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Abstract 

Problems of large sample estimation and tests for the parameters in a single server queue are 
discussed. The service time and the interarrival time densities are assumed to belong to 
(positive) exponential families. The queueing system is observed over a continuous time 
interval (0, T] where T is determined by a suitable stopping rule. The limit distributions of 
the estimates are obtained in a unified setting, and without imposing the ergodicity condition 
on the queue length process. Generalized linear models, in particular, log-linear models are 
considered when several independent queues are observed. The mean service times and the 
mean interarrival times after appropriate transformations are assumed to satisfy a linear 
model involving unknown parameters of interest, and known covariates. These models 
enhance the scope and the usefulness of the standard queueing systems. 

Keywords: Single server queues, maximum likelihood, stopping times, exponential families, 
generalized linear models, tests of fit, asymptotic inference. 

1. Introduction 

In  a p rev ious  p a p e r  b y  B as awa  and  P r a b h u  [1] m o m e n t  and  m a x i m u m  
l ike l ihood es t imates  were  o b t a i n e d  for  single server  queue ing  sys tems  obse rved  

unt i l  the epoch  of  the d t h  depar tu re .  T h e  cons i s tency  and  the a s y m p t o t i c  
n o r m a l i t y  of  the es t imates  were  es tab l i shed  wi thou t  impos ing  a n y  e rgodic i ty  
r e q u i r e m e n t s  on  the queue- l eng th  process .  In  sect ions  2 and  3 of  this p a p e r  we 

p re sen t  a unif ied f r a m e w o r k  in which  the sys tem is obse rved  over  a t ime  in te rva l  
(0, T]  where  T is a su i table  s t opp ing  t ime. F o u r  d i f ferent  s t opp ing  rules are  
cons idered .  I f  a r a n d o m  n o r m i n g  is used  it is shown  tha t  the  l imit  d i s t r ibu t ion  
does  not  d e p e n d  on  the  pa r t i cu la r  s t opp ing  t ime  used. O n  the o the r  hand ,  the use  
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of a non-random norming leads to a limit distribution whose covariance matrix 
does depend on the stopping rule. This is illustrated for the M / M / 1  queue in 
section 4. We assume that the interarrival time and the service time densities 
belong to the class of (non-negative) exponential families. This class includes 
exponential, the Erlangian, the beta, and the inverse Gaussian among others. 

In section 5 we consider a generalized linear model using several independent  
(but not necessarily identical) queueing systems. It is assumed that the mean 
interarrival times and the mean service times, after appropriate transformations, 
satisfy a linear model involving unknown parameters and known covariates. This 
model differs from the usual generalized linear model (see McCullagh and Nelder 
[7]) in that (a) we have a random number of observations from each system, (b) 
observations are over a continuous time interval, and (c) asymptotics is discussed 
as the time of observation becomes large (rather than as the number  of indepen- 
dent realizations increases). The generalized linear model presented here enhances 
the scope and usefulness of the standard queueing models. Finally, in section 6 
large sample tests for testing goodness of fit and for homogeneity are considered 
briefly. 
Notation:We shall use ~ to denote convergence in distribution. Convergence in 

p 
probability is denoted as ~ or p lim. The random vector having the k-variate 

normal density with mean vector /~ and covariance matrix N is denoted by 

Nk(l~, ~,}. 
References to early work on inference from queueing systems can be found in 

Basawa and Prabhu [1]. More recent references are given in a comprehensive 
survey by Bhat and Rao [2]. For Bayesian approach to inference from queues see 
McGrath,  Gross and Singpurwalla [8], and McGrath  and Singpurwalla [9]. 

2. The likelihood function and the stopping rules 

Consider a G I / G / 1  queueing system in which the interarrival times { uk, k >/ 
1} and the service times { vk, k >~ 1} are two independent sequences of indepen- 
dent and identically distributed non-negative random variables with @nsities 
f(u; O) and g(v; co) respectively, where 0 and ~ are unknown parameters. We 
assume that f and g belong to the continuous exponential families given by 

f(u; O)=aa(u ) e (~176 (1) 

g(v; ~) = a2(v ) e {*h2(~ (2) 

It is further assumed that the densities in (1) and (2) are equal to zero on 
0). 

For simplicity we assume that the initial customer arrives at time t = 0. Our 
sampling scheme is to observe the system over a continuous time interval (0, T] 
where T is a suitable stopping time. The sample data consist of 

{A(T), D(r), (3) 
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where A ( T )  is the number of arrivals, and D ( T )  the number  of departures 
(service completions) during (0, T]. Note  that no arrivals occur during 

A ( T ) ]  J ( D(T) ] 
Y'~ ui, T[  and no departures during 7 ( T )  + Y'~ ok, T , 

1 1 

where y ( T )  is the total idle period during (0, T]. 
The data in (3) can be represented equivalently in terms of the queue-length 

process { Q(t),  t >~ 0} observed over (0, T], which in turn is determined by the 
total number  of transitions (arrivals or departures) during (0, T], the intervals of 
time between successive transitions, and the queue length at the epochs of the 
transitions. 

Some possible stopping rules to determine T are given below: 
Rule 1. Observe the system until a fixed time t. Here T = t with probability one, 
and A( t )  and D(t )  are both random variables. 
Rule 2. Observe the system until d departures have occurred. Here, T = ~,(T) + v a 
-q- U 2 -'1- . . .  " } ' U d ,  D ( T )  = d, and A ( T )  is a random variable. This rule was used 
previously by Basawa and Prabhu [1]. 
Rule 3. Observe the system until m arrivals take place. Thus, T = u 1 + u 2 + . . .  urn, 
A ( T )  = m, and T and D ( T )  are random variables. 
Rule 4. Stop at the n th  transition epoch. With this rule, T, A(T) ,  and D ( T )  are 
all random variables, and A ( T )  + D ( T )  = n. 

In the general case we observe the system over a time interval (0, T), where 
T -  T c is a stopping time depending upon a parameter c(0 < c < oo) in such a 
way that as c ~ or, Tc ---, o0 a.s. For example, suppose that the cost of observa- 
tion over (0, t] is given by C(t),  where C(t)  is calculated from the data (3) with T 
replaced by t, and is assumed to be nondecreasing function of t. Clearly 
{ C(t) ,  t >1 0) is a stochastic process. For thes topping time T -  T~ we choose the 
one determined by 

V = i n f { t  > O: C(t)>c}. (4) 

For uniformity we write T ~ ~ a.s. in the limit relations derived in the paper, it 
being understood that T-= T~ ~ oo a.s. as c ~ or. 

The likelihood function based on the data (3) is given by 

A(T) D(T) 

LT(O, O ) =  ]-I f (Uk; O) I--I g(Vk; q)) 
k = l  k = l  

•  0 T -  ~'~ 1 - G ~  T - y ( T  ) -  E , (5) 
1 1 

where F and G are the distribution functions corresponding to the densities f 
and g respectively. The likelihood in (5) remains valid under all the stopping rule 
described above. 
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We define the approximate likelihood L~,(O, O) as the expression in (5) 
omitting the last two factors, i.e., 

A(T)  D(T) 

L~r( O, 4))= I-[ f(uk; O) I-I g(vk; ~). (6) 
k = l  k = l  

The maximum likelihood estimates obtained from (6) are asymptotically equiv- 
alent to those obtained from (5) provided the following two conditions are 
satisfied as T---) ~ :  

30 In 1 - F  o T -  ~ u k ~ 0 (7) 
1 

-1/2 3 In 1 - G  o T - y ( T ) -  ~ Vk) P--+0. (8) {D(T)}  30 

In order to understand the implications of these conditions note that 
A(T)  D(T) 

T -  E Uk~-UA(T)+I' T - v ( T ) -  E Vk=VD(T)+I 
1 1 

where UA(T)+ 1 is the last (partially observed) interarrival time, and VD(T)+ 1 is the 
residual service time of the customer (if any) still being served at time T. If T = t 
with probability one (stopping rule 1) it is known from renewal theory that 

t UA(T)+a has a limit distribution as t ~ ~ .  Since 

ln[1 - Fo(u'A(t) + 1)] 
30 

is a continuous function of u' A(t)+l it follows that the former also has a limit 
distribution as t ~ oe. Consequently, the condition (7) is satisfied under rule 1. A 
similar argument can be used to verify (8). For rule 2, Basawa and Prabhu [1] 
have verified (7) for M / G / 1  and Ek/G/1; (8) is satisfied trivially since the last 
factor on the right side of (5) is unity. Similarly (7) and (8) are satisfied under rule 
3 for the system G I / M / 1  and GI/Ek/1. We have not verified these conditions 
for rule 4, but conjecture that they are satisfied at least for some special*cases. 

It is seen from the above discussion that the class of stopping rules satisfying 
(7) and (8) is nonempty,  and that it indeed contains important  special cases. 
Accordingly, we shall use (6) as a basis of inference and study the asymptotic 
properties of the estimates so obtained. 

In order to derive the limit distributions of our estimates we shall impose the 
following stability conditions on our stopping times: 

A(T) P D(T) P 
1, -~ 1 as T-~ oe a.s. (9) 

EA(T) ED(T) 

In practice these conditions can be replaced by equivalent, but simpler condi- 
tions, as for example, for the system M / M / 1  (section 4). 
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3. Approximate maximum likelihood estimates 

We now use the fact that the interarrival t ime density f (u ;  0), and the service 
t ime density g(v, ~) belong to exponential  families given by (1) and (2). It is 
easily verified that  the momen t  generating function of the r andom variable h i (u)  
is given by M(t) = exp[kl( t  + 0) - kl(0)].  Consequently 

~?l(O)=Eo[hl(U)]=kl(O), o](o)=garo[hl(U)]=kl'(O). (10) 

Similarly, 

n2(O)=E~,[h2(v)]=k'2(e~), o2(O)=Var~,[h2(v)]=k2'(O). (11) 

The  approximate likelihood function (6) reduces to 
{A(T) 

L~(O, r E [hl(Ui)-kl(O)] 
\ i=1 

D(T) } 
+ E . (12) 

i=1 

From (12) the likelihood equations are found to be 
3 A(T) 

3-O In L~-= E h~(u,)-A(T)k;(O)=O, 
1 

and 
0 D(T) 

- -  In L ~ =  ~'~ h2(vi)-D(T)k2(O)=O. 3e~, a 
F r o m  now on we shall write L for L~. The estimating equations reduce to the 
m o m e n t  est imation equations, namely, 

1 A(T) 1 D(T) 

A(T) ~ hl(Ui)=T]l(O)' D(T) E h2(vi)=T]2(d?)" (13) 
1 1 

The solutions for 0 and 0 from (13) are given by 

I q = r / 1 1 [ ( A ( T ) )  -1 E hl(Ui), dt~=~21 ( D ( T ) )  -1 E h2(vi)  , (14) 
1 ~ 1 

where ~171(-) denote  the inverse functions of ~/i(') (i = 1, 2,). The existence of 
these inverses follows from properties of the exponential  family (viz., ~ = k "  = 
ai 2 > 0). The sample Fisher informat ion is ;lven by 

F(O, ~, )=  - [ 02 In L 0 2 In L 

002 00Oq, 

0 2 In L 32 In L 

3~30 3.62 

A(T)a 2 

0 

0 1 

D(T)a2 I' 
(15) 
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and hence the Fisher information matrix is 

I(O, 4~)=EF(O, g~)=[o~EA(T) 0 ] 
0 o2ED(T) " 

We can now state the following: 

(16) 

PROPOSITION 1 

If the stopping time T satisfies the following stability conditions (9), then 

F_l/2(O,q,)[-~O ln L [(0) (1 0)] 
N 2 as T--, oe a . s .  

0-~ lnL 0 '  0 1 
(iv) 

Proof 
We have 

F-1/2(O, eo)( ~--~ ln L 
~ l nL  

A(T) 
(A(T)~  -1/2 E (hl (Hi)- -~l(O)}  

1 
D(T) 

(D(T)~ -1/2 E (h2(v , ) - ' 2 (~ )}  
1 

The desired result follows from the random sum central limit theorem (see 
Billingsley [4]) and the Cramer-Wold argument, in view of the assumptions (9). 
[] 

C O R O L L A R Y  1 

Under the stability conditions (9), 

) [ 3 1 n L  [( ) ( 
, 30 0 1 

I-~(0, 0 0 ln___~L ~ N2 0 ' 0 
04, 

1 a s  ~ a . s .  

Proof 
The result follows from proposition 1 and eq. (16). [] 

The limit properties of the maximum likelihood estimates d and r are given by 
the following two theorems. 

T H E O R E M  1 (consistency) 
We have 

d k  ^P 0, q,~q~ asT---,oza.s. (19) 
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Proof 
We can write (14) as 

0 = .1(]'/1), ~ ) = . 2 ( h 2 )  (20) 

where "1 = ~/~-1, "2 = ~/21 and hi, h 2 denote the sample averages with random 
number  of observations of (hl(ui), i = I ,  2 , . . . , A ( T ) } ,  and (h2(vi), i= 
1, 2 , . . . ,  D ( T ) ) .  By the law of large numbers we find that 

hi pEo(hl(u)) ,  h2 L E~,(h2(v)). 

The desired results follow since "1, "2 are continuous functions of 0, 0. [] 

THEOREM 2 
Under  the stability conditions (9), we have 

 0o) as T--, o~ a.s. (22) 

Proof 
From (14) and (15) we have 

0 0 ) =  (A(T)~ 0''1/2r --  ) )  [ " 1 ( ] / 1 )  --  " 1 ( 7 / 1 ( 0 ) ) ]  F1/2(0'*) ~p ( D ( T )  2 1/2- - (23) 
o2 ( , ) ) l - 2 (h2 )  

From the random sum central limit theorem and the Cramer-Wold device we 
obtain 

((A(T)~ ~)] ,  (24) 

( D(T)a22(,#))1/2( h 2 ~/2 (q))) 

in distribution. Since "1 and "2 are continuous functions the desired result 
~ O - 2  follows from (23) and (24) upon noting that ,~(0) = o12(0) and ,2(q)) 2 (q)), 

and using a well known convergence theorem (see Rao [10], p. 387). [] 

COROLLARY 2 
Under  the stability conditions (9), we have 

( 0o) o 1o)1 o) (o as T ~ m.  (25) 

Proof 
The result follows directly from theorem 2 and the stability conditions (9). [] 
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R E M A R K S  

1. The use of random normings in theorem 2 simplifies the derivation of the 
limit distributions as well. as its application in practice. Moreover, since the 
sample Fisher information F remains formally the same for any stopping rule 
(rules 1 to 4 described in section 2) the limit distribution also remains the same. It 
is to be noted that no ergodicity assumptions regarding the queue-length process 
are made in the above derivations. 

2. If we choose to use the nonrandom norming I(O, cO) instead of F(O, ~) the 
expression for I(0, e~) depends on the stopping rule used since EA(T) and 
ED(T) depend on the distribution of the stopping rule. This is illustrated in the 
following section for the M / M / 1  system, where the stability conditions (9) are 
replaced by simpler conditions. 

4. Computation of limiting Fisher information for M / M / 1  under stopping rules 

If we wish to use a non-random norming to obtain the limit distribution of the 
maximum likelihood estimates we need to find the limiting Fisher information 
under the specific stopping rule used. The limiting covariance matrix for the 
estimates is then given by the inverse of the limiting Fisher information. In this 
section we derive the limiting Fisher information for the M / M / 1  queue under 
the stopping rules 1 to 4 described in sect ion 2. Here f(u; O)= Oe -~ and 
g(v; 4') = ~e -~v- Denote p = 0~ -1 

R U L E  1: T F I X E D  AT t 

Here we replace the stability conditions (9) by 

(a) A(T)  p Cl(8) ,  and (b) D(t) p C2(8 ' ~), (26) 
t t 

as t -~ oo. The limiting Fisher information J(8, ~) is then given by 

J(O' ep)=p lim { F(O' ep) t -~" C1(0)0-20 C 2 ( 0 ,  0 )~)~_2  ' (27) 

using (15) and the fact that Var(u) = 0 -2, Vat(v) = e? -2. We know that C1(0 ) = 0 
by the renewal theorem and C2(0, ~ ) =  4~ by lemma 2 of Basawa and Prabhu 
[1]; in fact, both conditions hold almosts surely. Here ~ = min(1, O)- Thus, finally 
we get 

0 -1 0 ) (28) 
J ( o ,  o �9 

l 

We can then conclude from theorem 2 that as t ---> oe, 

)) (29) 
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Wolff [11] used the (random) norming N(t) ,  the total number  of transitions, 
instead of t. Note, however, that he assumes steady state (i.e., p < 1) to derive his 
results and invokes Billingsley's [3] limit results for ergodic Markov processes. 
Our technique is much simpler and at the same time we obtain results without 
imposing the steady state restriction. Our result in (29) is valid for any 0- 

In order to compare (29) with the corresponding result of Wolff [11] for the 
steady state we now find the limiting Fisher information using N(t) as the 
norming. We have 

U(t) _A( t )  +D(t____)) ~O+ep~, 
t t t 

and therefore using (28) above, we obtain 

N ( t ) -  -T ~ 0 { q , ( 0 + q , ~ ) } - l ~  (30) 

as t ~ m. We can now state the following result as t ~ oo: 

N ~ ) -  ~ = N  2 , 0 q,(0 + ~ ) ~  -1 

Now, for O < 1, ~ = O, and (31) reduces to 

which coincides with Wolff's [11] result for this case. Note however that (31) is 
valid for all 0 while (32) is a special case for 0 < 1. 

RULE 2. OBSERVE UNTIL d DEPARTURES 

This rule was used by Basawa and Prabhu [1] for the G I / G / 1  queue. The 
limiting Fisher information is seen to be 

J(O'q')=plim (F) 

where 

riO -2 0 ) 

0 q-2  

 -max l 

as shown in lemma 1 of Basawa and Prabhu [1]. Consequently, we conclude that, 
as d ~  oc,  

0--0 ~ N2[[O' 7 -102 0 
4, 0 (33) 
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RULE 3. OBSERVE UNTIL m ARRIVALS 
We have 

 =(mOo2 o ) 
D(T),#-2  " 

m Note that T = ~1 ui --+ oo as m --+ m. Now 

D(T) D(u I -~- bl 2 + " ' "  -}- l . lm) U 1 "}- bl 2 " } - . . . h i  m 

m bl 1 q-  bl 2 or- . . .  U m m 

by (26b), which holds almost surely, and the law of large numbers. Hence the 
limiting Fisher information is 

0 
J(O, q,) = p l i m  ( F )  = (002 ~-  2(/)- 1~ ) �9 ( 3 4 )  

Finally, the limit distribution of the maximum likelihood estimates is given by 

( ~ )  ( ( ~ ) 0 2  0 )) 
0 ~ N2 , (35) 

as m--~ m. 

RULE 4. OBSERVE UNTIL n TRANSITIONS 
Note that here T =  E;Tj, where {T j} are the intervals between successive 

transitions. We have 

T _  I { ~ T r  = O ) + ~ T j J ( X j  >0)}  
n n * j ~  - 1  --1 1 

where J ( A )  denotes the indicator function of the event A, and Xj = O(T~ + T2 
"~- . . .  -b rj_ 1) = queue-length at the ( j  - 1)th transition epoch. It is easily verified 
that, as n ~ oc, 

T p 
- -  --+ ( 1  - ~ ) 0  - 1  q- ~ ( 0  -}- ~l~) - 1  
n 

Furthermore, we have 

A(T) k O  a s n - - + ~  (and h e n c e T - - + ~  a.s.). 
T 

Finally, we have, as in ~ ac, 

A ( T ) n  _~_ ( _ ~ ) ( T ) n  L 0{ (1 -~ )0 -1 -~  ~(0q-~/~) -1} 

= 1 -  ( 1 + p ) - 1 ~ .  
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Also, 

D(T) 1 A(T) -). (1 q- p)-l~, 
n n 

The limiting Fisher information is given by 

(F) (0 2(1-- (1 -~ p)-l~} 0 ) 
J(O, , ) = p  lim = , (36) 

n-~oo 0 *-2(1  + p ) - ' ~  

where f = min(1, p) as before. Thus, 

It is interesting to compare (37) with (31) where t was fixed and N(t) was 
random while in (37) T is random and n is fixed. 

REMARKS 
We have demonstrated above the fact that the use of a non-random norm 

necessitates one to compute the limiting Fisher information which in turn varies 
with the stopping rule. On the otherhand, if we use the random norming theorem 
2 gives directly: 

0 
0 

as T--+ oz a.s. Note that (38) remains formally the same under all the stopping 
rules 1 to 4. For this reason it is simpler to use (38) no matter what stopping rule 
is used. Moreover, steady-state assumption is not required for the validity of (38). 
Nor  is it required for the computat ion of the limiting Fisher information using 
non-random normings. 

5. Generalized linear model 

Suppose we observe k independent  G I / G / 1  queues over (0, T/] where T/ is a 
suitable stopping time , (i = 1 . . . .  , k). The sample data consist of ((Ai(T~), uij), 
i =  1 , . . . ,  k, j = 1 , . . . ,  Ai(T~) , and (Di(T~), va) , l =  1 , . . . ,  D~(T/)) where Az(T/) is 
the number  of arrivals for the ith queue, Dg(T,) the number  of departures, u/j 
denotes the ith interarrival time, and v, is the service time of the lth customer. 
The densities of u/j and v a are assumed respectively to be 

f i (ul j ;  Oi)=ali(Uij)exp(O~hli(Uij)-kli(O~)} (39) 

gi(  Uil; *i)  -~- a2i(  Uil) exp{ , ,h2 , (va )  - k2 i (  , i )  } . (40) 
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The log-likelihood function in this case is given by (ignoring terms free of 
parameters) 

In t ( O ,  ep) = E O, E hxi(u,j) - A,ka,(O~) 
i=1 j = l  

+ Os~_,h2i(v~t)-D,  k2~(r . (41) 
l=1 

Let t~li(O ) = k~,(O) = Eo(hl(uij)),  and ~2i(q~) = k; i (~  ) - E , (h2(vu)  ). Since /~1 
and /~2 are positive quantities we consider the log-linear model  

P q 

In #1i(0) = Y'~ a~ya;, In ~ 2 i ( ~ ) =  E bij~j, (42) 
j = l  j = l  

where ((aij)) and ((bij)) are known covariates, and the vectors a T = ( a l , . . .  , ap), 
f i t  = (/3a,... ' fiq) are the unknown parameters of interest. The likelihood estimat- 
ing equations for a and fi are given by 

Ol.  
Oa -- E { (S l i - l - t l i (a)Ai)~  (a) \ = 0  

i =1  

and 

oB - E { ( s 2 , - ~ 2 , ( B ) D ~ ) o ; ? ( B ) }  " = o  
,=1  

where 
Ai Di 

j = l  /=1 

a~(a)  = Var(hx(ui , ) )  , a22i(/~1 = Var(h2(v, , ) ) .  

The  sample Fisher informat ion for a and /~  is given by 

Fll  0 

F =  0 F22 ' 

where 

Fll = 
02 In L 

0OL 2 

E 
i=1  

Sli  - Ai~ l i  ( a )  

o?,(~) o i(o  

+ E  i=1 o?i(~)  W J ' 

)J 

(43) 

(44) 
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F ~  

where 

and a similar expression for F22 Since by random sum central limit theorem we 
have 

A]-i/2(Sii-Ail.tii)==>N(O, 02),  as  A i --->oo a.s. 

for each i = 1 . . . .  , k, it follows that 

k [. Ai [O~lil(O.lilT[1..FOp(1)]} FI, = 4 

i=1 

We therefore consider an approximate form for the sample Fisher information 
given by 

F1]' 0 ] (45) 
0 r d  : 

and 

F iT= i~l o}i(o~ ) 0a ] --3--d-a 

, , ,  

Consider now the following stability conditions: 

Ai P 1, Di P 
1 as T~ ~ oo a.s., for each i = 1 . . . .  , k. (46) 

E(A,) e(Di) 

One can show using essentially the same arguments as in section 3 that the 
following result holds irrespective of which of the stopping rules 1-4  is used. 

T H E O R E M  3 

We have 

fi fl =~ N?+q , 1  , 

as T/--+ ~ a.s. (i = 1 . . . .  , k), where 1 denotes the (p  + q) • ( p  + q) identity 
matrix. 

R E M A R K S  

(i) It is interesting to note that F *  has essentially the same form as the exact 
(expected) Fisher information in the classical application of the generalized linear 
model, where the sample sizes A i and D i are treated as non-random. Here F *  is 
an approximate sample Fisher information, and A/, Di are of course random 
variables. 
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(iS) In the classical application of the generalized linear model  one typically 
lets the number  of samples k --+ m, while each sample size (A i and D,) is treated 
fixed. In the above situation however, we have treated k as fixed and let the 
sample sizes As, D s increase. If required, however, we could let A s and D s be 
finite ( random variables), and carry out asymptotics as k--+ m. The stability 
condit ions required for this approach are a minor  modification of those given by 
Fahrmeir  and Kaufmann  ([5], [6]) for the classical generalized linear model. We 
shall not pursue this point  further here. 

EXAMPLE: M / M / 1  

We now consider the special case for M / M / 1 .  The log-likelihood function 
ignoring terms free f rom parameters is given by 

k 

In L ( 0 ,  • ) =  s {(OiS, i-AilnOZl)+(gpiS2i-Diln(?71)} (47) 
i=1 

A, D 
= = --~?.j,=lUil. where Sis - s  and Szs Consider the log-linear model:  

In/*lS = In 071 = % + a2ai ,  

and 

In/~2s= In +71 = B1 + B2bs, (i = 1 , . . . ,  k ) ,  (48) 

where { as} and { bs} are known covariates, and (at,  a2, 191, B2) are the unknown 
parameters of interest. The estimating equations are: 

k O l n L  
-- s { S l i - A i e x p ( a l  +a2a i ) }  e x p { - ( a l  + a 2 a / ) }  = 0  

2~ i=1 

Din L k 
-- E { S i s -  Ai exp(al  + a2ai)}ai e x p { -  (al  + a2ai)} = 0  

OOL2 i=1 

O l n L  k 
- Y'. { $ 2 , -  D, exp(fia + ]~2bi)} e x p { - ( f i ,  + fi2b2)} = 0  

0~1 i= l  

0 1 n L  k 
- Y'. {s2/-D, exp(B  + &b,)}b, +&b,)} =0. 

~ 2  i=1 

The approximate sample Fisher information is given by F *  in (41) with 

FIT= 

k k 

Y'.A i ~ a i A  i 
1 1 

~_~aiAi 2a~Ai 
and F2~ = 

k k 

~_.Di ~_,biDi 
1 1 

E biDs E b2Di 

(49) 

Note  that FI~ and F2~ do not  depend on the parameters.  Theorem 3 gives the 
limit distribution of (&l, &2), (/31, /72), using the normalizing factors (random) 
given in (49). If the non- random normings are to be used one can utilize the 
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results of the previous section to compute limiting Fisher information matrix 
under the appropriate stopping rules. 

6. Large sample tests 

In this section we briefly mention two large sample tests and their limiting null 
distributions. Similar tests can be constructed for other parametric hypotheses. 

A T E S T  O F  F I T  

We now wish to test the hypothesis of log linearity of the interarrival time and 
service time means within the exponential family with arbitrary means. Specifi- 
cally, we test the composite null hypothesis (42), namely: 

P q 

H: In/11i(0 ) = • aijot j and In 1s E bij/3y (50) 
j = l  j = l  

where { % ) and (/3y } are unknown parameters. 
The unrestricted maximum likelihood estimates of 0~ and ~i under the model in 
(41) are obtained by solving 

Sli=Ai~li(Oi) , and S2i=Dil.t2i(dPi) ( i =  1 , . . . , k ) ,  (51) 

where $1~ and S2s are given by (43). Let t~ and ~ be the solutions of (51). The 
likelihood ratio statistic for testing (50) within the model (41) is given by 

Q = - 2 1 n ( L ~ ( & ,  f i)/L(O, ~)}, (52) 

where ~ and fi are the maximum likelihood estimates under H obtained in 
section 5. It can be shown via standard asymptotics that under conditions (46) of 
section 5, Q, is asymptotically X2(2k - p  - q) where we assume that 2k > (p  + 
q). 

A TEST OF HOMOGENEITY 
Consider the M / M / 1  model discussed in section 5. It is assumed that the 

log-linear model is a good fit. Suppose we wish to test the hypothesis H0: o~ 2 = 0, 
/32 = 0. This is equivalent to testing the hypothesis that the k queues have the 
same arrival and service rates, i.e., 

01= ...  = 0 ~ = e  -~', and4~l= -.- =qSk=e-# ' ,  (53) 

when the parameters al and/31 are unknown. The log likelihood function under 
H 0 is given by 

lnLHo= e S l i - O l l E A i  + e - # ' Z S 2 , - / 3 a E D i .  (54) 
i=1  1 1 
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The m a x i m u m  likelihood estimates of a I and fla u n d e r / 4  0 are obta ined  as 

E Eu,, 
&10 = In i=1 j=l (55) k , and  tim = In k 

EA, ED, 
1 1 

EEl, ,  
i=1 l=I  

The unrestr icted m a x i m u m  likelihood estimates of al,  a 2, 131 and  13 2 are obta ined  
as in section 5. The l ikelihood ratio statistic for testing H 0 within H is given by  

Qn=-21n{LHo(~ lO ,  filo, a 2 = O , ~ 2 : O ) / L n ( ~ l ,  fil, &2, fi2)). (56) 

The statistic Qn has a l imiting X 2 dis t r ibut ion under  H 0. 
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