
INVERSE PROBLEM FOR INTEGRAL OPERATORS 

V. A. Yurko 

In this note, we investigate the inverse problem for integral operators of the form 

Let M(x, t, I) denote the kernel of the integral operators MI = (E -- IM)-*M, where E is 
the identity operator and 

M / =  M (x, t) ] (t) at. 
0 

Let us set 

~x 

g (x, ~) ---~ g (x) + ~ ~o M (x, t, X) g (t) dr. ( 2 )  

Then ( s e e ,  e . g . ,  [1] )  t h e  e i g e n v a l u e s  t k of  A c o i n c i d e  w i t h  t h e  z e r o s  o f  the  f u n c t i o n  

S ~ (~) = t - -  ~ v (x) g (x,  ~) dx, ( 3 )  
0 

which is called the characteristic function (c.f.) of A. Here the eigen- and the associated 
functions gk(x) of the operator have the form 

if r k is the 
the totality 

In this 

Problem 
g(x) and the 

Problem 

g~+~ (x) = o-iv g (x, X) ~ ,  v-~-0, l,...,rk-- I, 

multiplicity of %~ (~=%~ ..... %~+r~t). Let us set 8k = gk(~). We will call 
of the numbers {%k, 8k} the spectral data of A. 

note, we consider the following problems. 

i. To find the function v(x) with respect to preassigned functions M(x, t) and 
spectrum {%k } of an operator A = A(M, g, v) of the form (i). 

2. To find the functions v(x) and g(x) with respect to the preassigned function 
M(x, t) and the spectral data {Ik, 8k} of the operator A(M, g, v). 

i. Let the function M(x, t) satisfy the following condition (condition M~): 
tions 

a~§ t), ~, 1 = 0 ,  i, 
8x~OtJ 

= o  are continuous for 0 ~ t ~ x ~ ~, and M(x, x) = --i, M(x,t t=~ 

Then the operator D = M-* has the form 

Dy = iy' (x) + I:  H (x, t) y (t) dt, y (0) = 0, 

where H(x, t) is a continuous function for 0 ~ t _< x _< ~. 

The f u n c -  
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Definition. The operator A is said to belong to h(*)oo if the function M(x, t) satis- 
fies the condition M,, the functions g(x) and v(x) are absolutely continuous for 0 ! x ! w; 
g' (x), v"(x) ~ Z2 (0, n), and ao-bo @ O, where  

ao~---' q-ig(O)v(O)~- I:V(~)(ig'(~)+ S:H(T,s)g(s)ds)dz, 
bo = (0) (a).  

For  s i m p l i c i t y ,  we s o l v e  Prob lems  1 and 2 f o r  o p e r a t o r s  o f  t h e  c l a s s  A(*)oo .  

THEOREM 1.  L e t  A @ A~ ~. 
o p e r a t o r  A have  t h e  form 

(4) 

Then the spectral data {~k, Bk}, k=0, q-i, +2 .... , of the 

~,~-----2k + a + u~, ~ =a, + x~,, (5) 

THEOREM 2. Let there be given functions M(x, t) and g(x), 0 < t < x < w, such that 
M(x, t) satisfies the condition Mx, g(x) is absolutely continuous,--g' (~s (0, ~), g (0) ~= 0. 
Further, let there be given numbers Xk, k ffi 0, -+i, _+2, ..., of the form h~---2kq-~-u~, 
hk~m0, x~l 2. Then there exists a unique operator A (M, g, v) ~ A(~), for which X k are the 
elgenvalues. 

THEOREM 3. If a function M(x, t) that satisfies the condition Mt and numbers X k and Bk, 
k = 0, +i, -+2, ..., of the form (5) are given, then there exists a unique operator A(M, g, 

~o) for which {~k, 8k} are the spectral d a t a .  U) E z ~-00, 

We prove some lemmas. 

LEMMA I. Let there be given numbers kk, k = 0, -+l, -+2, ..., of the form %~.---~2k ~ =-~ 
x~, ~ W= 0, u~ ~ 12 Set 

(6) 

where 

_ 
, = , ~ 2 4 7  ' ' 

po = ia exp ( i ~ ) ,  ~o = 2k + 

(the case where a is an even integer brings in insignificant changes). 
representation is valid for f{ (k): 

Proof. 
sentation 

Then the following 

,~; (k) = 7" (i - -  e x p  (i (a - -  ~) n ) ) / -  I~ W (l) e x p  (--  iLt) dt, 

(t) x (o,  =II2_. (7) 

The function (s (k) = i -- exp (i(a -- A)~) has zeros A~ and admits the repre- 

Therefore, 

x k 

We choose  a We show that IF(l)[ < C6 in the domain Go={I: I~--%~]~6} for a fixed 5 > 0. 
natural number N such that ]K k ~ ~/2 for Ikl~N. Then, for ~G6 
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where 

F (L) = exp (H~ (L)) III # I<N L~ --"-~ ' 

M~ M~ 
" 

(9) 

Since 

k z_.~l~l>N 1 94: + =-- X I, j , 

it follows from (9) that IF(X) I < Cd for L~G~. 

Further, it follows from (8) that 

i.e., ~(%~)~l 2. Let us consider the function 

A ( ~ ) = Z ( X ) - - V ~ , ~ ) .  " 

Let us set O n = h(X~ It is obvious that O,~l~. Let us c o n s t r u c t  a function 
(0, ~) such that 

(10) 

w (t) ~ $~ �9 

O.----- l :  w (t)exp (--ikOt)dt. 

Let us consider the function 

and s e t  S (~) = (f~. (k))-x (0 (~) -- A (L)). The f u n c t i o n  S(A) i s  an a n a l y t i c  i n t e g r a l  f u n c t i o n  of  
~. We have 

I ~ ,  (~) [ ~ C. (i q- exp (Ira Xn)) 

in the domain G~. It follows from (8) and (i0) that A (~) = VSeo (~).(F (k) -- i). Using the maxi- 
mum modulus principle for analytic functions, we see that the function S(%) is bounded and, 
consequently, S(l) - C by the Liouville theorem (see [2, p. 209]). Since x, x § --= lim S. 
(ix) = 0 (x real), it follows that C = 0, and we arrive at relation (7). The lemma is proved. 

LEMMA 2. The integral equation 

P(x, t ,a)=i Ix-t+=H(t + ~, ~)d~ + i[x-t+=ds ~' H(s+ t ,s+ ~).P(s+ ~--a, ~, a) d~, 

has  a un ique  s o l u t i o n  P(x ,  t ,  ~ ) ,  and the  f u n c t i o n s  P(x ,  t ,  a ) ,  (@/@x)P(x, t ,  ~ ) ,  
t, a) are continuous with respect to all the variables. 

Proof~ We solve Eq. (ll) by the method of successive approximations: 

(Zl) 

(1)/Bu)P (x, 

.x~-t+~ H (t ~, ~) d~, Pl  (x, t, a) = ~ + 
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Cx-t +a t 
i )~ ds Io H (s -~- t, s + ~). P,. (s + ~-- a, ~, a) d[. P~+1 (x, t, 

Let us set Co = max I H (:r, t) ], 0 .~< t <. x -..< ~. Then 

I P , (x ,  t, a )  l < Co'~t, 

Hence, by induction, we obtain the estimates 

tk-1 
I p t t ( x , t , a ) l ~ < ( C o n ) ~ ,  k-----t ,  2 . . . .  

Thus, the continuous function 

p (x, t, ~ , )=2~=~ e~ (x, t, r 

is a solution of Eq. (II). The existence and continuity of the derivatives with respect to 
x and a follow from the term-by-term differentiability of the series�9 The lemma is proved. 

LEMMA 3. Let A ~ A(~ ). Then the following statements are valid: 

I) The c.f. f{ (%) of the operator A has the form 

(~) = I -- ~ It m (t) exp (-- i~ (~ -- t)) dt, (12) 

where 

( . t  

, .  (t) = g (o),, (t) + ~o u h )  Q (t, ~) d, 

u (t) = v (= -- t), (13) 

The function P(x, t, q) is a solution of Eq. (Ii). In addition, the function m(t) 
ous, m'(t)~2(0, ~), |-5 im(~)-----a 0, m(0)=--~b0, where ao and bo have the form (4). 

2) The following representation is valid for the function g(~, A): 

g (;, ~) = g (o) exp ( -  ~,,) + I~ ~ (t) exp (--  ~t)  dt,  (14 ) 

where y(t)= ~' (t)~ ~(0,~), 

a, ~ )  

is continu- 

(u  - -  t) = - -  g (t) - -  ~o p (u  - -  z ,  t - -  T, z )  g 09 d'r (1 5) 

Proof It is clear that -i �9 M~ y = Dy- %y, y(0) = 0, and the function z(x) = M(x + a, 
is a solution of the Cauchy problem 

S iz'(x) ~ H ( x + a , t + a ) z ( t ) d t = ~ , z ( x ) ,  z(O)- - - - - - - i ,  ( 1 6 )  
' 0 

for fixed = ~ [0, x]. Consequently, 

x 

, - -  i P (x,  t, a )  exp  ( - -  i~. (x - -  t)) dt), M (x -u cz, c~, X) ----- (exp ( - -  i~x) .~- Jo 

since the right-hand side of Eq. (17) is also a solution of the Cauchy problem (16). 
stitute the obtained representation (17) in (2) and get 

(17) 

We sub- 
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,(X, 2~)--~g(x)--'k I~exp(--O~t).  (g (z - - t )  + I~-' P(t + ' r  (18) 

Hence, in particular, t h e  representation (14) follows. Further, we substitute (18) in (3) and 
get (12), where the function m(t) is defined by Eq. (13) and is a continuous function. We 
show that m' (t) ~ ~ (0, ~). To this end, we write re(t) in the form 

m (t) = g (0) u (t) -~ I t. u (t - -  ~) R (t, x) d~, 

(t, ~) = g' ('0 + P (~ - t + T, T, o) g (o) + 

+ g'(~--s)P(~-- t+s,s , , r - -s)ds+ g(r,--.~)P(~--t+'s,.~,~--s)ds, 
0 

Ox ] 
By virtue of (ii), we get 

P(~-- t  + s,s, ~- -s )= 

iIt (~, ~ --  s) i I u-t+~-'  
8 

P01 + ~ - '~  + s, ~,'~-- s) d~. 

Thus, the function R(t, ~) is continuously differentiable with respect to t and, consequent- 
ly, m' (t) ~ fs (0, ~). The lemma is proved. 

Proof of Theorem I. By v%rtue of Lemma 3, the c.f. ~ (%) of the operator A has the form 

(19) 

where 

So (k) --~ 1 - -  exp (i (~ - -  k) u) ,  

~Z, (~.)= I~ w (t) exp (--i~,t) dr, 

exp ( - -  iag) = a o .  bo 1, w (t) = l d m (g - -  t) E X~ (0, =). 

The estimate l~.(X) l>C (I + exp (Im%~)), is valid in the domain G0-~-{%: [%--k~ l>6}, 
where k~ = 2k + ~ and, consequently, 

]ao I'l~o(~) I >  I~x(M I 

for sufficiently large ]X]. Therefore, by the Rouche theorem (see [2, p. 246]), 2N + 1 
zeros ~k, k=0, ~cI .... --4-N, of the function ~(%), lie inside the contour FN={%: [%--=] = 
2N + I for sufficiently large N and exactly one zero Xk of the function ~ (%), lie inside the 
contour 7~(8)-----{%: ]~-- %~ [ = 5} for sufficiently large kk, ~ i.e., A k = 2k + u + <k, Kk = 
o(I). Substituting this expression in (19), we make the more precise assertion that ~ Z  2. 
Using (14), we now easily obtain the desired asymptotic formula for the numbers 8k. The 
theorem is proved. 

Proof of Theorem 2. We construct the function Z(~) by Eq. (6) with respect to the 
given numbers A k and, by Lemma I, the representation (7) is valid for ~ (%). Let us set 

m{t)--~-.--ibo+ i I~ow (n - -  ~) dx, bo=vexp(ic~)i 

Further, let a function u(t) be a solution of Eq. (13). It is clear that u(t) is continuous, 
it' (t)~ ~s (0, n), and u(0) # 0. Let us set v(t) = u(~ -- t) and consider an operator A(M, g, v) 
of the form (I). Let ~* (%) be the c.f. of A. Then, as in the proof of Lemma 3, we get 

or, after integrating by parts, 
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~* (~) = t ~- im (n) - -  im (0) exp ( - -  i~n) + ~o w (t) exp ( - -  iZt) dt. 

Comparing this equation with relation ( 7 )  and taking into account the relations ~ (0) = ~ *  ( 0 ) :  
I, im (0) = y exp (law), we get ~* (%)=---~ (%), and i + im(w) = y, and, consequently, the 

Atx~ and has spectrum %k. If it is assumed that there also exists an operator operator A~,~00 
A (M,g,~)~ A~ with the same spectrum %k, then it would follow from Lemma 3 and the unique- 
ness of solution of the integral equation (13) that v(t)=~(t), t~[0, n]. The theorem is 
proved. 

Proof of Theorem 3. For simplicity, we restrict ourselves to the case where all %k are 
different. As in the proof of Theorem 2, let us construct the functions ~ (%), m(t), and 
P(x, t, a) with respect to the preassigned numbers %k and the function M(x, t). We set ~k = 
%k -- a, g : a~ exp (ia~), ~k : ~k - g exp (--~k~). It is clear that ~l~. The system of 
the functions exp (--ivkt) forms a Riesz basis in ~(0, ~), since it is complete and quadratic- 
ally close (see [3]) to the orthogonal basis exp (-2kit). Let h(t)~_~(O, ~) be such that 

~ = f~ h (t)exp (~ i l~t  ) dt, 

and set 

Ix (t) ~-  - -  g - -  ~t h (T) exp (ia~) dT. 

Let the function g(t) be a solution of Eq. (15). It is clear that g(t) is continuous, g'(t)~ 
~(0,~), and g(0) = g ~ 0. As in Theorem 2, we now find the function v(t). By the same 
token, an operator A(M, g, v) of the form (i) has been constructed, and the numbers X k and 
Bk are the spectral data of A. As in Theorem 2, the uniqueness follows obviously from Lemma 
3. In the case of multiple Xk' the system of the functions t 9 exp (--i~kt), 9 = 0, I, ..., 
r k -- I, where r k is the multiplicity of %k, is a Riesz basis. The theorem is proved. 

Remark. Results, analogous to the above ones, hold also for other classes of operators, 
~_ A(-0 (~, ~)<m, whose c.f. have the form e.g., for the operators A ~.~, max 

,~-~ f ~ w ~ ( t )  exp X (Z) = 1 t ( - -  i%t) dt, 

wm (t) ~ ~2 (0, ~),  a~-b~ =#= O, 

ak = bj = O , k  = 0 , 1  . . . . .  v - -  t , ]  = 0, t . . . . .  ~ - -  t .  

Let us also observe that similar results are valid also for the case where M -t is an integro- 
differential operator of second order. 

2. In spite of the qualitative difference of the above-considered problems from the in- 
verse problems for ordinary differential operators, there is a connection between them. In 
this section, by the example of Borg's theorem [4] we show how the inverse problem for ordi- 
nary differential operators can be reduced to Problem 1. To this end, we give here a general 
uniqueness theorem for the solution of Problem i. 

Let us consider an operator A of the form (i) under the assumption that the function 
M(x, t) is the Hilbert--Schmidt kernel and g (x), v(x)~2(0, ~). 

THEOREM 4. Let the system of the eigen- and associated functions gk(x) of the operator 
A(M, g, v) be complete in ~2(0, n) and let ~k and Xk be the spectra of the operators A = 
A(M, g, v) and A = A(M, g, v), respectively. If %k = ~k for all k, then v(x) = ~(x) a.e. on 
the segment [0, w]. 

Indeed, under the conditions of the theorem, it follows from (3) that 

l :  (v (x) - -  v (x)) g (x, ~.) dx ~--- ~.-~ (~  (~.) - -  Z (),)), 

where ~ (~), and ~ (%) are the cf. of the operators A and A, respectively. Therefore, 
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p~ 

~o (v (x) - ~ (x)) g~ (~) dx = o 

and, consequently, v(x) = ~(x) a.e. on the segment [0, ~]. The theorem is proved. 

Let us consider the boundary-value problems L i ffi L(q(x), h, Hi) , i = i, 2, 

--y~ + q (x) y = ~y, q' (x) .~ Z~ (0, ~), 

y' (0) - -  hy (0) =- y' (u) + H~y ~ )  = O, H~ # Hz. 

Let the functions 
tions 

(2o) 

(x, ~) and ~i (x, %) be the solutions of Eq. (20) under the initial condi- 

(o, z) = r (~, ~) = l ,  ~' (o, z) = h, 

, i  (u, Z) = --H~ 

and let M(x, t, ~) be the Green function of the operator y" -- q(x)y ffi ~y, y(0) = y'(0) ffi 0. 
Then the eigenvalues ~ni, n = 0, i, 2, ... of the problems Li are the zeros of the functions 
AI(X) = ~'i(O, X) - hOi(0, X), and the functions Ai(%) are determined uniquely by their zeros. 
Let ~ni be the eigenvalues of the problems s = L(q(x), ~, Hi) and let the functions ~ (x,%), 
~i(x, k), M(x, t, l), ~i(X) be constructed analogously for the problems s 

We know from the theory of transformation operators (see, e.g., [5]), that if a function 
G(x, t) satisfies the conditions 

O~G (x, t) 
Ox 2 

q ( x ) G ( x ,  t) = o~G (~, t) at ' .  ~( t )G(x, t ) ,  O < t < x < n ,  

G (x, x)= h + + (q(t)-- q dr, 

= ~  

then 

q) (x, L) = (E -4- G) ~ (x, ~), M~ (E + G) = (E -{- G) ~1;/~, 

(2l) 

(22) 

where 

(E + G) ] = / (x) + I:.G (x, t) [ (t) dt, 

M ~ / =  I: M (x, t, ~) ] (t) dr. 

Let us consider the family of the operators 

La,{ (q (x), h, H1, H~), -- ~ < (z < o~, 
L~, {y = y" - -  q (x) y + r 

y' (0) -- hy (0) = y' (~) + H,y (u) --- 0 

The inverse operators Aa,i = L-*~,i have the form 

f~ M ( x ' t ' u ) /  l Aa, i/ (t) dt + r (z, ~) u --- ~Pi (t, r162 ] (t) dt, 
a~ Ca) o 

and Pni --a is the spectrum of Au, i. Analogously, the operators 

E i Ca) 

are inverse to the operators La.~(~ (x),h, Hz, R~) and have the spectrum 0hi --a. 
that Borg's theorem [4] can be obtained as a corollary of Theorem 4. 

Borg's Theorem. If Phi = 0hi for i = i, 2, then 

q (x) = ~ (x), h = ' h ,  H~ = /~ .  

Now, we show 
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Proof. Let a function G(x, t) satisfy the conditions (21). Let us set Ba, i = (E + 
G)-*Aa,i(E + G). Then, using (22), we get 

Ba, J == f "~ (x, t, a) / (t) dt -~ ~i (a) o o v~ (t, a )  / (t) dt, 

where 

vi (z, a) = (E + 6") ~h (z, ~), 

(~ + ~*)i = I (x) + I~ ~ (i, x) I (t) dt. 

Under the conditions of the theorem, the operators ~,i and B~,i have identical spectra and, 
consequently, by Theorem 4 we have 

~ (x, ~) = (E + V*) r (x, ~). 

Since 

(x, ~) = (H1 - -  H,) -1 (~, (a) r (x, ~) - -  ~1 (~) r (z, ~)), 

we have  ~ ( x , a )  = (E + G * ) ~ ( x , a ) ,  which ,  t o g e t h e r  w i th  (22) ,  g i v e s  (E + G*) = (E + G) -1 .  This  
is possible only in the case where G(x, t) ~ O. Consequently, q(x) ~ q(x), h = h, H i = Hi. 
The theorem is proved. 

In analogous manner we can obtain a uniqueness theorem for the reconstruction of a dif- 
ferential operator with semidecomposable boundary conditions with respect to two spectra (see 
[6, Theorem 3]). 

i. 

. 

3. 

4. 

5. 

6. 
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