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Abstract 

This is the third in a series of four papers in which problems of dynamic crack propagation are examined 
experimentally in large, thin sheets of Homalite-100 such that crack growth in an unbounded plate is simulated. 
In the first paper crack initiation resulting from stress wave loading to the crack tip as well as crack arrest were 
reported. It was found that for increasing rates of loading in the microsecond range the stress intensity required 
for initiation rises markedly. Crack arrest occurs abruptly without any deceleration phase at a stress intensity 
lower than that which causes initiation under quasi-static loading. 

In the second paper we analyze the occurrence of micro cracks at the front of the running main crack which 
control the rate of crack growth. The micro cracks are recorded by real time photography. By the same means it 
is shown that these micro cracks grow and turn away smoothly from the direction of the main crack in the 
process of branching. 

In the present paper we report results on crack propagation and branching. It is found that crack propagation 
occurs at a constant velocity although the stress intensity factor changes markedly. Furthermore, the velocity is 
determined by the stress wave induced intensity factor at initiation. The terminal velocity in Homalite-100 was 
found to be about half the Rayleigh wave speed (0.45 Cr). These observations are analyzed in terms of a 
microcrack model alluded to in the second paper of this series. A mechanism for crack branching is proposed 
which considers branching to be a natural evolution from a "cloud" of microcracks that accompany and lead the 
main crack. These results are believed to apply to quasi-brittle materials other than Homalite-100 and the 
reasons for this belief are discussed briefly in the first paper of this series. 

In the final paper of the series the effect of stress waves impinging on the tip of a rapidly moving crack is 
examined. Waves affect the velocity and the direction of propagation as well as the process of crack branching. 

1. Introduction 

In  t he  first  p a p e r  of  this series we m o t i v a t e d  the  e x p e r i m e n t a l  w o r k  r e p o r t e d  in the  f o u r  

p a p e r  s equence  [1 -3]  by  an  e x a m i n a t i o n  o f  the  i n a d e q u a c i e s  in cu r r en t  theor ies  of  

d y n a m i c  f rac ture .  A l t h o u g h  the  m a t e r i a l  e m p l o y e d  in  o u r  s tudies  is the  p o l y m e r  H o m a l i t e -  

100, a po lyes te r ,  we  be l i eve  the  resul t s  to be  m o r e  gene ra l ly  app l icab le ,  at  least  w i th  

respec t  to the  so-ca l led  " b r i t t l e "  mater ia l s .  R e a s o n s  for  this be l i e f  a re  o u t l i n e d  in  [1]. 

In  o r d e r  to be t t e r  u n d e r s t a n d  the  phys i ca l  p rocesses  tha t  t ake  p lace  d u r i n g  d y n a m i c  

f rac ture ,  i t  was  necessa ry  to s tudy  the  f r ac tu re  at  the  m i c r o s c o p i c  level  and  tha t  

i n v e s t i g a t i o n  was  d i scussed  in  the  s e c o n d  p a p e r  o f  the  series [2]. T h e  ideas  a n d  obse rva -  

t ions  o f  tha t  p r e s e n t a t i o n  on  the  m i c r o s t r u c t u r a l  a spec t s  of  d y n a m i c  c rack  p r o p a g a t i o n  

f o r m  the  bas is  fo r  the  d i scuss ion  in this p a p e r  wh ich  addresses  e x p l a n a t i o n s  of  m a c r o -  

scop ica l ly  o b s e r v e d  c rack  p r o p a g a t i o n  behav io r .  A un i f i ed  v iew of  the  d y n a m i c  c rack  

p r o p a g a t i o n  p roces s  is p r o p o s e d  he re  tha t  w o u l d  at leas t  qua l i t a t i ve ly  exp la in  at this s tage  

the  o b s e r v e d  c rack  p r o p a g a t i o n  behav io r ,  i n c l u d i n g  spec i f ica l ly  the  l ower  l im i t i ng  ve loc i -  

t ies as wel l  as the  p h e n o m e n o n  of  c rack  b ranch ing .  A q u a n t i t a t i v e  e v a l u a t i o n  of  this 

m o d e l  is b e y o n d  the  p r e sen t  s cope  o f  this work .  
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In the following, we examine first the steady-state crack propagation behavior, consid- 
ering both the constant velocity phase as well as the limiting velocity of crack propagation. 
In addressing next the problem of crack branching, we review branching mechanisms 
proposed in the literature and then propose a mechanism derived from our real-time 
photographic observations of branching at the microscopic level; these observations 
establish the "branching event" to be a continuous evolution from propagation along a 
plane. 

2. Steady-state crack propagation 

We first consider results of our experiments conducted with large sheets of Homalite-100. 
The requisite experimental arrangements have been discussed in [1] and in detail in [4]. 
For purpose of continuity of presentation, we state here that the thin test sheet specimens 
were semi-infinite crack configurations, with pressure applied to the crack surfaces via a 
trapezoidal pressure load history. The rate of loading in subsequent tests was progressively 
higher, ranging from 25 • 10 4 MPa/sec  to 6.2.105 MPa/sec,  and resulting in the crack 
being loaded to various stress intensity histories. As a result, the crack propagated at 
various velocities in each case and provided a wealth of data on crack propagation. The 
stress intensity factor and the crack extension histories were determined via high speed 
cinematography of the caustic~ such as represented in Fig. 1. 

For a series of tests in which the loading rate was changed systematically, the stress 
intensity factor and crack extension histories are plotted in Figs. 2, 3 and 4 for six 
different experiments. Two important aspects are revealed by these results: first, one notes 
that although the stress intensity factor varies considerably with time the velocity of crack 
propagation is constant, t and second, one observes that the maximal observed crack 
velocity, usually referred to as the terminal velocity is on the order of 0.45 C r where Cr is 
the Rayleigh wave speed. The following two sections deal with these two aspects. 

2. t. Crack propagation with constant velocity 

In order to determine the instantaneous crack tip velocity from the data, ~t is necessary to 
deduce the histories of crack tip position, being mindful of the accuracy of the data and 
possible sources of velocity transitions. Several schemes for data evaluation have been 
explored. However, our most successful one rests on a power law fit of the form 

N 

a = E Ai li-1 (1) 
i=1 

where a is the crack tip position and t denotes the time. The coefficients A e are determined 
by minimizing the likelihood function: 

X2= ~=1 ~ ai- E Ajt/-1 (2 )  
i j = l  

t The results presented here have prompted B. Freund (personal communication) to compute the time required 
to establish the singular stress field at the crack tip after the crack has started to propagate. It turns out that 
the square root singularity field grows outward from the moving crack tip rather slowly so that a considerable 
time is required before that field is valid in a domain from which the method of caustics derives information. 
This measurement technique may thus not yield accurate results for short times following a highly transient 
crack tip event and further experiments are indicated and are being performed. However, even if such a 
correction were to prove necessary it would not affect the results in this paper. The correction might affect the 
absolute magnitude of the stress intensity factor under certain conditions but the relative or percent change 
would still be the same as reported here. 
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where (ti, ai) represent experimentally measured time and crack position data, 8 i is the 
standard error on a i, N is the number of data points and M - 1  is the degree of 
polynomial fit. The degree of the polynomial fit is yet to be determined but will be 
accomplished using the "goodness of fit" criterion as determined by the X 2 test. For the 
crack extension history illustrated in Fig. 3 (solid line), the polynomial curve fitting 
program was tested with fourth and second order as well as linear polynomial fits. The 
linear fit was also applied in two segments taking into account that a stress wave 

Figure 1. High speed cinematograph of crack propagation and branching. 
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interaction occurred at about 140 #sec. The two-segment, straight line provided the best 
estimate of the actual crack extension history. In all cases not involving arrested cracks or 
wave interactions, one straight line segment definitely provided the best data fit: When 
there was either crack arrest and reinitiation or stress wave interactions, these events had 
to be taken into consideration separately. 
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Figure 2. Stress intensi ty  factor and crack  extens ion  h i s t o r y .  
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Thus these investigations lead to the following conclusions: 

1. The crack velocity remains constant, and independently so of whether the stress 
intensity factor decreases, remains constant or increases - provided changes in the 
stress intensity factor did not occur due to rapid wave interaction. 

2. The velocity with which the crack propagates is determined by the stress intensity 
factor at initiation. 

Let us plot these data, as seems customary in dynamic fracture mechanics, on a graph of 
stress intensity factor versus (instantaneous) crack velocity. The record shown in Fig. 5 
results. Also shown on this plot is the stress intensity factor-velocity plot as suggested by 
Dally and co-workers [5] who performed dynamic fracture experiments on Homalite-100 
specimen using various geometrical configurations; the results of [5] are intended to 
suggest a unique relationship between the instantaneous stress intensity factor and the 
crack velocity. In contrast, the present experimental data reveal a definite lack of a 
one-to-one relation between the instantaneous stress intensity factor and the crack velocity 
because the crack travels at a constant velocity while the stress intensity factor varies. 

The microscopic view of the crack propagation process outlined in [2] provides a 
possibly new way of interpreting the dynamic crack propagation problem and explains, 
temporarily at least, in a qualitative manner some of the salient features of crack growth. 
For purposes of continuity in presentation, we summarize here the important conclusions 
from the earlier papers: 
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1. Crack propagation occurs by the linking up of many microcracks. 
2. The number of growing microcracks that are activated is a function of the stress 

intensity factor and the distribution of voids in the material itself. 
3. The size of the fracture process zone increases as the stress intensity factor increases 

(cf. Fig. 9 of [2]). 
4. As the fracture process zone grows in size, the number of potential microcracks 

contributing to the fracture process zone increases statistically. Thus the probability 
of stimulating flaws into growth increases, thereby increasing the energy that is 
dissipated in the fracture process zone. 

5. Also, as the number of initiated microcracks increases, the interaction = of these 
microcracks becomes important in determining crack propagation behavior. An 
exact calculation of the nature of the interaction is very difficult and beyond the 
scope of this work. 

We now apply these observations to suggest an explanation for the experimentally 
noted constancy of velocity of crack propagation. As the stress intensity factor increases 
prior to crack initiation, the high stresses ahead of the crack tip induce microfractures. 
The value of the stress intensity factor at initiation then establishes the size and general 
extent and geometry of the microcracks - that is the fracture process zone - at initiation. 
Therefore, the macrocrack propagates due to the interaction of and communication 
between these microcracks in the fracture zone. The nature of the subsequent interaction 
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is apparently determined by the size of the zone that existed when the zone started to 
propagate. With this viewpoint, it seems reasonable to expect the stress intensity factor at 
crack initiation to set the limit on the velocity with which the crack will travel subse- 
quently, until new conditions arise through interaction with waves that produce a different 
reficroerack geometry of the fracture process zone. 

While gradual changes in the stress intensity factor do not seem to affect the velocity of 
crack propagation, the geometry and nature of the fracture process zone are apparently 
altered drastically by a large transient stress pulse so that a change in the propagation 
velocity is made possible. From Fig. 3 (solid line), it is seen that the crack travels at a 
constant velocity of 240 m/sec  prior to the arrival of the reflected waves at about 150 
~sec. The arrival of the waves reflected from the boundaries causes the stress intensity 
factor to increase as in Fig. 3 (solid line), and the crack velocity changes - within the 
resolution of the experiments - immediately to a new and constant velocity of 350 m/sec.  
On the other hand, from Fig. 2 (dotted line), it can be seen that the crack velocity remains 
constant at 363 m/sec  even after the arrival of the waves reflected from the specimen 
boundaries, although the stress intensity factor increases. This behavior was observed 
consistently and leads to the conclusion that cracks travelling at low velocities, typically 
below 300 m/sec ,  can change their velocity of propagation upon encountering stress 
waves. If the interaction with the stress wave occurs when the crack velocity is above 300 
m/sec ,  the crack velocity does not change, or branching occurs. 

2.2. Terminal velocity of crack propagation 

Using linear elastodynamic theory Freund calculated [6] the energy flux into the crack tip 
region. These computations show that when the energy required to create new surfaces, F, 
is taken to be a constant, the limiting crack velocity is the Rayleigh wave velocity (Cr). On 
purely analytical grounds, one would expect that the Rayleigh wave velocity would set the 
limit for crack propagation velocity since the energy input into the crack tip is through 
surface waves that travel with the Rayleigh wave velocity. The experimentally observed 
crack velocities in all kinds of materials are always significantly lower than the Rayleigh 
surface wave velocity. This observation is repeated in the present experiments where the 
maximum observed crack velocity was 487 m/sec ,  (0.45Cr). A survey of the velocity of 
propagation of cracks in various media is given in Table 1. 

There have been a number of hypotheses put forward in order to explain the lower 
observed terminal velocities. It has been suggested that under increasing loads the 
phenomenon of crack branching intervenes and inhibits further increases in the crack 
propagation velocity. The implication is that if branching were suppressed, cracks might 
then travel at or close to the Rayleigh wave velocity. Once again, experimental data seem 
to contradict this viewpoint. When the applied stress is increased considerably, as 
indicated in Figs. 2, 3 and 4, the velocity does not increase above 0.45Cr, even during the 
phase of propagation when the velocity is constant and when there is no evidence of crack 
branching at all. On this basis, one would have to assert the existence of a terminal 
velocity other than the Rayleigh wave velocity. 

Along different lines of argument, it has been suggested that the experimentally 
observed low terminal velocity can be "explained" by allowing the energy required to 
create a new surface F to be rate dependent, namely, F = F(V). If F would indeed vary 
with the velocity, it is conceivable that a limiting velocity other than the Rayleigh wave 
velocity may be obtained as suggested by Rose [7]. While this assumption might "explain" 
the existence of a lower terminal velocity, it meets with difficulties when one considers 
that the cracks in our experiments travel with a constant velocity in spite of variations in 
the stress intensity factor (increasing or decreasing). Computation of the energy flux into 
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Table 1. Survey of brittle crack velocities 

K. Ravi-Chandar and W.G. Knauss 

Material Author v V/C a V/ C~ V/C o V/ C~ 

Glass Bowden 0.22 0.2"7 0.42 0.29 0.51 
Edgerton 0.22 0.26 0.43 0.28 0.47 
Schardin 0.22 0.28 0.47 0.30 0.52 
Anthony 0.22 0.36 0,60 0.39 0.66 

Plexiglas Cotterell 0.35 0.26 0.54 0.33 0.58 
Paxson 0.35 0.28 0.58 0.36 0,62 
Dulaney 0.35 0.28 0.28 0.36 0.62 

Homalite-100 Beebe 0.31 0.16 0.31 0.19 0.33 
Kobayashi 0.345 0.17 0.35 0.22 0,38 
Dally 0.31 0.22 0.35 0.24 0.38 
Smith 0.31 0.22 0,38 0.25 0.41 

Note: Bold face numbers indicate values obtained from the references. Other values were calculated from 
Poisson's ratio shown in column 3. 

1. F.P. Bowden et al., Nature 216 (1967) 38. 
2. H.E. Edgerton and P.E. Barstow, Journal of American Ceramic Society 24 (1941) 13L 
3. H. Schardin and W. Struth, Glastechnische Berichte 16 (1938) 219.' 
4. S.R. Anthony et al., Philosophical Magazine 22 (1970) 1201. 
5. B. Cotterell, Applied Materials Research 4 (1964) 227. 
6. T.L. Paxson and R.A. Lucas, in Dynamic Crack Propagation (ed. G.C. Sih) Noordhoff, Leyden (1973) 257. 
7. E.N. Dulaney and W.F. Brace, Journal of Applied Physics 31 (1960) 2233. 
8. W.M. Beebe, Ph.D Thesis, California Institute of Technology (1966). 
9. A.S. Kobayashi and S. Mall, Experimental Mechanics 18 (1978) 11. 

10. T. Kobayashi and J.W. Dally, Fast Fracture and Crack Arrest, ASTM STP 627 (1977) 257, 
11. G.C. Smith, Ph.D Thesis, California Institute of Technology (1975). 

the region a round  an ideal ized crack tip in a br i t t le  sol id leads to the re la t ion [6]: 

E g ( V )  (3) 
K 2 r ( v )  

where E is the modulus  of elasticity,  K is the stress in tens i ty  factor  and  g ( V )  is a universaI  
funct ion of the velocity.  Thus this energy equat ion  predic ts  that  the veloci ty  of crack 
p ropaga t i on  should change under  varying stress in tens i ty  factor  s i tuat ions.  However ,  the 
stress in tens i ty  fac tor  and  crack extension histories presented  in Figs. 2, 3 and  4 indica te  
that  in spite of  cons iderab le  changes (factors  on the order  of 2) in the stress in tens i ty  
factor,  the veloci ty  remains  constant .  Thus if F is a l lowed to be  a funct ion of crack 
velocity,  it creates a con t rad ic t ion  in expla in ing  the cons tancy  of crack velocity.  The 
causes for the existence of  a te rminal  velocity lower than the Rayle igh  wave veloci ty has to 
be  expla ined  then in a different  way. We suggest that  a microcrack  in te rpre ta t ion  of the 
crack p ropaga t ion  process  yields a sat isfactory explanat ion .  

I f  the crack p r o p a g a t i o n  process  is viewed as an  ensemble  p r o p a g a t i o n  of m a n y  
microcracks  in a f racture  process  zone [2], then the speed of  crack p ropaga t i on  must  be 
governed by  the na ture  of in terac t ion  be tween these microcracks.  There  is a f inite t ime 
involved in this in terac t ion  process  due to the communica t ion  of  the stress fields in 
ne ighbor ing  microcracks  via stress waves. This crack in te rac t ion  t ime is at  least  one source 
of  the l imi ta t ion  on the m a x i m u m  crack veloci ty because  the t ime scale of in terac t ion  is 
de te rmined  by  the number ,  size and separa t ion  dis tances  of the ind iv idua l  microf rac ture  
sites and  would  be  expected to depend  on the par t i cu la r  material .  Secondly,  the micro-  
crack in terac t ion  is three d imens iona l  in na tu re  and the growth of these cracks need not  
always be in the d i rec t ion  of the ma in  crack growth,  but  microcracks  Can also grow 
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perpendicular to the direction of growth of the main crack front. These two factors 
together may contribute to, or explain why the observed maximum crack propagation 
velocity is substantially lower than the Rayleigh velocity. 

Since microcrack growth is proposed here as the main cause of the (lower) lirrdting 
velocity, it would appear that in materials where the fracture process occurs through other 
mechanisms like cleavage along "weak" planes, in the absence of microcracking, the 
limiting velocities could approach the Rayleigh wave velocity. Experimental measurements 
on crack speeds in crystals [9], where cleavage dominates, indicate that cracks do indeed 
propagate at much higher fractions of the Rayleigh wave speed, typically around 0.8 Cr to 
0.9 C r, as compared to about 0.5 C r in amorphous materials. 

3. Crack branching 

We now turn to the phenomenon of crack branching. By way of introduction we review 
first the literature on crack branching and then propose a mechanism for crack branching 
that is derived from the microscopic investigation outlined in [2] and is consistent with the 
crack propagation behavior just discussed. 

3.1. Review of Bterature on crack branching 

Branching of cracks in glass was recorded by Schardin [8] and other investigators have 
observed crack branching in crystalline as well as amorphous materials [8-11]. This 
phenomenon has not been explained by analytical means although notable attempts have 
been made by Achenbach [12], Burgers and Dempsey [13] and Burgers [14]. This lack of 
corroboration with experiments is due in part to the fact that in analyzing crack growth 
problems, the equations of linear elasticity are solved independently of the (non-linear) 
constitutive behavior of the material at the crack tip and by prescribing the crack path. If 
the equations of elasticity could be solved together with the details of microcracking as 
well as the localized non-linear constitutive behavior without a priori assumptions 
regarding the nature of crack motion, the solutions would reveal some additional or 
different features. Solutions of such general form are not in sight even for two dimensional 
problems. 

Yoffe [15] attempted to explain the branching of cracks from an analysis of the 
problem of a crack of constant length that translates with a constant velocity in an 
unbounded medium. From this solution she found that the maximum %0 stress acted 
normal to lines that make an angle of 60 o with the direction of crack propagation when 
the crack velocity exceeded 60% of t'he shear wave speed. Therefore, she suggested that 
this fact might cause the crack to branch whenever the crack velocity exceeded that value. 
There are three major shortcomings with this argument. First, as pointed out by Baker 
[16], the %0 stress is not a principal stress and in a (quasi)-brittle material it is reasonable 
to expect the crack to propagate perpendicular to the direction of the maximum principal 
stress. Second, the angle of _+ 60 o for crack branching by the Yoffe argument is large 
compared to the experimentally observed crack branching angles which range from _+ 10 ° 
to _+ 45 °. Finally, the velocity that is required for the realignment of the o00 stress is 
considerably larger than the velocities at which crack branching is observed experimen- 
tally in many materials t. We conclude that the Yoffe argument, while very attractive due 
to its simplicity, is not likely to explain crack branching. 

t In fact, for the velocities at which crack branching has been observed, there is very little realignment in the 
stress field that is so essential to the Yoffe argument. 
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Eshelby [17] approached the branching problem from the viewpoint of energy balance. 
It is known that the dynamic energy release rate, G, can be expressed as 

G = G*g(V), (4) 

where G* is dependent on the geometry and loading and g(V) is the velocity dependent 
function encountered in Eqn. (3), which may be approximated by [7]: 

g ( V )  = 1 - ( V / C )  (5) 

Eshelby suggested that while the velocity factor g(V) may change in a discontinuous 
manner, the factor G* should be continuous at branching, at least for small angles of 
crack branching. Since after branching twice as much surface area is being created, the 
crack would not advance unless the velocity factor g(V) could be doubled with a 
corresp.onding reduction in crack speed. From Eqn. (5), one deduces that in order for the 
factor g(V) to double, the velocity before branching must be greater than 0.5C r and it 
must drop upon branching. Although the main idea that the availability of sufficient 
energy at the crack tip is clearly a necessary condition, the conclusions about the 
discontinuous velocity behavior of the branched crack are not borne out by experiment in 
that cracks propagate hardly with speeds in excess of half the Rayleigh wave speed. 
Moreover, within the experimental resolution of our experiments on Homalite-100 the 
crack travels at a constant velocity prior to and after crack branching, with no apparent 
change in the velocity. The above energy argument is devoid of any mechanism by which 
the crack branching is achieved and merely poses a necessary condition on the energy 
release rate that must be satisfied if crack branching were to occur in the idealized 
manner. 

Another attempt at making crack branching plausible rests on the stress wave hypothe- 
sis [18]. It is known that when stress waves interact with propagating cracks, the crack 
path may change abruptly. When the interaction is weak. the well known phenomenon of 
Wallner lines is observed. In this connection it has been suggested that when the 
interaction is strong, i.e. when the amplitude of the impinging stress wave is high, the 
resulting change in the crack path might lead to crack branching. However. this argument 
is also devoid of any specific mechanism by which crack branching is to be achieved. By 
contrast, the present experimental data show clearly that crack branching can occur 
without any interaction with stress waves, a situation which the stress wave hypothesis 
does not address. A detailed investigation of the effect of stress waves on propagating 
cracks will be presented in the fourth paper in this series [3]. 

To date, published analytical attempts at clarifying crack branching have all been 
directed to seek a necessary condition for branching through a comparison of the stress 
states prior to and after branching [12]. The stress state after branching is obtNned via the 
following assumptions: a fast running crack comes to rest abruptly. In so doing it radiates 
an appropriate stress field in which two branches emanate instantaneously from the 
stopped crack tip at some arbitrary angles, but symmetically with respect to the original 
crack. More recently, Burgers and Dempsey [13] and Burgers [14] have analysed both 
mode III  and mode I problems. However. no criterion based on the analytical solutions 
has yet been proposed for crack branching. Once again, this kind of analytical treatment 
does not provide us with a physical mechanism bv which crack branching is achieved. 

All the above "explanations" of branching address idealized two-dimensional situa- 
tions. A common feature among all of these is that they assume a mathematically sharp 
plane crack propagating in a two dimensional solid which branches into two distinct. 
sharp, plane cracks. In a more physical vein. Congleton [19] tried to estimate the stress 
intensity factor at branching by considering a small Griffith crack placed ahead of the 
main crack. This idea clearly calls for microcracks ahead of the main crack and represents, 
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to our knowledge, the only at tempt at explaining dynamic branching * by considering 
what we perceive to be the real physical process of fracture. We turn next to consider the 
problem of crack branching in more detail. 

3.2. Crack branching mechan&m 

As pointed out in [2], and summarized in Section 2.1, the mathematical model of a sharp 
crack propagating along a plane seems to be an unacceptable view for the real propaga- 
tion process. The latter is essentially three dimensional in nature and governed by the 
microscopic phenomenon of microcrack interaction. From the microscopic model of the 
crack propagation process, together with direct observation, one deduces a mechanism for 
crack branching, which shows crack branching to be a process occasioned by the 
continuous interaction of the microcracks rather than an event that occurs when some 
critical state is reached. 

Before proposing a mechanism for crack branching, let us summarize the main 
observations on branching from [2]. From both post-mortem and real-time examination of 
the branching phenomenon we observe that: 

1. crack branching is the result of many interacting microcracks or microbranches; 
2. only a few of the microbranches grow larger while the rest are arrested; 
3. the branches evolve from the microcracks which are initially parallel to the main 

crack, but deviate smoothly from the original crack orientation; 

t Congleton's work should not be confused with efforts to predict crack angling or kinking in quasistatic mixed 
mode problems. 

CRACK BRANCHING MECHANISM 

t~"" '~"  0 '~ 0 o VOID 
° G R O W T H  

CRACK 
INTERACTION 

~ INSTABILITY 

Figure 6. Crack branclfing mechanism. 
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4. the microbranches do not span the thickness of the plate, some occurring on the 
faces of the plate while others are entirely embedded in the interior of the plate. 

These observations lead us to propose the following crack branching mechanism (il- 
lustrated in Fig. 6). Initially, a crack propagates at low stress intensity factor m a material 
that contains a number of voids. The crack cuts through these voids and some of the voids 
have the effect of diverting the crack to propagate along different planes [2]. When the 
stress intensity factor becomes sufficiently high the voids or other material flaws start to 
grow themselves into microcracks ahead of the major crack front, which now becomes 
really an ensemble crack front. The course of further crack propagation and its branching 
behavior is governed by the details of the interaction of these microcracks. The analytic 
solution to the problem of dynamic interaction of even the simplest multiple crack 
geometries is very difficult. However, there exist solutions to the static interaction 
problems and we shall draw upon these results to assess the nature of non-colinear crack 
propagation. For the present purpose we assume that the quasi-static solution provides a 
good insight into the dynamic interaction problem because the experimentally observed 
crack velocities are small enough to minimize the effect of inertia. 

The solution to the problem of two static Griffith cracks interacting m a plane was 
provided by Pucik [20], who considered the crack centers to be located in a uniaxially 
tensioned plane at arbitrary points and the cracks themselves to be oriented at arbitrary 
angles with respect to one another, the uniform load at infinity being P. As part  of the 
analysis, Pucik computed the maximum o00 stress in the immediate crack tip vicinity and 
also the orientation along which this stress acted. For the case of two parallel cracks of 
equal length 2/, the variation of the angle/~ at which the maximum o.00 acts is plotted in 
Fig. 7 as a function of the vertical separation Y~2 and the horizontal separation X12 
between the two cracks. From this plot one verifies that. depending on the proximity of 
the cracks, the two cracks may either "at t ract"  or "repel"  one another, that is, they either 
grow toward or away from one another. In particular, when Y12/X12 approaches zero. we 
see from curve A in Fig. 7 that B increases, indicating repelling cracks. A similar solution 
to interacting cracks has been provided by Yokobori [21] which exhibits also this behavior 
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Figure 7. Variation of the angle at which the maximum a00 acts. From Ref. i2% 
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of attracting or repelling cracks depending on the separation and the sizes of the cracks. 
With this information in mind, let us now return to the crack branching problem. In 

this case there are several microcracks that interact with one another, and under certain 
conditions, the small cracks may deviate from the main crack plane. Here we note that 
while the quasi-static interaction solutions indicate a sharp deviation from the original 
propagation direction, one observes of course, in the real crack branching problem, a 
smooth deviation from the main propagation plane. We can account for this difference by 
considering the fact that the microcracks interact with one another nearly continuously 
through stress waves, unlike the quasi-static case in which the cracks "know"  of each 
other instantaneously. Also, in our dynamic branching problem, we deal with a number of 
microcracks that interact with one another simultaneously, making the interaction more 
complex than in the quasi-static case treated in [20]. Thus, we have to consider the 
quasi-static solution as giving qualitative support to the argument of deviation of cracks 
due to interaction. This kind of continuous deviation of the microcracks from the major 
propagation plane is evident from the high speed photomicrographs of the branching 
process [2]. Once a number of microbranches (most of them only part-through) have been 
established, one would expect them to communicate through stress waves. If all of them 
were of equal size, geometrical statistical instability would permit only a few of the 
microbranches to propagate further. 

In reality, the microbranches vary in size and thus the larger ones are most likely to 
develop into full fledged branches, while the others are arrested as a result of dynamic 
interaction with the growing ones. This observation points to statistical effects in branch- 
ing which are indeed evident in our measurements. For example, we show in Fig. 8 the 
results of five tests on identical geometries subjected to identical load histories. We note 
that the location of the "point  of branching" has a variation of only + 1 ram. However, 
the details of the branch evolution vary considerably. In particular one observes that the 
number  of successful branches varies between 2 and 4. If one considers also the 
unsuccessful branches the variation in the number of branches would be even greater. We 
see these features as evidence of the statistical nature of the distribution in size, number 
and location of microcracks. 

Figure 8. Appearance of branches in five identical tests (K = 0.65 MPaxfm at initiation, crack speed 400 m/sec). 
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