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TOPOLOGICAL SPACE OBJECTS IN A TOPOS II: 
g-COMPLETENESS AND g-COCOMPLETENESS 

Lawrence Neff Stout i 

It is well known that topoi satisfy strong internal completeness and 
cocompleteness conditions: Lawvere [4] announced the existence of 
internal Kan extensions; proofs may be found in Kock and Wraith [3] 
and Diaconescu [2]. In this paper I give an explicit construction of 
the limit of an internal functor and lift the completeness and cocom- 
pleteness of 8 to the category of topological space objects in g defined 
by internalizing the definition in terms of open sets (as in [7] and [8]). 

I: Notational Conventions and Definitions 

We adopt the internal language of a topos exposed in Osius [6] in 

which predicates are used to name the subobjects whose construction 

they describe. For instance the subobject VaEA~b~A(aEC=bEC)->PA 

is the result of applying the functor Vpr PA• to the result of ap- 

plying the functor ~pr s :PA•215215 to the subobject CAXA = 

- 1 ~A• (twist2, 3 ) The existence of elements as such is not intended 

to be implied. 

The union map [J : PZA-> PA is the exponential adjoint of the cha- 

racteristic morphism of the subobject of PZA• consisting of those 

pairs (S,a) such that WB6pA(a6B~B6S). The intersection map _~ : 

p2A-~PA is defined similarly using VB6PA(BES =a6B). 

Internal forms of the functors ~f and Vf are the morphisms from 

PA to PB taking a subobject S to ZfS and •fS respectively. To dis- 
-I 

tinguish the usage we underline internal functors: _~, V_f, f . A con- 

struction of these maps may be found in Osius [5]. 

DEFINITION: _A topological space object in a topos is a_ ~ (A, TA), 

i Parts of this work appeared in the author's thesis at the University 
of Illinois, 1974. 
Research partially supported by a grant from the Ministry of Educa- 
tion of the Province of Qu4bec. 
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w h e r e  TAC_PA s a t i s f i e s  

I. r C T A and A E T  A 

2. VB, B,EPA((BET A ~] B'ET A) =(BC]B')ET A) 

3. VsEPZA(SCT A =~S E TA)- 

A_ morphism f:(A, TA) -) (B, TB) is called continuous iff ~_f_ ~ TB c 

T A and open iff ~Z TA c TB . Top(g) is the cate o~_~ of 

objects and continuous morphisms in g. 

In Sets this is the definition of a topological space~ In Sh(X) for X 

a topological space, a topological space object is an dtal space 

(Y, Ty) -P--)(X, T X) together with a second topology Ty r on Y mak- 

ing p continuous with Ty' c Ty. A proof of this appears in Stout [8]. 

II: Initial Topologies and Finite Limits 

In order to construct limit topologies in Sets-based topology, we 

first construct the limit in Sets and then give it the topology induced 

by the projections. All that is really needed is to transport this cons- 

truction to a topos is to show that all of the inferences in the proof 

that the construction works are intuitionistically valid. This is essen- 

tially what I did in Chapter 3 of [7]. 

There is a less tedious way which provides a technique easily ap- 

plicable in other situations. All formations of closures under opera- 

tions can be done using the concept of a tractible predicate and an 

argument similar to Mikkelsen's (unpublished) topos proof of the 

Tar ski fixed point theorem. 

DEFINITION: Let L be a complete lattice in g. Then a predicate 

i 
T ~L is called tractible iff 

Py  ~ 1 

1 • 
P L  ~inf ) L ~ a 

c o m m u t e  s.  

REMARK: M i k k e l s e n ' s  v e r s i o n  of the T a r s k i  f ixed  poin t  t h e o r e m  has  

a s  i t s  key  po iny  the t ra  c t ib i ! i ty  of the p r e d i c a t e  ob ta ined  by pu l l ing  
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back  a long  (h, 1L), w h e r e  h i s  an o r d e r  p r e s e r v i n g  e n d o m o r p h i s m .  

LEMMA 1: Let f:C-~A b_~e any mor~, D c PftxC _be such tha___t 

~_xC)'ID c_ {(S,c) E pBAxCIVBEPA(BES=(B,c) ED)], then the p.redica- 

t_e_e y specifying those A'E Pft such that VcEc((A' , c) E D = f(c) Eft-') is 

t r a c t i b l e ,  

Proof: We calculate (~)-I(~)-I[A'IYcEC((A',c)ED =f(c)EA')} and 

show that it is all of Py. The Beck condition for Y allows us to inter- 

change the second pullback with the quantification to get 

( ~ [ ) - I [ s E p 2 f t I Y c E C ( ( ( ~ •  c ) l ( A ' ,  c)ED = f ( c ) E f t ' ] = S ) ] .  

Calculation of the inside pullback gives 

(~/)- 1 [SEp2A I VcEC((_ ~ xC)- ID = YA,EPft(A' ES = f( c)Eft' ))}. 

By hypothesis this is larger than 

(%)- l [SEPZA I VcEC(YA,,EpA(A,,ES =(A",c)ED) =VA,EpAA'ES =f(c) ~ A')) }. 

A=VgB ~ Vg(A=B) and A=(B=C) < Using the intuitionistic rules Vg 

(ft=B) = (A=C) we ob ta in  a smaller subobject 

(_~)- 1 [SEPZAI YcEcVA 'EPA (A'ES = ((A', c)ED = f(c)EA'))~. 

We may now apply the Beck condition to move the other pullback 

inside the quantifier and then use the definition of the internalized 

quantifier to calculate the result. This has the effect of replacing the 

condition A'ES with A'ES ~ YcEC((A ', c)ED = f(c)EA) giving 

[SEPT] VcECYA,EPA((A'ES O VcEc((A', c)ED = f(c)EA) 

((A', c)ED = f(c)EA'))]. 

The expression inside the quantifiers is always true by the Y-elimina- 

tion rule, proving the lemma. 

COROLLA/<Y: _~ f:An-~ft i_ss ~ny morphism, then 

[A' i Val...anEA((alEA' ~ az~ft' ~...N anEft') = f(al...an)EAr) } 

is tractible. 

3 
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Proof: (~_XAn) - l [(A', a 1 . . . . .  an) la l~A'f~..onan6A' ) = [(S, a 1 ...... a n ) !  

VA,6PA(A'6S = al6A' n .. [~an6A' } so the lemma applies. 

COI%OLLARY: If f: (pA)n-+ A i_~s 9ny n%prphism, then 

[ArlVAI,.. A 6PA((AI~A'Q'''PA ~A')=f(AI' ' n . . . .  "A'n)6A~ ) } 

is tractable. 

Proof: The proof for arbitrary n is a direct generalization of the 

proof for n=l which follows from the fact that AI~ A' iff Va6 A 

(as 1 = a6A' ) and the following calculation: 

(_NxPA)'I[(A',AI)IVas = a6A')] 

= [(S, AI)IYa6A(a6AI = VBs = a6B))] 

= [(S,A l) IVa~A VBEPA(a6A 1 -~(BES = as 

= [(S,A I) IVB~PA Va~A(as 1 =(BES = aEB))} 

= [(S,AI)IVBEPA VaEA(BES = (a6A 1 = aEB))] 

= [(S, AI)IVB6PA(B6S = Va6A(aEA 1 = aEB))} 

so the lemma applies. 

A direct proof shows that for any A'cA the predicate [BIB<A' } 

is tractable. 

LEMMA 2: The intersection o__s two tractable predi9ates is tractable. 

Proof: Let Y and S be tractable. Then PT c_~ "~/ and P6 c_[~ 8 

so py~p8 c n-l(y[~8). But the power object functor preserves order 

so P(Y~ 6) < Py~P6, and thus ~6 is tractable. 

As a result of these lemmata we can observe that the internal forms 

of the predicates "T is a topology" and "T is a topology larger thanS N 

are tractable. 

T H E O R E M  1: I~ 7 i ss a_ tr__aacbuble p r e d i c a t e  t h e n  t h e  s m a l l e s t  ~ l o b a l  

section of y is inf ~i[y ]. 
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Proof: Tractability tells us that inf ~_i[3/] is a global section of y. If 

6 is any other global section of y then [6] ~ [7], so since inf rever- 

ses order inf,_i[6 ] ~inf_l~.[7]. For global sections 6, inf $ [ 6 ] = 6  

so this proves the theorem. 

COROLLA/~Y: For anyl S~PA there is a smallest topology lar~ 

than S. 

COROLLARY: Top(E) is finitely complete. 

Proof: Let F be a functor from a finite category D to Top(E) and 

L be its limit in E. The limit cone gives a finite family of mor- 

phisms Ii:L-~F(Di). The limit topology on L is the smallest topo- 

logy containing the union of all of the ~i -I(TFD ). Any other cone 
--1 

I. 
induces a unique morphism by the universal mapplng property in E. 

It is continuous because the inverse image of a subbase is in the topo- 

logy. 

A subobject B~ PA is called a basis for T A if T A is its closure 

under internal unions. Precisely as in set-based topology we can 

produce a basis of open rectangles in the product topology on the pro- 

duct of two spaces by taking the image of TAXT B along the morphism 

rA, B:PAxPB -~ P(A• defined as the exponential adjoint of the cha- 

racteristic morphism of the sub object [(A',B',a,b) laEA'NbEB']. In 

fact it is not necessary to use the whole topology in the formation of a 

basis of rectangles. It will suffice to replace T A and T B with bases. 

III: Final Topologies and Finite Colimits 

In order to produce final topologies it suffices to consider only the 

case of final topologies induced by one map and then use the tractabi- 

lity of the topology predicate to generalize the result to any finite col- 

lection of maps. 

THEOREM Z: Give_.__.__n _a morphism f:(A, T A) -~ B in g,, the largest to___- 

pology on B making f continuous is (f_1)_ITA.--T- 

Proof: idjo~ntness and the definition of continuity tell us that this is 

5 
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the  l a r g e s t  p o s s i b l e  c a n d i d a t e .  T h a t  i t  i s  a t o p o l o g y  i s  the  r e s u l t  of the 

p r e s e r v a t i o n  of a l l  l o g i c a l  o p e r a t i o n s  by  p u l l b a c k ,  e x a c t l y  a s  in  S e t s .  

COKOLLAIIY: For an_n_y_ finite set of functions f. from A. to Be there 

is a largest topology o__nn B makin~ all of the f.l continuous. 

Proof: Apply the theorem to find the largest topologies making e~ch of 

the functions continuous and then form the subobject of the object of to- 

pologies consisting of that collection of topologies and take its inter- 

section. 

C O K O L L A R Y :  T o p ( ~ )  h a s  f i n i t e  c o l i m i t s .  

IV: g - L i m i s  a n d  g - C o l i m i t s  in  

In [ 3 ] ,  L a w v e r e  o b s e r v e d  t h a t  fo r  a c a t e g o r y  o b j e c t  C i n a  t o p o s ,  

the category of internal functors from C to g is again a topos, and 

furthermore that any functor between category objects induces a func- 

tot between the resulting functor categories which has both a right and 

a left adjoint. The constructions of the adjoints (which are a sort of 

internal Kan extention) may be found in Diaconescu [Z] or Block and 

Wraith [3]. The object of this section is to give an explicit construc- 

tion, using the data in the functor, of the limit. The construction 

follows a suggestion of John Gray. 

D E F I N I T I O N :  {Benabou  [ 1 ]) A c a t e g o r y  o b ~ c t  in  a_ ~ w i t h  

f i n i t e  l i m i t s  i s  a 6 t u p l e  (V, E ,  c, d , u ,  o), w i t h  V a n  d E ob__.iects of 

t he  c a t e g o r  Y ( the  o b j e c t  of o_~ec t s  a n d  the  o b j e c t  o_~f m o r p h i s m s ,  re__~s- 

p e c t i v e l y ) ,  c a n d  d m o r p h i s m s  g i v i n g  t h e  d o m a i n  a n d  codomain~  u a_ 

m o r p h i s m  g i v i n g  th__.~e i n c l u s i o n  of the  un i t  map_~ a n d  o a m o r p b A s m  

f r o m  EcXd E t o  E ( c o m p o s i t i o n )  s u c h  t h a t  t he  following~ c o n d i t i o n s  

h o l d  

1. cu = du = 1V 

Z. d p r  1 = d o  a n d c p r  Z = c o  

3. o(E• c) = I E and o(u• = I E 

4. O(EdXd o) = O(OdXdE). 
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An internal functor from a category object (V, E, . . . ) t_o_o C (th___e 

base category) is a triple (F,p, ~) wit h F a___n_nobject o__f C, p:F*V 

giving the action of F o__:u objects as a V-indexed set, an___~d (y:Fp• 

(the structure m_~) giving the action on morphisms. 

The constant functor with value K from (V, E .... ) to C is the 

f u n c t o r  ( K x V , p r g ,  p r Z x d  c ) .  

A n a t u r a l  t r a n s f o r m a t i o n  f r o m  ( F , p ,  cr) to  ( F ' , p ' , g ' )  i s  a m o r -  

D h i s m  f r o m  F t o  F '  s u c h  t h a t  p ' n  = p a n d  n s  = s ' ( n X d E ) .  

D i a c o n e s c u  [ 2 ]  i d e n t i f i e d  t h e  c o ] i m i t  a s  t h e  c o e q u a l i z e r  of  t h e  s t r u c -  

t u r e  m a p  a n d  t h e  p r o j e c t i o n .  I t  i s  e a s y  t o  s h o w  t h a t  t h e  n a t u r a l  t r a n s -  

f o r m a t i o n  t o  t h e  c o n s t a n t  f u n c t o r  so  c o n s t r u c t e d  s a t i s f i e s  t h e  u n i v e r s a l  

m a p p i n g  p r o p e r t y  f o r  c o c o n e s .  

The construction of the limit L as a subobject of F v picks out 

the collection of all sections of p which are consistent with the ac- 

tion of (y. 

P~OPOSITION: l__f (F, p, (;) is an internal functor from (V, E .... ) t_o_o 

E, then the limit of F can be constructed as a subobject of F V. 

Proof: The condition that a:A• F be a natural transformation from 

a constant functor is the same as the commutativity of the following 

two diagrams : 

(A• XdE 

a• I 

Fp• 

A x V x E  

(Y 

(Pr  1 , c p r  2 ) 
AxV 

F 

a 

AxV F 

V 

The first of these is equivalent to the cornrnutativity of 

7 
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_ (a•215 
(AXV)pr • > (FV• Xd E 

F •215 FpXdE 

(Pr I, cpr 2) [ [(~ 

F V xV ev ~ F 

which, using the representability of partial maps and exponential ad- 

jointness is equivalent to the commutativity of 

A a F V ((ev(pr I' cprz))~)~ - ~ - ~F(V• 

((~(ev XdE))~)~ 

The cornmutativity of the second diagram is equivalent to the com- 

mutativity of the square 

A a _~F V 

F V PrZ ~ V V 

Thus a is a natural transformation to F from a constant functor iff 

its exponential adjoint equalizes both of the pairs of maps produced 

above. The limit L is thus the equalizer of both pairs of maps. 

V: g-Limit and g-Colimit Topologies 

To extend the completeness and cocompleteness of g to Top(g ), 

we first observe that by giving both V and E the discrete topology any 

category object in g may be considered to be a category object in 

Top(g). The other definitions remain the same but take on new mean- 

ing because "morphism" and "product" are interpreted in Top(g). In 

particular, constant functors are required to be given the product to- 

pology. 

For the topos Sets these results show that the category of topolo- 

gical spaces is (small) complete and cocomplete. 
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T H E O R E M  3: T o p ( g )  i_s g - c o c o m p l e t e .  

P r o o f :  T h e r e  i s  a t opo logy  i n d u c e d  on the  c o l i m i t  by the  c o n s t r u c t i o n  

of a final topology from the injection and the topology on F. This makes 

the colimit natural transformation from F to CxV continuous and 

makes the induced map to any other constant functor continuous as 

well. 

THEOREM 4: Top(g) is g-complete. 

Proof: There is a topology induced on the object L• by the two maps 

L• -~ FV• ev ~F and pr 2 by the construction of initial topologies. 

This satisfies the universal mapping property of the limit topology in 

that for any other natural transformation a from a constant functor 

A• to F, there is a continuous natural transformation from AxV to 

FxV of the form fxV. The only catch is that the topology so construc- 

ted on LxV is not a product topology. Therefore, the problem is to 

find the product topology best approximating the induced topology 

TL• v �9 

LEMMA 3: The projection from a product to one of its factors is 

o_op_~n_: i.e., SZ TAx V s T A. 
-pr 

Proof: Since existential quantification preserves unions and 
rA, V 

TAXT V is a basis for the product topology, it will suffice to show that 

~I~i ~ TAXT V -< T A. 
--pr rA, V 

The argument is essentially that the projection of a rectangle U• is 

the open subobject obtained by truncating U to the support of V. This 

is obtained formally by the commutativity of several diagrams. 

First, truncation and union commute, that is, ~rpA, 1 = rA, 1 

(~_• Both maps are the exponential adjoint of the characteristic 

morphism of 

[(S, U, a, i)6PZAxPI•215 I ZA, EpA(iEU • A'ES N aEA~)) �9 

Since ~ is split by { ], this shows rA, i =~rPA, 1 ( [ }xPI). 

Second ,  the r e c t a n g l e  m a p  c o m m u t e s  wi th  i n t e r n a l  e x i s t e n t i a t i o n :  
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--~AxfrA, V = rA,  BPA• Both a r e  the e x p o n e n t i a l  a d j o i n t  of the  cha -  

r a c t e r i s t i c  morphism of {(A',V',a,b) EPAxPV• 

Combining these results gives the commutativity of 

TAXP 1 [ }xP1 _ ~ P T A X P 1  

Z. xPI ] 
i P-~ 2 $ rpA, I 

PAxPI [ ,)X >P A• 

PTA- > ~A 

a u ~ 
-- ->PA 

rA ,  1 

w h e r e  the r i g h t  hand  s q u a r e  c o m m u t e s  by the u n i o n  a x i o m .  

= I(TAXPI) ~ TAo But Thus ZrA ' iPAX~terminal(TAXTv) SrA ' 

rA, iPA• is 4rlrA, v , so this tells us that 

ZZ ~r (TAXTv) -< TA 
--pr A, V 

as needed. 

This lemma tells us that the topology used for L must contain 

TLx V. The next two lemmas show that the smallest such topolo- 

gyP~ the one we need. Even in Sets this depends heavily on the fact 

t ha t  V is  d i s c r e t e .  

L E M M A  4: The  p a r t i a l  rn__m__a ~ r e p r e s e n t o r  %7 is  a b a s i s  for  the  d i s c r e t e  

t opo logy  o__nn V, 

P r o o f :  The  c o n s t r u c t i o n  of V (as  i n  Kock  a nd  W r a i t h  r3] )  i n d u c e s  a 

f a c t o r i  z a t i o n  of the s i n g l e t o n  t h r o u g h  17. The  u n i t  law for  the pow e r  - 

object triple tells us that U Z[] V" idpv ,_ so the singleton map: thought 

of as a subobject, is a basis. Thus V is a basis since it contains the 

singleton. 

The nex t  l e m m a  t e l l s  us  tha t  the b a s i s  ~7 g ives  a b a s i s  for  the p r o -  

duc t  topo logy  on V• ~vhich c o n s i s t s  of s l i c e s  r a t h e r  t h a n  t h i c k  r e c -  

t a n g l e s .  In  Se t s  th i s  fo l lows  by t ak ing  the p o i n t s  a s  b a s i c  open  s e t s .  

L E M M A  5: The  fo l lowing  d i a g r a m  c o m m u t e s :  

10 



STOUT 

c 2-1 )2 
p(L• ? -~ P(LxV)xPV 

P(LxV) 
id ~9 P(L• 

~/~(Z r , ~ ) rL'V PL• 1 -PrZ 

P( L• 

I I  

Proof: Taking exponential adjoints in this diagram gives two maps 

into the subobject representor which we need to show are equal. This 

is customarily done by showing that they represent the same subob- 

ject. This involves the computation of an involved but straightforward 

pullback which is carried out in diagrams 1 and Z up to the deter- 

mination of the subobjects of P(L•215215215 The Beck conditions 

and definitions of N and internal functors are used extensively in 

these calculations. 

In the result of the calculation in diagram 1 the two terms can be 

combined under one pair of quantifiers to get 

{(x,, v", 1,v)I ~l,~r ~v,6v((l',v)~X' Q v~V" M(l,v')~x' M v'~V")]. 

The requirement in the next stage of the pullback that V" be in ~7 

tells us that since vEu and v'EV", v = v'. Thus in P(LxV)• 7 we 

obtain the subobject {(X',V", I,v) IZI,ELZv,EV((I',v)6X' ~vEV" 

(1, v")EX' ( ] v ' E V " ~ v = v ' ]  which  r educes  to [ ( X ' , V " ,  1,v) l(1, v)~X' ~] 

vCV"] as obtained in D i a g r a m  Z. D i a g r a m s  1 and 2 a r e  shown on 

page I Z. 

COROLLARY: The p roduc t  topol0gy obtained by using th__e t o p o l o g y  

gene ra t ed  by Z~I TL• V contains TL• V. 
- p r  

P roo f :  P r e c e d i n g  the d i a g r a m  in the l emma  by the subobject  TL•215  

and taking the image  along the top map gives a bas i s  for the topology 

TL• since the p ro j ec t i on  is continuous and V is a bas is  for the to -  

pology on V. Taking the image  along the bot tom map  gives a subob- 

ject  of the r ec tang le  bas is  for the p roduc t  topology.  This shows that 

a bas i s  for  the topology TL• V is contained in the p roduc t  topology so 

11 
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}L,V 

[(V' ,  L ' ,  1, v) 11EL' ["~vEV' ] , 

T 
[(X, 1, v) l~t 1,EL:~v,Ev((I ' ,  v)EX) 

("] Xl,ELav,EV((1, v ' )EX)]  > 

T 
[(x, x" ,  1, v) I xl, EL~v,EV((I', v)EX' M(I', v)~X")) 

M ~l,~L~v, ~V(( L v' )EX'M (L v'/EX" I) ] > 

l 
{ ( x , , v " ,  1,v)I~1,~. ~ , . .  ( ( I ' ,v)Ex 'M v(~V") 

f'] a l , aLZv,  EV((1, v '  )EV' ("t v '  EV")] } - -  

,,. > P V x P L • 2 1 5  

(~pr' Z ) 
-pr 2 

P, L• 

N •215 

+ P, LxV)xP(LxV)xLxV 

(Pr2-1) 2 

P(LxV)•215 

Diagram l 

[(x, 1, v)I(i, ~)~x] -~ P ( L x V ) x L x V  

('1 xLxV 

[(x,, x", I, v)I(l, v)(X'N (i, v)EX" p 

[(x,, v,, I, v11(I, v)~X, ,q ~EV' ]~ 

I 
{ ( x , , v , ,  1, v) 1(1, v lex ,  N v~v '  }~- 

P(LxV) xP( LxV)• 

t (Pr2-1) z 

P(LxV)•215 'V 
~ P(LxV)xV•215  

Diagram,Z 

12 
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the topology itself must be. 

This tells us that the product topology makes (LxV, Tproduc t) -+ 

(F, T F) a natural transformation from a constant functor to F. It 

remains to show that the topology on L makes the map f:A -+ L, in- 

duced by the universal mapping property in _E , continuous. For this, 

we need the following internal form of the Beck conditions: 

LEMMA 6: If 
gl 

A ~B is a_pullback, then (f__-l)z_ = 

f'  f ~ ,(fg" ~ 

G g ~D --g 

Proof: This is a direct consequence of the external Beck conditions 

for the pullback 

PGxA PGxg' ~ PGxB 

P G x f '  ~ 

P C x G  P G x g  , P G x D  

P G x f  

To show that f is continuous when fxV is continuous when LxV is 

given the topology TL• V and L is given the topology with subbase 

~prTL• V , it will suffice to show that ~f_l~prTLXV ~ TA" 

pr -i 
Now, the  s q u a r e  L ~ LxV i s  a p u l l b a c k ,  so  f X = 

f ~ ~fxV ----pr 
A p,r A x  V 

- I  
4 r ( f X u  Thus, 

_i~ TLxV = ~I~i (fxV)-I TLxV" 
f --pr pl - -  

Since f• is continuous X .ITL• 
(f• TAxV" 

X~ give s 
--pr 

g _l~g TLx V _< ~ TAx V <_ 
L -pr -pr 

Therefore, applying 

T A �9 

The last inequality follows from Lemma 3. 

I would like to thank Gerhard Osius for his helpful comments. 

13 



14 STOUT 

R e f e r e n c e s  

[1]  BENABOU, JEAN: In t roduc t i on  to B i c a t e g o r i e s ,  in  R e p o r t s  of the 
Midwes t  C a t e g o r y  T h e o r y  S e m i n a r ,  L e c t u r e  Notes  in M a t h e m a t i c s  
47. Berlin, Heidelberg, and New York: Springer 1967. 

[Z] DIACONESCU, RADU: Change of Base for Some Toposes, Thesis, 
Dalhousie 1973. 

[3] KOCK, ANDERS and WRAITH, GAVIN: Elementary Toposes, Lec- 
ture Notes Series 30, Aarhus Universitat Matematisk !nstitut 
1970. 

[43 LAWVEKE, F .WILLIAM: Quantifiers and Sheaves, Acres du Con- 
gr~s Int.des Math. Nice 1970,1, 329-334. 

[5] OSIUS, GERHARD: Categorical Set Theory: a Characterization of 
the Category of Sets, J. Pure andAppl.Alg. Voi.4,79-120 (1974). 

[63 OSIUS, GERHARD: The Internal and External Aspect of Logic and 
Set Theory in Elementary Topoi, preprint, 1974. 

[73 STOUT, LAWRENCE: General Topology in an Elementary Topos, 
Thesis, University of Illinois, 1974. 

[8] STOUT, LAWRENCE: Topological Space Objects ina Topos I: 
Variable Spaces for Variable Sets. To appear. 

Lawrence Stout 
Department of Mathematics 
McGill University 
Station A, Box 6070 
Montreal, Quebec, Canada H3C 3GI 

(Received October 17) 1974; in 
revised form June 23, 1975) 

14 


