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TOPOLOGICAL SPACE OBJECTS IN A TOPOS II:
£-COMPLETENESS AND £-COCOMPLETENESS

Lawrence Neff Stout?!

It is well known that topoi satisfy strong internal completeness and
cocompleteness conditions: Lawvere [4] announced the existence of
internal Kan extensions; proofs may be found in Kock and Wraith [3]
and Diaconescu [2]. In this paper I give an explicit construction of
the limit of an internal functor and lift the completeness and cocom-
pleteness of & to the category of topological space objects in € defined
by internalizing the definition in terms of open sets (as in [7] and [8]).

I: Notational Conventions and Definitions

We adopt the internal language of a topos exposed in Osius [6] in
which predicates are used to name the subobjects whose construction
they describe. For instance the subobject V

acaThea
to the result of ap-

(2€C=beC)>PA
is the result of applying the functor Vpr-PAxA-éA

plying the functor to the subobject eAxA =

pry :PAXAxA s PAxA

-1
(twist ) eAxA. The existence of elements as such is not intended

2,3
to be implied.

The union map |J: PZA—> PA is the exponential adjoint of the cha-
racteristic morphism of the subobject of PZAxA consisting of those

pairs (5,a) such that & (2a€BNBe&S). The intersection map D:

2 BePA
P"A 5PA is defined similarly using VBGPA( BeS = acB).

Internal forms of the functors ¥, and V¥, are the morphisms from

i f
PA to PB taking a subobject S to HfS and VfS respectively. To dis-

~1
tinguish the usage we underline internal functors: Ef’ jf, f " . A con-

struction of these maps may be found in Osius [5].

DEFINITION: A topological space object in a topes is a pair (A, T ,),

A

! Parts of this work appeared in the author's thesis at the University
of Illinois, 1974.
Research partially supported by @ grant from the Ministry of Educa~
tion of the Province of Québec.
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where T, ¢ PA satisfies

A
1. ¢€TA and AETA
2. Ty piepal(BET, NBET,) = (BNBIET,)
3. Tgep2p (SST, =USET,).

A morphism f:(A, TA) - {B, TB) is called continuous iif & “?TB o

TA and open iff HE TA < TE. Top({e) is the category of topological

space objects and continuous morphisms in &.

In Sets this is the definition of a topological space. In Sh(X} for X
a topological space, a topological space object is an étal space

(Y, T )—E-é(X, TX) together with a second topology TY' on ¥ mak~

Y
ing p continuous with TY‘ c ’I‘Y. A proof of this appears in Stout [87.

II: Initial Topologies and Finite Limits

In order to comstruct limit topologies in Sets-based topology, we
first construct the limit in Sets and then give it the topology induced
by the projections. All that is really needed is to transport this cons-
truction to a topos is to show that all of the inferences in the proof
that the construction works are intuitionistically valid. This is essen-
tially what I did in Chapter 3 of [7].

There is a less tedious way which provides a technique easily ap-
plicable in other situations. All formations of closures under opera-
tions can be done using the concept of a tractible predicate and an
argument similar to Mikkelsen's (unpublished) topos proof of the

Tarski fixed point theorem.

DEFINITION: Let L be a complete latiice in ¢. Then a predicate

y—>L is called tractible iff

Py —1
gii ltr

pp, dnf, | vy g
commutes.

REMARK: Mikkelsen's version of the Tarski fixed point theorem has

as its key poiny the tra ctibility of the predicate obtained by pulling <
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back along {h, lL), where h is an order preserving endomorphism.

LEMMA 1: Let f:C->A be any morphism, Dc PAxC be such that

-1 2
{OxC) Dc{(S,c)eP AXC‘VBEPA
te y specifying those A'€¢ PA such that ’v’cec((A‘, c) e D=f(c)eA') is

{BeS= (B, c)ecD)}, then the predica-

tractible.

Proof: We calculate (ﬂ ) {A |V ((A*, c)eD = f(c)€ A')} and

ceC
show that it is all of Py. The Beck condition for ¥V allows us to inter-

change the second pullback with the quantification to get
-1 2 -1,
) “{seP AIVcec((DxC) {(A", c)|(A", c)eD = f(c)eA'}=S)}.

Calculation of the inside pullback gives

1 2 3 1 1
{seP A\vcec((r_wxc) 'p = Vg cpalB'es =f(c)eA'))].

By hypothesis this is larger than

{SeP AIV (A"eS =»(A",c)eD) »¥ (A'eS=f(c)eA'))}.

CGC A”EPA A'lePA
Using the intuitionistic rules VgA = VgB > Vg(A—_«B) and A=(B=C) <

(A=B) = (A>C) we obtain a smaller subobject

I[SGPZA}V (A'€S = ((A', c)eD = f(c)eA’))1.

cec’arepa

We may now apply the Beck condition to move the other pullback
inside the quantifier and then use the definition of the internalized
quantifier to calculate the result. This has the effect of replacing the
condition A'eS with A'eS ’v'cec((A', c)eD = f(c)EA) giving

{SePy|V (A'eSNV_,. {(A', c)eD = f(c)eA)

ceCVA'ePA ceC
= {(A', c)eD = £{c)eA'))}.
The expression inside the quantifiers is always true by the V-elimina-

tion rule, proving the lemma.

COROLLARY: If f:A"5A is any morphism, then

{AY]V
al. . .aneA

is tractible.

((2,€A' Na, €A N...Na_€A) = Ha ...a )cA")]
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-1
Proof: (QxAn) (AL, .2 )]a A N...Na €A'}={(S,a ,...,a )]

VA'EPA(A'ES sa,eA .. ﬂaneA'} so the lemma applies.

)n

COROLI.ARY: If f:(PA) = A is any morphism, then

1
(A WAl’ y .,AnePA((AfA!ﬁ' CDA A) KA, . LA JEA))

is tractable.

Proof: The proof for arbitrary n is a direct generalization of the

proof for n=1 which follows from the fact that AIS A'iff VaeA

(aEAl =acA') and the following calculation:
-1
(NxPA) " {(A, AV, _,(2cA (a€A) =acAl))

= {(S,AD|T, ,(a€8 =7

A (BES = agB))}

BePA

= {(S,Al)iv (aEAl =(BES = aeB))}

acA VBGPA

= {s,a)|y (2€A | =(B€S = 2¢B))}

BePA Va. €A

= {(S5,AaD]v¥ (BES = (acA, = a¢B))}

BePA Va. cA

(BegS = VaEA(aeAl =agB))}

= U8, 4|V py

so the lemma applies.

A direct proof shows that for any A'c A the predicate {BEB<A‘}

is tractable.

LEMMA 2: The infersection of two tractable predicates is tractable.

Proof: Let Y and S be tractable., Then Py c D'ly and P§c Q'la
so Py\P§ ¢ D- 1('yﬁé). But the power object functor preserves order
so P(yN 8) < Py P§, and thus 41§ is tractable.

As a result of these lemmata we can observe that the internal forms

of the predicates "T is a topology!' and "T is a topology larger thanS"

are tractable.

THEOREM 1l: If y is a tractable predica te then the smallest global

section of v is inf gl[y]
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Proof: Tractability tells us that inf -E—x[‘y] is a global section of y. If
§ is any other global section of y then [§] < [y], so since inf rever-
ses order infgi[ﬁj 2 ’mf_Hi['y]. For global sections §, inf gi.[ﬁj:é

so this proves the theorem.

COROLLARY: For any S<PA there is a smallest topology larger

than S.

COROLLARY: Top(E) is finitely complete.

Proof: Let F be a functor from a finite category D to Top(E) and
L be its limit in E. The limit cone gives a finite family of mor-
phisms li:LeF(Di). The limit topology on L is the smallest topo-
logy containing the union of all of the Hli-l(TFD.)' Any other cone
induces a unique morphism by the universal mapiaing property in E.

It is continuous because the inverse image of a subbase is in the topo-

logy.

A subobject B<PA is called a basis for T, if TA is its closure

A
under internal unions. Precisely as in set-based topology we can

produce a basis of open rectangles in the product topology on the pro-
duct of two spaces by taking the image of T, XT _ along the morphism

A" B
Ta B:PA)(PB - P(AxB) defined as the exponential adjoint of the cha-
racteristic morphism of the subobject {(A',B',a,b)|acA'NbeB'}. In
fact it is not necessary to use the whole topology in the formation of a

basis of rectangles. It will suffice to replace TA and TB with bases.

III: Final Topologies and Finite Colimits

In order to produce final topologies it suffices to consider only the
case of final topologies induced by one map and then use the tractabi-
lity of the topology predicate to generalize the result to any finite col-

lection of maps.

THEOREM 2: Given a morphism {:(A,T,) - B in 2., the largest to-

i1

pology on B making f continuous is (f- )y °T

A

Proof: Adjointness and the definition of continuity tell us that this is
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the largest possible candidate. That it is a topology is the result of the

preservation of all logical operations by pullback, exactly as in Sets.

COROLLARY: For any finite set of functions fi from Ai to B, there
is a largest topology on B making all of the fi continuous,

Proof: Apply the theorem to find the largest topologies making sach of
the functions continuous and then form the subobject of the object of to-
pologies consisting of that collection of topologies and take its inter-

section.

COROLLARY: Top(Z) has finite colimits.

IV: &€-Limits and €-Colimits in €

In [3], Lawvere observed that for a category object C in a topos,
the category of internal functors from C to £ is again a topos, and
furthermore that any functor between category objects induces a func~
tor between the resulting functor categories which has both a right and
a left adjoint, The constructions of the adjoints (which are a sort of
internal Kan extention) may be found in Diaconescu [2] or Kock and
Wraith [3]7. The object of this section is to give an explicit construc-
tion, using the data in the functor, of the limit. The construction

follows a suggestion of John Gray.

DEFINITION: (Benabou [1]} A category object in a category with

finite limits is a 6 tuple (V,E,¢,d,u,0), with V and E objects of

the category (the object of ocbjects and the object of morphisms, res-

pectively), c and d morphisms giving the domain and codomain, u a

morphism giving the inclusion of the unit maps, and o a2 morphism

from EcxdE to E (composition) such that the following conditicns
hold

1. cu =du = lv

2. dpr1 =do g._g_t_icprz =co
and o(uxE)}(d,E) =1

E).

3. olExu)(E, c) =1
4, oflE

E
a*d

B

dxdo) = ofo
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An internal functor from a category object {V,E,...) to C (the

base category) is a triple (F,p, ) with F an object of C, p:¥F»V

giving the action of F on objects as a V-~indexed set, and c:prdE-aF

(the structure map) giving the action on morphisms.

The constant functor with value K from (V,E, ...} to C is the

\% .
functor (Kx ,'prz,przxdc)

A natural transformation from (¥,p,q) to (F',p', ') is @ mor-

phism from F to F' such that p'n=p and ns = s‘(nxdE).

Diaconescu [2] identified the colimit as the coequalizer of the struc-
ture map and the projection. It is easy to show that the natural trans-
formation to the constant functor so constructed satisfies the universal
mapping property for cocones.

The construction of the limit L as a subobject of FV picks out
the collection of all sections of p which are consistent with the ac-

tion of g.

PROPOSITION: If (F,p,o0) is an internal functor from (V,E,...) to

E, then the limit of F can be constructed as a subobject of FV.

Proof: The condition that a:AxV -+ F be a natural transformation from
a constant functor is the same as the commutativity of the following

two diagrams:

(prl, CPI‘Z)
(AxV), XgE AxVxE AxXV
axdE L . La
F y E
p*d F
AV 2 F
pr P
Ay

The first of these is equivalent to the commutativity of
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axExV) v

{
—ARXEXTL
(AxV)PrxdE (F Xv)erdE
Y:xE
v«
FowW
xVxE FdeE
(prl, CPrZ) o
FVxV A4 >

which, using the representability of partial maps and exponential ad-

jointness is equivalent to the commutativity of

({ev(pr ;) epr,)))"
A-2ap’ P T L VxE)
((oev x g EN™)

cd

The commutativity of the second diagram is equivalent to the com-

mutativity of the square

a \'

A7

al L7
prv b ’

FV VV

Thus a is a natural transformation to ¥ from a constant functor iff
its exponential adjoint equalizes both of the pairs of maps produced

above. The limit L, is thus the equalizer of both pairs of maps.

V: €-Limit and €-Colimit Topologies

To extend the completeness and cocompleteness of & to Top(f },
we first observe that by giving both V and E the discrete topology any
category object in € may be considered to be a category object in
Top( €). The other definitions remain the same but take on new mean-
ing because '"morphism' and "product' are interpreted in Top(€)}. In
particular, constant functors are required to be given the product to-
pology.

For the topos Sets these results show that the category of topolo-

gical spaces is (small) complete and cocomplete.
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THEOREM 3: Top(€) is &-cocomplete.

Proof: There is a topology induced on the colimit by the construction
of a final topology from the injection and the topology on F. This makes
the colimit natural transformation from ¥ to CxV continuous and
makes the induced map to any other constant functor continuous as

well,

THEOREM 4: Top(£) is €-complete.

Proof: There is a topology induced on the object LxV by the two maps
LxV » FVXV —Y ¥ and pr, by the construction of initial topologies.
This satisfies the universal mapping property of the limit topology in
that for any other natural transformation a from a constant functor
AxV to F, there is a continuous natural transformation from AxV to
FxV of the form fxV. The only catch is that the topology so construc-
ted on LxXV is not a product topology. Therefore, the problem is to
find the product topology best approximating the induced topology

TLxV'

LEMMA 3: The projection from a product to one of its factors is

open: i.e., :HE TAxV < TA.
“pr
Proof: Since existential quantification preserves unions and Hr
A,V
TAXTV is a basis for the product topology, it will suffice to show that

ngrErA,VTAxTV < TA.
The argument is essentially that the projection of a rectangle UxV is
the open subobject obtained by truncating U to the support of V. This
is obtained formally by the commutativity of several diagrams.
First, truncation and union commute, that is, L“JrPA, 1= rA’ 1
{UxP1). Both maps are the exponential adjoint of the characteristic

morphism of

O ep? . y
{(S,U,2, )P AxPIXAXL| T, , (€U NA'ES NacAn)}.

. 0 s . : -
Since U is split by { 1}, this shows a1 L—JrPA, 1({ 1xP1).

Second, the rectangle map commutes with internal existentiation:
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-EAxfrA,V = IA, BPAng. Both are the exponential adjoint of the cha~

racteristic morphism of {(A',V',a,b)cPAxPVxAxB|acA'Ni(b)eV'].

Combining these results gives the commutativity of

S —Y >
T, XP1 PT !xPl PT, T,
T1.xP1 q. L :
| RN I |
1 1
PAxP! xPl _ p2AyP1 PA, P?A i DA
/”7
A, 1

where the right hand square commutes by the union axiom.

Thus % (T xT.)=x {T xPl)<T, . But
TA, 1P e rmina A Y T A A
rA, IPAtherminal g’prer, v’ so this tells us that
! H (T, xT. YT
gpr rA, v ATV A

as needed.
This lemma tells us that the topology used for L must contain

¥ The next two lemmas show that the smallest such topolo-

T .
g - LxV
g;p1s the one we need. Even in Sets this depends heavily on the fact

that V is discrete.

topology on {f R

Proof: The construction of ¥ (as in Kock and Wraith [3]) induces a
factori zation of the singleton through V. The unit law for the power -

object triple tells us that U ¥ = id so the singleton map, thought
J P U _{]V g P g

PV’
of as a subobject, is a basis. Thus V is a basis since it containsg the

singleton.

The next lemma tells us that the basis V gives a basis for the pro-
duct topology on VxL which consists of slices rather than thick rec-

tangles. In Sets this follows by taking the points as basic open sets.

LEMMA 5: The following diagram commutes:

10
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-1
. (pr, ), 2
P(LxV)xV » P(LxV)xPV P(LxV)
id [
P(LxV) P(LxV)
r \ 1.4 s E )
L, v PLxPV TPTTPE,

Proof: Taking exponential adjoints in this diagram gives two maps
into the subobject representor which we need to show are equal. This
is customarily done by showing that they represent the same subob-
ject. This involves the computation of an involved but straightforward
pullback which is carried out in diagrams 1 and 2 up to the deter-
mination of the subobjects of P(LxV)xPVxLxV. The Beck conditions
and definitions of () and internal functors are used extensively in
these calculations.

In the result of the calculation in diagram 1 the two terms can be

combined under one pair of quantifiers to get

{(x,vr1,v)|g (1, v)eX' NveV" N(L, v )eX Nv'eV)].

1eL¥viev
The requirement in the next stage of the pullback that V' be in v
tells us that since veV" and v'€V', v =v'., Thus in P(I_,x‘/')xV~ we
obtain the subobject {(X', V", l,v)}E[lveLHvlev((l‘,v)eX' Nvev! N

(1, v'eXt Nv'eV' Nv=v'} which reduces to {(X', V", 1,v) ](1, v)EX' N
veV''} as obtained in Diagram 2, Diagrams 1 and 2 are shown on

page 12.

COROLLARY: The product topology obtained by using the topology

generatec contains .
enerated by EH TLxV contains TLxV

—pr
Proof: Preceding the diagram in the lemma by the subobject TLxVxV
and taking the image along the top map gives a basis for the topology
TLxV’ since the projection is continuous and V is a basis for the to-
pology on V, Taking the image along the bottom map gives a subob-

ject of the rectangle basis for the product topology. This shows that

a basis for the topology T is contained in the product topology so

LxV

11
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1 — Y
¥ 3 FirS -~
L, v
{(V', L, 1, v}]1eL' (veV'] » PVxPLxLxV
N A
(2,3 )
_pl‘ —pl‘z
{(X: 1’ V)1EI'ELHV‘€V((1"V)EX)
ﬂﬁl,eLHV,EV((l,v’)eX)} > P{LyV)xLxV
T N xLxV
(XX 1, v) |8y, B o (1 9IEXT (LY v)EX™))
H ! 1 t | S
NEer Tgryl(h vIEXN(L v)eX™)] P(LxV)xP(LxV)xLxV
f .
| (pr, "),
(XL VS L8] g e (1 VX N vev™)

0813y

(L, v)ev Ovievl}»

> P{(LyxV)xPVyxLxV

Diagram 1

{(X,1,v) (1, v)eX} >
h

{(xX, v, L,v)[(1,v)eX' Nvev']

{(X,, X", L, v) {1, v)eX'N (1, v}eX" pr—r——7 P

? P{LyV)xLxV

N xLxV

(LxV)xP(LxV)xLxV

S
1

(pr2 )2

5 P{LXV)xPVxLxV

» P(LXV)xV xLxV

(X, V', Lv)|(L,v)eX'NveV'h

Diagram 2

12
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the topology itself must be.

This tells us that the product topology makes (LxV, Tproduct) -
(F, TF) a natural transformation from a constant functor to F. It
remains to show that the topology on L. makes the map f:A - L, in-
duced by the universal mapping property in E, continuous. For this,

we need the following internal form of the Beck conditions:

LEMMA 6: If A—£>B  isa pullback, then (£ 'l)gg =
~1
ol e O

C D

Proof: This is a direct consequence of the external Beck conditions

for the pullback

PCyA Plxg! > PCyB
PCxi" L l PCyi
PC
PCxC Xg ~ PCyD

To show that f is continuous when fxV is continuous when LxV is

given the topology T and L is given the topology with subbase

LxV
gg TLxV , it will suffice to show that § —13'& TLxV < TA.
pr £~ pr
Now, the square L BT LxVv is a pullback, so f_lH =
A—Spr
f l v foV
A—PE— AV
gpr(fo)-l. Thus,
) T T =9 17T .
-1 fxV V
P gpr LxVv _gpr( xV) Lx
Since fyV is continuous ﬁ(f V)-lTLxV < TAXV' Therefore, applying
EE{ gives XY
=pr
i -IHH TLxV < EH TAx‘V < TA.
f “pr =pr

The last inequality follows from Lemma 3.

I would like to thank Gerhard Osius for his helpful comments.

13
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