{1} || || H^{r'}(x_{*}) [h] + t^{2} F^{\prime\prime}(x_{*}) [h, h] + o (t^{2}) || +
$$

\n
$$
+ || P_{2} (F'(x_{*}) [th]) + t^{2} P_{2} (F''(x_{*}) [h, h]) + o (t^{2}) ||^{1/2} = o (t).
$$

The corollary is proved.

 \sim

Definition 1. The mapping F is said to be 2-regular at the point x_x if it is twice Frechet-differentiable at this point, the subspace $\text{Im } F'(x_{\hat{x}})$ is closed and complemented, and

$$
H(x_*) \setminus \{0\} = H_0(x_*) \setminus \{0\}.
$$
 (3.7)

If the mapping F is 2-regular at the point x_{\star} , then Corollary 1 gives complete description of the cone of tangential directions $TM(x_x) = H(x_x)$.

Condition (3.7) is weaker than the condition of regularity of the mapping F at the point x_x. Indeed, if Im F'(x_x) = Y, then, as remarked above, the mapping $G(x_x, h)$ is an epimorphism $\nabla h \in X$ and, consequently, (3.7) is fulfilled. On the other hand, the regularity of the mapping F at the point x_x does not follow from (3.7) . In order to show this, it it sufficient to consider the function $F(x) = x_1^2 + x_2^2 - x_3^2$ at the point $x_n = 0$.

We return to the investigation of the estimate of distance, in which we are interested. It follows obviously from Theorem 2 that

$$
\rho(x, M(x_*)) \leqslant K \left[\| P_1 \left(F \left(x \right) - F \left(x \right) \right) \| + \| P_2 \left(F \left(x \right) - F \left(x \right) \right) \|^{1/2} \right]. \tag{3.8}
$$

However, it is asserted in Tneorem 2 that estimate (3.8) is valid not for each point x in a certain neighborhood V₀ of the point x₀, but only for those points x, for which $\|(x - x_{\alpha})/$ $||x - x_{\star}|| - h|| \leq \epsilon$, where h is a fixed point of X such that Im $G(x_{\star}, h) = Z$. It may turn out that if there are enough such regular points $h \in X$, then estimate (3.8) is valid for each point x in U_0 . In the finite-dimensional case, as will be shown below, for this the 2regularity of the mapping F at the point $x_{\hat{x}}$ is sufficient.

Let us suppose that the mapping F is twice Frechet-differentiable at the point $x_{x} \in X$ and $Im F'(x_x)$ is a closed complemented subspace of Y. We introduce the sets

$$
H^{\alpha}(x_{\ast}) = \left\{ h \in X \mid ||F'(x_{\ast})h|| \leq \alpha, \inf_{y \in \text{Im } F'(x_{\ast})} \left\| \frac{1}{2} F''(x_{\ast}) [h, h] - y \right\| \leq \alpha \right\},
$$

$$
H_0^{\alpha}(x_{\ast}) = \left\{ h \in H^{\alpha}(x_{\ast}) \mid G(x_{\ast}, h) = L \times N \right\}.
$$

Let $h \in H_0^{\alpha}(x_x)$. Then there exist a right inverse operator $A_h: L \times N \rightarrow X$ and a constant $C(h) > 0$ such that

$$
G(x_*, h) \circ A_h = I_Z, \quad || A_h(z)|| \leq C(h) || z ||.
$$

Definition 2. The mapping F is said to be strongly 2-regular at the point x_x if it is twice Frechet-differentiable at this point, the subspace $Im F'(x_{\star})$ is closed and complemented, and there exist constants C > 0 and α > 0 and a family of right inverse operators $\{A_h\}$, $h \in H_0^{\alpha}(x_k)$, $\|h\| = 1$, such that

$$
H^{\alpha}(x_{\ast}) \setminus \{0\} = H^{\alpha}(x_{\ast}) \setminus \{0\},
$$

 $|| A_{h}(z) || \leq C || z || \quad \forall h \in H^{\alpha}(x_{\ast}), || h || = 1.$

THEOREM 3. Let X and Y be Banach spaces, V' be a neighborhood of a point $x_{x} \in X$, and F be a mapping of the neighborhood V' and Y that is twice Frechet-differentiable at the point $x_{\hat{x}}$. Suppose that F is strongly 2-regular at $x_{\hat{x}}$.

Then there exist a number K > 0, a neighborhood V₀ of the point x_x, and a mapping x \rightarrow $r(x)$ of the set V_0 into X such that

$$
F(x + r(x)) = F(x_*)
$$
\n(3.9)

$$
||r(x)|| \leqslant K_1 \left[||P_1(F(x) - F(x_*))|| + ||P_2(F(x) - F(x_*))||^{1/2} \right] \tag{3.10}
$$

for all $x \in V_0$.

Proof. Since F is strongly 2-regular at x_{α} , there exist constants c > 0, and α > 0 such that for each element $h \in H^{\alpha}(x_{\dot{x}})$, $\|h\| = 1$, there exists a right inverse operator A_h , for which the estimate $\|A_h(z)\| \leq C\|z\|$ is valid. Therefore, by virtue of Remark 1, we conclude that for each point $h \in H^{\alpha}(x_{\chi})$, $\|h\| = 1$, the conditions of Theorem 2 are fulfilled, and the constant K > 0 and the neighborhood V_0 of $x_{\hat{x}}$ in the assertion of Theorem 2 do not depend on h. Since F is twice Frechet-differentiable at $x_{\hat{x}}$, there exists a neighborhood $V_1 \subseteq V_2$ of this point such that for each $x \in V_1$

$$
\| F(x) - F(x_*) - F'(x_*) (x - x_*) \| \leq (a/2) \| x - x_* \|,
$$
\n(3.11)

$$
||F(x) - F(x_*) - F'(x_*)(x - x_*) - (1/2)F''(x_*)(x - x_*, x - x_*)|| \leq (a/2) ||x - x_*||^2.
$$
 (3.12)

Let us set h = $(x - x_x)/|x - x_x|$ and $\mathcal{I}(x) = F(x) - F(x_x)$. We fix an arbitrary point $x \in$ U_1 , $||x - x_x|| \le 1$. If $||x - x_x|| \le (2/\alpha)(||P_1(\mathcal{D}(x))|| + ||P_2(\mathcal{D}(x))||^{1/2})$, then, taking $r(x) =$ x_{α} - x, we get assertions (3.9) and (3.10) with the constant K_1 = max {K, 2/ α }

Let

$$
|| x - x_* || \geqslant (2/\alpha) \, [|| P_1 \left(\mathcal{D} \left(x \right) \right) || + || P_2 \left(\mathcal{D} \left(x \right) \right) ||^{1/2}]. \tag{3.13}
$$

Without loss of generality we can assume that $\alpha \leq 2$. Then it follows from (3.13) that $\|x$ x_{ξ} | \geq (2/ α) | $\mathcal{D}(x)$ ||. Therefore, by virtue of (3.11),

$$
\|F'(x_*)h\| \leqslant \|\mathcal{D}(x)\|\|x-x_*\|^{-1}+\alpha/2 \leqslant \alpha.
$$

Let us set $y = P_1 \mathcal{D}(x)/\|x - x_x\|^2 - F'(x_x)h/\|x - x_x\| \in \text{Im} F'(x_x)$. Since $\alpha \leq 2$, from (3.12) and (3.13) we conclude that

$$
\|F''(x_*)\, [h,h]-y\| \leqslant \|P_2\mathcal{D}(x)\|/\|x-x_*\|^2 + \alpha/2 \leqslant \alpha.
$$

Thus, $(x - x_x)/|x - x_x| = h \in H^{\alpha}(x_x)$, and we can use Theorem 2, from which relations (3.9)-(3.10) follow. The theorem is proved.

Remark 3. Let $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, $F: \mathbb{R}^n \to \mathbb{R}^m$, and $F = (f, f_2, \ldots, f_m)$. Then we can show that the condition of strong 2-regularity is equivalent to the condition of 2-regularity. Thus, in the finite-dimensional case, for the validity of $(3.9)-(3.10)$ it is sufficient that the mapping F is 2-regular at x_{x} .

4. Implicit Function Theorem.

THEOREM 4. Let X be a topological space, Y and Z be Banach spaces, T be a neighborhood of a point (x_x, y_x) in $X \times Y$, F be a mapping of T into Z, and $F(x_x, y_x) = z_x$. Suppose that the following conditions are fulfilled:

1) The mapping $x \rightarrow F(x, y_x)$ is continuous at x_x .

2) (The quadratic approximation condition.) There exist mappings $\Lambda \in \mathcal{L}(Y, Z)$ and $B \in$ $\mathscr{L}((Y, Y), Z)$, a number $\delta > 0$, and a neighborhood S of the point x_x such that if $u \in S$ and $\|\nabla\| \leq \delta$, then

$$
F(x, y_* + \bar{y}) = F(x, y_*) + \Lambda \bar{y} + B(\bar{y}, \bar{y})/2 + \omega(x, \bar{y}),
$$

where $\omega(x, \bar{y})$ satisfies the estimate

$$
\begin{array}{l}\n\parallel \omega \ (x, \bar{y}') - \omega \ (x, \bar{y}'') \parallel \leqslant \gamma \ (\parallel \bar{y}' \parallel + \parallel \bar{y}'' \parallel) \parallel \bar{y}' - \bar{y}'' \parallel, \\
\gamma = \text{const} \leqslant 1/(16 \ (\parallel P_1 \parallel + \parallel P_2 \parallel) \ K),\n\end{array}
$$

P₁: Z \rightarrow L and P₂: Z \rightarrow N being continuous projections and K being the constant from (2.5).

3) The mappings Λ and B from condition 2) are such that $L = Im \Lambda$ is a closed complemented subspace of z and there exists an element $h \in Y$, $\|h\| = 1$, for which

$$
G(h) h = 0, \quad \text{Im } G(h) = L \times N = Z.
$$

Here $G(h)$, L, and N are defined in the same manner as in $(2.1)-(2.2)$.

Then there exist a number $K_1 > 0$, a neighborhood U' of the point (x_k, z_k) in $X \times Z$, and a mapping $\varphi: U' \rightarrow Y$ such that

$$
F(x, \varphi(x, z)) = z,\tag{4.1}
$$

$$
\|\varphi(x,z)-y_*\|\leqslant K_1\{\|P_1\left(F(x,y_*)-\frac{z}{r}\|+ \|P_2\left(F(x,y_*)-\frac{z}{r}\right)\|^{1/2}\},\tag{4.2}
$$

<u>Proof</u>. Let us set $U = X \times Z$, $V = Y$, $W = Z$, $v = y$, $u = (x, y)$, and $\mathcal{F}(u, v) = F(x, y)$ z. Then conditions 1)-3) of Theorem 1 are fulfilled for the so-defined spaces U, V, and W and the mapping $\mathcal F$. We fix h from condition 2) of Theorem 4 and set $\mathcal D(x, t) = F(x, y, t)$ th) - F(x, y_{*}). It follows from condition 3) that there exists a number t₀ > 0 such that

$$
\|F(x, y_* + th) - F(x, y_*) - t\Lambda h - (1/2) t^2 B(h, h)\| \leqslant \gamma t^2
$$
\n(4.3)

for all $t \in (0, t_0)$ and $x \in S$. We choose a number $t_1 \in (0, t_0)$ such that

$$
t_1 \leqslant 2/K \quad (\parallel B \parallel +2\gamma), \quad y_* + th \leqslant V_0 \quad \forall t \in (0, t_1), \tag{4.4}
$$

where V_0 is the neighborhood from the assertion of Theorem 1. It follows from the equation $G(h)$ h = 0 that $Ah = 0$ and $P_2B(h, h) = 0$. Hence, by virtue of (4.3) , (4.4) , and the definition of the constant $y > 0$, it is easy to show that

$$
\| P_1 \left(\mathcal{D} \left(x, t \right) \right) \| \leqslant t/K, \| P_2 \left(\mathcal{D} \left(x, t \right) \right) \| \leqslant t^2/K \quad \forall t \in (0, t_1).
$$
\n
$$
(4.5)
$$

Let us set

$$
R(x, z) = F(x, y_*) - z,
$$

\n
$$
t(x, z) = K \max \{ || P_1 (R(x, z)) ||, || P_2 (R(x, z)) ||^{1/2} \},
$$

\n
$$
U' = \{ (x, z) \in U_0 | t(x, z) \leq t_1 \},
$$

\n
$$
y(x, z) = y_* + t(x, z) h.
$$
\n(4.6)

Since $t(x, z) \in (0, t_1)$ for $(x, z) \in U'$, we can show by virtue of relations (4.6) and the definition of the point h that for the points $u = (x, z) \in U'$ and $v = y(x, z)$ conditions a) and b) of Theorem 1 are valid for $\mathcal{F}(u, v) = F(x, y) - z$. Thus, in the case under consideration, all conditions of Theorem 1 are fulfilled. Therefore, there exists a mapping r: U' \rightarrow Y such that $F(x, y) = \frac{f(x, y)}{x} + \frac{f(x, y)}{x}$

$$
F(x, y (x, z) + r (x, z)) = z,\n|| r (x, z)|| \le K || P_1 (F (x, y (x, z)) - z) || +\n+ || P_2 (F (x, y (x, z)) - z) ||/t (x, z)].
$$
\n(4.7)

Let us set $\varphi(x, z) = y(x, z) + r(x, z)$. Then the assertions of the theorem follow from (4.6) , (4.7) , and condition b) of Theorem 1 for $v = y(x, z)$.

LITERATURE CITED

- i. A.D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).
- 2. A.V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskii, "The Lyusternik theorem and the theory of extremum," Usp. Mat. Nauk., 35, No. 6, 11-46 (1980).
- 3. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control- [in Russian], Nauka, Moscow (1979).