THEOREMS ON ESTIMATES IN THE NEIGHBORHOOD OF A SINGULAR
POINT OF A MAPPING

E. R. Avakov

1. Two Statements. 1. Let X and Y be Banach spaces, F: X ~ Y be a mapping of X into
Y, Xx be a fixed point of X, and U be a neighborhood of this point. We set M(xy) = {x =
U|F(x) = F(xx)}. It is required to find an upper estimate for the distance p(x, M(xy)) in
terms of the quantity IF(x) — F(x4)l, where x is a point in U. The following linear esti-
mate is well known in the case where the mapping F is regular at the point x. (if F is
Fréchet-differentiable at xy, then this means that ImF'(x.) = Y):

0z, M) K KIF(x)—F(z,)l] VasU. (1.1)

Estimate (1.1) follows at once from the Lyusternik theorem [1, p. 41; 2]. The most complete
investigation of this type of linear estimates in the regular case is offered in [2]. At
the same time, in the nonregular, singular, case (ImF'(x.) # Y) estimate (1.1) is not valid
in general. This is seen readily by the example of the function f(x) = x%;2 + x,2 — %32 for
Xy = 0.

2. Let X be a topological space, Y and Z be Banach spaces, W and U respectively be
neighborhoods of the point (x4, zx) in X x Z and of the point (x4, y«) in X x Y, and F be a
mapping of U into Z such that F(xy, yx) = zx. It is required to prove the existence of a
mapping ¢: U - Y such that

Fa,o@z)=2z V(x,2)=W,

and to obtain an upper estimate for lg(x, z) — y«ll in terms of the quantity IF(x, ys) — zl.
In the regular case [if the mapping y - F(xy, y) is Freéchet-differentiable, then this means
that ImF (xa, y«) = Z] the implicit function theorem of [3, p. 161] gives complete solution
of the above posed problem. In the same manner as in the first case, we are 1nterested in

the nonregular case, to which the theorem of [3] is not applicable.

To investigate both the problems under consideration we prove at first a general esti-
mation theorem that is meaningful in the nonregular case.

2. Estimation Theorem. Let V and W be Banach spaces, ¥ (V, W) be the space of continu-
ous linear mappings of V into W, and £ ((V, V), W) be the space of continuous bilinear map-
pings. Both these spaces are Banach spaces with respect to the following norms:

Al = sup {ll Aol [Ivll <1}, A= g(V, Wy,

I Bl = sup {I B o o) | 0l < 4, N ll < 1}
Be X (V, V), W).

We fix mappings A € £ (V, W) and B € £ ((V, V), W). Let us suppose that the subspace
= ImA is closed and complemented. Then there exist a closed subspace N and continuous
projections P; and P, such that W =L + N, Nn L= {0}, ImP;, = L, ImP, = N, KerP; = N, and

KerP, = L. For an arbitrary fixed h € V we introduce the linear mapping

GRh:V—LXN=2, (2.1)
G (h) z = (Az, P,B (h, 2)). (2.2)

Let us suppose that ImG(h) = Z. Then, by the lemma on the right inverse operator [2], we
conclude that there exist a mapping A: Z > V and a constant C = C(h) > 0 such that

G (h)A = I, (2.3)
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T4 @<l =0, (2.4)
where Iy is the identity operator from Z into Z, z = (v,, v,), v, € L, v, € N, and lz| =
max {lv,#, fv,l}. Let us set

K = max {32C*|| P, |||l BI| , 2C, 1}. (2.5)

THEOREM 1. Let U be a topological space, V and W be Banach spaces, T be a neighbor-
hood of a point (ug, vg) in U x V, and ¥ be a mapping of T into W. Suppose that the follow-
ing conditions are fulfilled:

1) The mapping u > ¥ (u, v) is continuous at the point uy for all v from a neighbor-
hood of v..

2) (The quadratic approximation condition.) There exist mappings A € £ (V, W) and B €
£ ((V, W), a number § > 0, and a neighborhood S of the point u, such that the conditions
uesSand IVl < § imply that

F (u, v, +7) = F (u,v,) + A7 +'B FJ15)2 + o (4, 7),
where w(u, V) satisfies the estimate

Ho @ 7)) —o @) I <BZ I +1IE") (12" —77]),
B = const /{32 (|| Pyl +11 Pl ) C}s

3) The mappings A and B from condition 2) and a point h € V, |hl = 1, are such that
ImA is a closed complemented subspace of W and

Im G (h) = Z,

where G(h) and Z are from (2.1) and (2.2).

Then there exist neighborhoods U, and V, of the points uy; and v, respectively and a
number € > 0 such that for arbitrary u € U, and v € Vy\{vy}, satisfying the conditions

a) 1(v = va)lv = vel™® — I < €,

b) if ImA # W, then

Po(F (8, ) — F (e 2 )] T
1o = vull> K [IPLF (0,0) = F (w0 || + 2GR el 1,

there exists a point r(u, v) € V, for which

F (v 47 o) =F (Uy v4); (2.6)
(o) Il <

SE[IPLF (1) — F @eva) 1+ L2

F(u,v) — F (uay va))] ] )

fo—va

(2.7)

Proof. We easily obtain the following inequality, valid for all p € V, u € S, and v',
v'" € V such that lv' — vell € 6§ and §v" — vel < &, from condition 3) by identity transforma-
tion:
NF @, v)—F (@, v)—Alv —v"1—B (p, vV —v") —
— Y B +V"—=2(p+uv,), v =) (2.8)
SBUY —v Il +Nv" = | Hlv — "] .

We introduce the following constants, mappings, and neighborhoods:

e = 1/(16C (Il P11l Bl + 1)),

R = min {1/(16C (Il P, ||| BIl + 1)), 6/2},

L v)=F (U, V) — F (Uses Vy)s (2.9)

A, 0) =1 PAD (o) + | 25
Up={ue S| F (u,0,) — F (g v) | < RIACY,

Vo=V llv—u <R | F @v)—F ()] <B4 Vues S}

k3
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Without loss of generality we will assume that the conditions u € S and fv = vl < 2R imply
that (u, v) € T.

By virtue of conditions 1) and 3), the neighborhoods U, and V, are nonempty. We fix
an arbitrary point (u, v) € U, x V, that satisfies conditions a) and b).

Let us set p = [[v = vglh, vy = v, and

Up=Upy— M (Pl (Z (4, vn-1))y

(m=1.2.....

Py (D (u, v, ;) )

o —vaii

(2.10)

where M is the right inverse operator from (2.3), (2.4). We apply the mapping G(h) to both
sides of Eq. (2.10). By virtue of (2.3), we get

A (Un - Un~1) = - Pl (2D (uv vn—l))v (z’ll)
PyB (p, v, — V,y) = — Po (D (u, v,y)). (2.12)

By induction we prove the relation
A (u, v,) < A (u, v)/2"%. (2.13)

Relation (2.13) is obvious for n = 0. Let us suppose that relation (2.13) is valid for the
first m elements v,, V;, ..., Vp. Then, by virtue of (2.4) and (2.10), we have

vieg — v ([ < CA (1, v;) < CA (i, v)/2, (2.14)
Noisn — Il < g 10w — vs 11 < 2CA (u, v), (2.15)
” vi+1_v*ll<20‘A (u9 U)+||U~l}£” (L=O,1, .. .,m). (2.16)
We show that
v — 0 I <2R (1=0,1,...,m). (2.17)
At first, let ImA = W. Then P; = Iy, P, = 0, and.A(u, v) = 1F(u, v) = F(ug, ve)l. Hence,

by virtue of the definitions of the sets U, and V,, (2.17) follows at once from (2.16). Let

us suppose that ImA # W. From condition b), relation (2.16), and the definition of the con-
stant K we conclude that

00y — vy 1l < QCIK + 1) v — v, || < 2 v — v, |- (2.18)

Since v = vgl s R, relation (2.17) is fulfilled in this case. Further, to prove inequality
(2.13) for n = m + 1 it is sufficient to prove the relations

P D (s vma I << A (u, 0)/2™2,
Py (D (uy vme DTS A (wy 0) | v — 0, | 72772
By virtue of (2.17) and the choice of R, inequality (2.8) is valid for v' = vp4; and v'" =

Vp. Using this inequality, relations (2.11) and (2.14) for n =i + 1 = m + 1, and the def-
initions of the constants B and R, we conclude that

NPT (@ vimsy) — F (g, VDI
SHPLNNEF (@ vmsr) = F (s V) — AUinia — ) | <
UL BN oma + v — 20, N vimey — 0, 112 +
H PR omes — vl + lom — U D | vmsr — Vi [| <A (w, 0) 1272

If ImA = W, then (2.13) follows from the above inequality. Now let ImA # W. Then, by vir-
tue of estimate (2.8) for v' = vpiy, v" = vy, and p = Iv — velh, relations (2.12), (2.14),
(2.15), and (2.17) for n =i + 1 = m + 1, definitions of the constants 8, K, and ¢, and con-
ditions 3a) and 3b) of Theorem 1, we get

“ ‘Dz (:F (uv L.mél) - }- (U*v U*)) H = H P2 ("T (u’ Um—:l) - F (uv Um} -
—A (Um-i-l — l'.m)) + ‘Uz (-CfT (u’7 Um) - g (u*’ l’*)) ” <
KNP NF (s ) — F (W, V) — A (Umey—v,)— B (s Urasr — )
LSNP BN vma — vl 4+ e, — vl +
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42l — vy — p I CA (W, vy) + 41 Po | Bllo — v, | CA (1, 0,) <A (1, 0) [l — v, |27

Thus, (2.13) is proved for all n 2 0. Hence we conclude that

Hm || F (u,v,) — F @)l = 0. (2.19)

=00

On the other hand, by virtue of (2.4), (2.10), and (2.13), we have
Hopeg — vl <K CA (w,0) 27" (mn=0,1,...), (2.20)

Therefore, since the space V is Banach, the limit g (u,v) =limv, &V exists. We set r(u,

n—o0

v) = g(u, v) —v. By virtue of condition 3) and the definitions of the sets U, and V,, the
mapping v - ¥ (u, v) is continuous at each point v € V, for all u € U,. Hence, by virtue
of (2.19) and (2.20), we get assertions (2.6} and (2.7). The theorem is proved.

3. Estimation of the Distance from a Level Surface of a Mapping.

THEOREM 2. Let X and Y be Banach spaces, V' be a neighborhod of a point x4 € X, and F
be a mapping of V' into Y. Suppose that the following conditions are fulfilled:

1) (The quadratic approximation conditions.) There exist mappings A € £ (X, Y) and
Be £ ((X, X), Y) and a number § > 0 such that the condition Xl < § implies that
Flz, +7)=F(z,) + Az + B(z,7) + o (7).
where w(X') satisfies the estimate
e (@) —o@)IB MUz —2"],
p = const < 1/(32 (]| PoI] + 1 P.1}) O),

P,: Y>> L, P,: Y > N being continuous projections and C being the constant from (2.4).

2) The mappings A and B from condition 1) and a point h € V, |hil = 1, are such that L
ImA is a closed complemented subspace of Y and

ImG(h) =L x NZLz.

Here G(h), L, and N are defined in the same manner as in (2.1)-(2.2).

Then there exist numbers € = €(h) > 0 and K = K(h) > 0 and a neighborhood V, € V' of
the point x, such that for each point x € V,, satisfying the condition I{x — x4)/lx — x4l
hi < e, there exists a point r(x) = r(x, h), for which

Fz+r@)=7F(z) (3.1)
Hr @< KNP (F @) —F @D+ 1P (F (x) — F (24)) M) (3.2)

Proof. Let us set V=X, W=Y, v =%, and ¥ (u, v) = F(x). We observe that, in the
case under consideration, the mapping does not depend on the first variable. Hence condi-
tions 1) and 2) imply that conditions 1)-3) of Theorem 1 are fulfilled. For the introduced
mappings and sets we define the constants C, K, £, and R and the neighborhood V, by the for-
mulas of Sec. 1. We fix an arbitrary point x € V, such that (x — xs)/lIx — x4f — hl < €.

We set R(x) = IP,(F(x) = F(xa)) + IP,(F(x) — F(xe))1*/2. If Ix = x¢l s KR(x), then asser-
tions (3.1)-(3.2) are obviously fulfilled with r(x) = x4 — x. Now let Ix — xul 2 KR(x).
Then

e — 2, I > K[| Py (F (2)— F (z) | + AREE =2 L (3.3)

[z —z4

Relation (3.3) means that condition b) of Theorem 1 is fulfilled for the point v = x. Thus,
all conditions of Theorem 1 are fulfilled for the mappings and spaces under consideration.
Consequently, there exists a point r(x) = r(x, h) € X such that

Fx-+r(2)) =F (z4), (3.4)

”"(-T)“<K[”P1 (F(.Z)—F (x*))“_!_ [Po(F (z) —F () ] jJ . (3.5)

Iz —ze|
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Estimate (3.3) follows from the last relation and inequality (3.2). The theorem is proved.

Remark 1. Let a mapping F: X > Y be twice Frechet-differentiable at a point xg. Sup-
pose that L = ImF'(xy) is a closed complemented subspace of Y, N is its complement, and P;:
Y > L and P,: Y > N are continuous projections. We introduce a linear mapping (h € X)

Gty h): X—L XN =1,
G (T h) . = (F' (z4) z. F" (z,) B, 2]).

Then we can set A = F'(xs), B = F"(xy), and G(h) = G(xe, h) in conditions 1) and 2) of Theo-
rem 2. Indeed, to prove the inequality in condition 2) of Theorem 2, it is sufficient to
apply the mean-value theorem to the mapping F,(x) = F(x) — A(x — xu) — B(x — Xs, X — x5)/2.

Remark 2. If the mapping F is regular at the point X, then ImF'(xs) = Y and, conse-
quently, P, = 0. Then the mapping G(xyx, h) is an epimorphism for each h € X, since it can
be identified with the mapping F'(xx). In this case, relations (3.1)-(3.2) give the asser-
tions of the Lyusternik theorem [1, p. 41].

We introduce the sets

H@y)={h=sX, FF(g,)h=0, F' (z,) [h, hl = Im F’ ()}
Hy (zy) = {h € H (24), Im G (2, k) = L X N},

and let TM(xy) denote the cone of tangental directions to the set M(xy) at the point x.

COROLLARY 1. Let X and Y be Banach spaces, U, be a neighborhood of a point x, € X, and
F be a twice Frechet-differentiable (at the point xy) mapping of U, into Y such that ImF'(xy)
is a closed complemented subspace of Y. Then

Hy(z,) S T™ (z,) = H (z,). (3.6)

Proof. Let h € TM(xy). Then, by the definition of a tangential direction, there exist
a § > 0 and a mapping r: [—§, 8] » X, such that xyx + th + r(t) € M(x:), r(t) = o(t). There-
fore, 0 = F(xyx + th + r(t)) — F(xs) = tF' (xe)[h] + F'(x)[r(t)] + t2F"(x4)[h, h] + o(t?)
Vte [—§, §]. Hence

P (z,) [h] =
—F (z) I @] = F" (z) [ k] + o ()22
Passing to the limit at t + 0 in the last equation, we conclude that lim (—F’ (z,) [r () t73])
t—0

exists and belongs to ImF'(xy), since lim [F” (z,) [k, Al + o (83) t°] = F” (z,) lh, hl, exists, and, by
=0

the condition, the subspace ImF'(xy) is closed. Thus, the right-hand part of inclusion
(3.6) is proved.

Now let h € Ho(xy). Without loss of generality we can assume that |hl = 1. Let us
consider the point x(t) = x4 + th. Then there obviously exists a number § > 0 such that
x(t) € Vo for t € [=§, §], where V, is the neighborhood from the conditions of Theorem 2,
and, moreover, (x(t) = xy)Ix(t) — x4I™% = ht|t|~'. Hence it follows from the definition of
the set H,(x,) that all conditions of Theorem 2 are fulfilled. But then, by virtue’ of the
definitions of the sets H(xy) and H,(xyx), we conclude from relations (3.1)-(3.2) that ‘there
exists a mapping r(t): [—§, &§] » X such that

F(zy + th + 7 (1) = F (z),
Lrin <
SKUIP,(F (@) — F @)+ Py (F (2 (1) — F @) 2 <
LKAl Py EF (zy) [B] 4 2F”" (z,) [k, Rl & o () ||} +
1Py (F' (zy) lth]) + 122, (F" (z,) [k, k) -+ o ()| = o (2).

The corollary is proved.

Definition 1. The mapping F is said to be 2-regular at the point x4 if it is twice

Frechet-differentiable at this point, the subspace ImF'(xy) is closed and complemented,
and

H (z,) \ {0} = H, (z,) \ {0} (3.7)
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If the mapping F is 2-regular at the point x,, then Corollary 1 gives complete descrip-
tion of the cone of tangential directions TM(xy) = H(xg).

Condition (3.7) is weaker than the condition of regularity of the mapping F at the
point x,. Indeed, if ImF'(xx) = Y, then, as remarked above, the mapping G(xy, h) is an
epimorphism Vh € X and, consequently, (3.7) is fulfilled. On the other hand, the regular-
ity of the mapping F at the point xy does not follow from (3.7). In order to show this, it
it sufficient to consider the function F(x) = x,;2 + x,2 = x;2 at the point x, = 0.

We return to the investigation of the estimate of distance, in which we are interested.
It follows obviously from Theorem 2 that

@ M) KUIP (F(@)— F @)+l P (F (z) — F (z,) 1M 1. (3.8)

However, it is asserted in Theorem 2 that estimate (3.8) is valid not for each point x in a
certain neighborhood V, of the point x,, but only for those points x, for which (x — x.)/
Jx = X¢ll = h < ¢, where h is a fixed point of X such that ImG(xy, h) = Z. It may turn out
that if there are enough such regular points h € X, then estimate (3.8) is valid for each
point x in U,. In the finite-dimensional case, as will be shown below, for this the 2~
regularity of the mapping F at the point x; is sufficient.

Let us suppose that the mapping F is twice Fréchet-differentiable at the point x, € X
and ImF'(x;) is a closed complemented subspace of Y. We introduce the sets

H* (x,) = {h SX|NF (@) hlI<
. 1
£ F R —
vemmien | 2 F @ [ b] yUSQG}'
Hf (z,) = {h=H" (z,) |G (z,, h) = L X N}.

Let h € H,%(x4). Then there exist a right inverse operator Ap: L x N » X and a constant
G(h) > 0 such that

Gz h)o A, =1z 14,@1I<<CHIz

Definition 2. The mapping F is said to be strongly 2-regular at the point xy if it is
twice Frechet-differentiable at this point, the subspace ImF'(x.) is closed and complement-
ed, and there exist constants C > 0 and @ > 0 and a family of right inverse operators {Ax},
h € H,%(x:), Ihi = 1, such that

H* (z,) \ {0} = Hy (z,) \ {0},
4, @ <Clizll Ve H] (z,), 1k =1.

THEOREM 3. Let X and Y be Banach spaces, V' be a neighborhood of a point x. € X, and
F be a mapping of the neighborhood V' and Y that is twice Fréchet-differentiable at the
point x,. Suppose that F is strongly 2-regular at x..

Then there exist a number K > 0, a neighborhood V, of the point x,, and a mapping x -
r(x) of the set V, into X such that

Flz+r1(@)=F(z4) (3.9)
lr @< K Py (F (@) —F @) ||+l Po(F (x) — F () [M?] (3.10)

for all x & V,.

Proof. Since F is strongly 2-regular at x,, there exist constants ¢ > 0, and a > 0
such that for each element h € H%(x;), Ihl = 1, there exists a right inverse operator Ap,
for which the estimate [AL(z)l < Clzll is valid. Therefore, by virtue of Remark 1, we con-
clude that for each point h € H®(xy), lhl = 1, the conditions of Theorem 2 are fulfilled,
and the constant K > 0 and the neighborhood V, of x, in the assertion of Theorem 2 do not
depend on h. Since F is twice Fréchet-differentiable at x;, there exists a neighborhood
V, € V, of this point such that for each x € V,

| Fz) — F (2,) — F' (z,) (z — z) | < (@/2) | 2 — z, ]I, (3.11)
I1F (2) —F (2) — F' (z,) (g —23) — (112) F" (z,) (t— 2 7 — 2| < (@/2) 1| 2 — 24 | (3.12)
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Let us set h = (x — X)/#x — xel and & (x) = F(x) — F(xy). We fix an arbitrary point x €
Up, Ix = xel s 1. If Ix = el < (2/0) (NP (F (x))1 + IP,(Z (x))1*/2), then, taking r(x) =
X% — X, we get assertions (3.9) and (3.10) with the constant K; = max {K, 2/a}

Let

la — =y > @) Ul Py (D @) | + 1| Pa (D (@) 1], (3.13)

Without loss of generality we can assume that o s 2. Then it follows from (3.13) that fx =
X, 0 > (2/a) 1P (x). Therefore, by virtue of (3.11),
I F @) <UD @ 2 — 24 I + /2 < @
Let us set y = P; D(x)/hx — %4112 = F' (%2)h/Ix — %4l € ImF'(xy). Since a < 2, from (3.12)
and (3.13) we conclude that )
NWEF” () [y bl —y | <P D (@) W2 — 2 [P + @/2 L a.

Thus, (x — xx)/ix — X4l = h € H(x,), and we can use Theorem 2, from which relations (3.9)-
(3.10) follow. The theorem is proved.

Remark 3. Let X =R", Y =R®, F: RO > RW, and F = (f, f,, ..., f,). Then we can show
that the condition of strong 2-regularity is equivalent to the condition of 2-regularity.
Thus, in the finite-dimensional case, for the validity of (3.9)-(3.10) it is sufficient
that the mapping F is 2-regular at x..

4, Implicit Function Theorem.

THEOREM 4. Let X be a topological space, Y and Z be Banach spaces, T be a neighborhood
of a point (x4, y%) in X x Y, F be a mapping of T into Z, and F(xs, Vys) = zsx. Suppose that
the following conditions are fulfilled:

1) The mapping x > F(x, ys) is continuous at xs.

2) (The quadratic approximation condition.) There exist mappings A € £ (Y, Z) and B €
Z((Y, Y¥), Z), a number § > 0, and a neighborhood S of the point x, such that if u € S and
IVl < &, then o

Flz,ye +7) = Flz,y) +AF + B G 5/2+ o (z,§)
where w(x, V) satisfies the estimate

ho@d) —o@I<yUFI+ 15115 —§"ll
v = const < 1/(16 (11 Pyl + Il P, 1)) K),

P,: Z > L and P,: Z > N being continuous projections and K being the constant from (2.5).

3) The mappings A and B from condition 2) are such that L = ImA is a closed complement-
ed subspace of z and there exists an element h € Y, |hl = 1, for which

GWh=0 ImGH) =LxNZ2.

Here G(h), L, and N are defined in the same manner as in (2.1)-(2.2).
Then there exist a number K; > 0, a neighborhood U' of the point (x4, z4) in X x Z, and
a mapping ¢: U' » Y such that
F (z, ¢ (z, 2)) = z, (4.1)
1@ 2) —p I <SEPF @ u) — o)) +1P:(F (@ y,) —2) R (4.2)
Proof. Let us set U=Xx2, V=Y, W=2Z, v=y, u=(x, y), and ¥ (u, v) = F(x, y) —
z. Then conditions 1)-3) of Theorem 1 are fulfilled for the so-defined spaces U, V, and W
and the mapping § . We fix h from condition 2) of Theorem 4 and set T (x, t) = F(x, yu +
th) — F(x, yg). It follows from condition 3) that there exists a number t, > 0 such that
L F (2, Yy + th)—F (2, y,) — tAh — (1/2) 2B (b, b) || < v (4.3)
for all t € (0, t;) and x € S. We choose a number t, € (0, t,) such that
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t{<2/K(ilBI¥+2v), Ve Fh=TV, V= (0, 1), (4.4)

where V, is the neighborhood from the assertion of Theorem 1. It follows from the equation
G(h)h = 0 that Ah = 0 and P,B(h, h) = 0. Hence, by virtue of (4.3), (4.4), and the defini-
tion of the constant y > 0, it is easy to show that

I Py (T (z, 1) || < t/K,
| Py (D (@ )| < /K Vi (0, 8y). (4.5)

Let us set

R (I, Z) =F (.‘L', !/*) -2,

t (g, 2) = K max {|| P, (R (z, 2) Il, || Py (R (z, 2))[V2}, (4.6)
U= {('7:1 = Uo It (.2, z) < tl}!i

y(x, 2) =1y, +t(x, z) h.

Since t(x, z) € (0, t,) for (x, z) € U', we can show by virtue of relations (4.6) and the
definition of the point h that for the points u = (x, z) € U' and v = y(x, z) conditions a)
and b) of Theorem 1 are valid for ¥ (u, v) = F(x, y) — z. Thus, in the case under consider-
ation, all conditions of Theorem 1 are fulfilled. Therefore, there exists a mapping r: U' =

Y such that
F(z, y (z,2) + 1 (2,2) = 3,
hr @)l < KU P (F (2, y (z,2) —2) || +
+ " PZ (F ('Zv Yy (xi Z)) - Z) “/t (I, Z)].

Let us set @ (x, z) = y(x, z) + r(x, 2). Then the assertions of the theorem follow from
(4.6), (4.7), and condition b) of Theorem 1 for v = y(x, z).

(4.7)
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