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We derive a new inequality for ferromagnetic Ising spin systems and then 
use it to obtain information about the number of phases which can coexist 
in such systems. We show in particular that for even interactions only two 
phases (up and down magnetization) can coexist below the critical tem- 
perature at zero magnetic field (h = 0) whenever the energy is a continuous 
function of the temperature. We also prove that the derivatives with respect 
to h at h = 0 of the odd correlation functions (triplet,...) diverge like the 
susceptibility in the vicinity of the critical temperature (at least for pair 
interactions). Our results also apply to higher order Ising spins (not just 
spin �89 
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1. I N T R O D U C T I O N  

T]ae unde r s t and ing  o f  phase  t rans i t ions  is one o f  the mos t  interest ing and 
central ,  pe rhaps  the central ,  p rob l em of  equi l ib r ium stat is t ical  mechanics .  A 
system undergoes  a f i rs t -order  phase  t rans i t ion  whenever,  for  some value o f  
the  t empera tu re  and o ther  re levant  t h e r m o d y n a m i c  parameters ,  two or  more  
phases  can coexist  in equi l ibr ium.  The different  proper t ies  o f  the pure  phases  
manifes t  themselves also as discont inui t ies  in cer ta in  observables  as a 
func t ion  o f  the app rop r i a t e  t h e r m o d y n a m i c  variables ,  e.g., d i scont inui ty  o f  
the magne t iza t ion  a s a  func t ion  o f  the magnet ic  field in a fe r romagnet .  M o r e  
genera l  phase  t rans i t ions  are  said to occur  whenever  the free energy o f  the 
system (and thus also the  t h e r m o d y n a m i c  funct ions  der ivable  f rom it) has 
a nonsmoo th ,  ma themat ica l ly  nonanaly t ic ,  behav ior  as a funct ion  o f  its 
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arguments. Indeed, since statistical mechanics goes beyond thermodynamics 
to describe also the microscopic correlation in the system, any nonanalytic 
behavior of the correlation functions (in their dependence on temperature 
and other suitable variables) may be considered as some sort of phase tran- 
sition. The relationship between nonanalyticity, coexistence of phases, and 
the kindred notion of "symmetry breakdown" is one of  the interesting 
questions in this field. (1-3) 

As is well known, it follows from the general formalism of statistical 
mechanics that such nonanalytic behavior can occur strictly only in infinite 
systems--the proper mathematical idealization of  macroscopic systems that 
are described thermodynamically by intensive variables. (1'3) The equilibrium 
states of such an infinite system are described by Gibbs probability measures 
on the phase space of the system: the appropriate (3-5) generalization of 
finite-volume Gibbs ensembles. Equivalently, one may describe the " s t a t e"  
of  the infnite system by means of correlation functions. The latter are ob- 
tained as infinite-volume limits of the equilibrium correlations in a finite 
system with specified "boundary  conditions." A pure thermodynamic phase 
then corresponds (loosely speaking) to a set of translation-invariant corre- 
lation functions which "c lus ter"  at infinity, i.e., correlations between different 
local regions of the system decay (however weakly) as the distance between 
these regions becomes larger and larger. The latter condition is equivalent 
to the requirement that intensive variables be well defined, i.e., that fluctua- 
tions in " a l l "  intensive variables, local functions averaged over the volume 
of  the system, vanish as the volume tends to infinity. The coexistence of 
several phases then corresponds to the existence, for a given interaction, 
temperature, and magnetic field, of more than one translation-invariant 
equilibrium state. This is the same (3-5) as the possibility of obtaining different 
translation-invariant, infinite-volume limits for the correlation functions 
from different boundary conditions. 

By a very general theory (a-~) it is always possible to decompose any 
equilibrium state uniquely into "ext remal"  states, the translation-invariant 
(TI) extremal states corresponding to the pure phases. This means the 
following: Given any "observab le" f i  then its expectation value ( f )  in any 
TI equilibrium state can be written in the form ( f )  = ~ = ~  ak(f)~,  where 
( f ) k  is the expectation value of ( f )  in the kth pure phase, 0 < a~ ~< 1, and 
~.~=~ ak = 1, i.e., a~ measures the fraction of  volume occupied by the kth 
phase. The crucial point here is that the a~ are independent of the observable 
f :  Thus n clearly represents the total number of phases which can coexist 
(at a given temperature and magnetic field) and the question then is to 
determine n. (The Gibbs phase rule states that for an m-component fluid, 
n ~< m + 2, but this is far from proven and does not apply to spin systems 
with general interactions. (a'6)) 
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This paper is devoted mainly to the derivation of some results regarding 
the number of possible phases in an Ising spin system with ferromagnetic 
interactions. This is the simplest nontrivial system for which such results 
can be derived in a mathematically rigorous way. The main new result is 
that for such a system with even spin interactions (pair, quadruple,...) there 
can coexist, at zero magnetic field, only two phases (up and down magnetiza- 
tion) at all temperatures at which the energy is continuous (in the tempera- 
ture). In particular, there are no intervals of temperature, below the critical 
temperature To, at which three or more phases can coexist. This extends 
results previously known only for the two-dimensional Ising spin system 
with nearest neighbor pair interactions (7) and for higher dimensional Ising 
systems only at low temperatures/~ It is a simple consequence of our result 
that the spin-spin correlation (a,aj} obtained with "ze ro"  or periodic 
boundary conditions at h = 0 approaches, as [i - J l ~ 0% the square of the 
spontaneous magnetization (below T~). 

The above results are derived in Section 3. They are based on a new 
inequality for ferromagnetic Ising spin systems, which is derived in Section 
2. Section 4 is devoted to proving, on the basis of the new inequality, the 
equality of the "low-temperature" critical exponents describing the diver- 
gence of the derivatives, with respect to the magnetic field, of the odd corre- 
lations (triplet,...), i.e., they diverge like the susceptibility. The results are 
generalized to spin-�89 (n > 1) Ising systems in Section 4. 

2. I N E Q U A L I T Y  

Let A be a finite set of IA[ sites, which for later application we shall 
think of as a subset of a regular v-dimensional lattice, say A c Z~. Let 
as = + 1, i ~ A, be an Ising spin variable and aa = 1-i~a (r~, A c A. Let 

-1  (1)  
K ~ A  K ~ A  

be the energies (times the reciprocal temperatures) of two Ising spin systems 
in A. Define 

(a~} = Z  -1Tr[aAexp(~J~zaK)], (aA}'=(Z') -~Tr[zAexp(~JK'a~)l (2) 

to be the equilibrium expectation values of aA in the two systems, where 

Z= Tr[exp(~J~caK)], Z' = Tr[exp(~JK'a~)] (3) 

are the corresponding partition functions. 
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We are interested in the difference ( a , ~ ) -  (aa)' ,  which, following 
Ginibre, (9~ can be written in the form 

( a a ) -  (aA)' = ( Z Z ' ) - ~ o T r I ( a  ~ - a a ' ) e x p [ ~  ( J x e r +  J~r'(rr')]} 

= ( Z Z ' )  -~ Tr(1 - ta) ~a exp (JK + JK'tx)cr~; (4) 
t 

where we have introduced the Ising variables ~r~' = + 1 and h = o~'cr~ = + 1. 
It follows now from the Griffith, Kelley, and Sherman (GKS) inequalities m~~ 
that when 

J~ ~ I J~'l, for all K c A (5) 

then the trace over ~ on the right side of (4) is nonnegative. Let A = B z5 C = 
B u CIB n C be the symmetric difference between the sets B and C; then 
ta = tBtc = +1 and 

1 -  tBtc >I + ( t B -  te) (6) 

Substituting (6) on the right side of  (4) and going back to the or' variables, 
we obtain our basic inequality for aa = %crc, 

(7a) 

Noting that ac = aaaB, we can rewrite (7a) in the form 

(7b) 

The inequalities (7a) and (7b) are valid whenever (5) holds. From (7b) in 
particular we have the following result: 

Lemma 1. Let (5) hold. Then ( a A ) =  @~)' and ( a B ) =  ( ~ ) '  ~ 0 
imply <cracrB) = <cracrB)' for all A, B c A. 

Corollary. Let (5) hold. Then (i) (o-~) = (a~)' r 0 for all the one-site 
sets i e A implies (aA) = @A)' for all A c A; and (ii) (a~aj) = @~%.)' r 0 
for all i , j  ~ A implies (aE) = (a~)' for all sets E containing an even number 
of sites, IEI even. 

ProoL By Lemma 1, (a,) = ( ~ , ) ' ~ 0  and ( % ) =  ( % ) ' r  imply 
(a,%) = (a,~s)'- Furthermore, since J r  ~> 0 it follows from the GKS in- 
equalities that (crumB) >_- @A)(oB) ~ 0. Hence (oh%) >~ (a~)(%) > 0. The 
rest follows by induction. The proof of  (ii) is similar since (aB) = (a~akch%ch) 
for all B c A. 
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We can also rewrite (7a) in the form 

(crBec) - (eBcrc)' /> I(eB)[(crc) - (~rc)'] - (ac)[(oB) - (cr~)']l (7c) 

and consider the case where JA' /> 0, 8A >/0, Ja = JA' + 3A. We then find 
the following result: 

L e m m a  2. With the above definition let ark >/ 0; then 

for all B, C c A. 

Remark. While the inequalities (7a)-(7c) and thus Lemma 1 and the 
Corollary clearly remain valid in the limit (suitably defined) A S 7/~, the 
limiting correlation functions may not be differentiable, for some values of  
the potentials {arK}, in that limit. The inequality (8) will then still be valid 
(in a suitable sense) whenever JA > 0 but will hold only for the right-sided 
derivative when JA = 0. 

3. I N F I N I T E - V O L U M E  E Q U I L I B R I U M  STATES 

We shall now use the inequalities derived in the last section to obtain 
information about the number of  equilibrium states for infinite-Ising systems. 
To do this we assume that the interactions are translation invariant, JA = 
fi~A+x, where A + x is the set A translated by a lattice vector x. In particular, 
for the one-point sets, A = i ~ 77 v, /3~ = h, the magnetic field (times /3), 
and for IAI = 2, J(t,j~ = flq~(i - j ) ,  etc. The energy of  a spin configuration 
tT A in A c 7/v will depend on the specified values of  the spins outside A, i.e., 
we consider the spins outside A to be fixed and act as boundary conditions 
for the spins in AY -5> A particular boundary condition (b.c.) " b "  then 
corresponds to a lattice spin configuration a b such that cr~ = a b for i ~ Ac. 
(Generally a b =  + 1; cry~ 0 correspond to zero b.c.) We then have, 
corresponding to Eq. (1), 

H ( a a ; b )  = - ~ ~ ~BaB+x, qbB >i 0 (9) 
B = { O }  x 

where {0} designates the origin and the sum over x goes over all x such that 
{B + x} n A is not empty, i.e., at least some of  the sites in B + x are in A. 
We assume from now on that the ~B I> 0, i.e., positive ferromagnetic inter- 
actions. It is then clear that H(a~,; + )  corresponding to plus b.c., ~r~ + = 1, 
" d o m i n a t e s "  all other b.c. in the sense of  (5). Hence, defining @A)(/3, h; b, A) 
as the expectation value of ~a, A ~ A, for the Hamiltonian (9) at reciprocal 
temperature/3 and magnetic field h, we can identify (erA) of  Section 2 with 
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<crA>(fl, h; + ,  A) and <aA)' with <~A>(/3, h; b, A) for any other boundary 
condition. (Our notation implies the "physicist"  point of view, where/3 and 
h = {/3q)~} are independent, "externally controlled" variables while q)K, 
IK] /> 2, are "g iven"  interactions.) 

It follows from the GKS inequalities (1,~) that 

lim <erA>(/3 , h; + ,  A) = <~ra)(/3, h; + )  
A.fZv  

(10) 

exist and are translation invariant, 

<,~+~>(~, h; +)  = <,~>(13, h; +) (ll)  

To avoid unnecessary complications we assume that the interactions are of 
"finite range," q)B = 0, unless B c N, N bounded. The thermodynamic free 
energy per site ~F(/3, h) = lim{]A I -1 In Tr exp[-/3H(~A; b)]} then exists and 
is independent of b. 

We shall write (cr~)(fl, h; + )  = m(/3, h; +),  the magnetization per site 
with plus b.c. For more general boundary conditions (including a super- 
position, with specified weights, of different a b) the limit A ,7 2[ v might have 
to be taken along subsequences to obtain infinite-volume correlation functions 
(era)(/3, h; b) which need not, in general, be translation invariant. (12) It is, 
however, always possible to average over translations to obtain translation- 
invariant correlation functions. The set of correlations (aA)(/3, h; b), A c 7]v, 
obtained from (aa)(/3, h; b, A) as A/x 77 v defines an infinite-volume Gibbs 
measure. These measures are identical to the ones that satisfy the DLR 
equations and the translation-invariant ones are identical to the solutions of 
a variational principle (minimizing the free energy per unit volume). (3-5~ We 
shall denote by G(T, T c G) the set of all infinite-volume Gibbs (translation- 
invariant Gibbs) measures tL. We shall sometimes write (~r~), for f crA/x(d~), 
/~ ~ G, and (aA)+ for f aAlx+(da), I~+ ~ T, the measure obtained with plus b.c. 

These considerations also lead to an identification of the (aA),, t z ~ T, 
with derivatives of  the free energy density ~F(J) with respect to Ja (=/3qba),(3-5~ 

W(J) = lira ]AL-a In Z(J; b, A) (12) 
A,.,',7/v 

and we have used J for the argument of W to emphasize that ~F can be 
thought of as a function of  "al l  possible" potentials arK. Since W(J) is a 
convex function of each JA, it will be differentiable for almost all values of  
Ja (keeping the other interactions fixed). 

We are now ready to state our first theorem about the number of possible 
equilibrium states. 

T h e o r e m  1. Let W(/3, h) be the infinite-volume free energy per site of  
an Ising spin system with translation-invariant interactions ; (I)• = (I)r+ x/> 0, 
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x ~ Z v, flqb~o~ = h. If  the derivative of tF  with respect to h exists (is continuous) 
and is positive, 8~F(fi, h)/8h > 0, then there is a unique translation-invariant 
Gibbs state. In particular (aA)(fl, h; b) = (aA)(fl, h; +) = OW/OJA for all 
boundary conditions b. 

ProoL Given any t~ ~ T, ((ra), = ~W/OJA, when the latter exists (3-5) and 
the theorem then follows from the Corollary to Lemma 1 with {e~) = Oui'/Oh. 

Remark. Theorem 1 states that differentiability of W with respect to h 
irnplies differentiability of tF with respect to all interactions. It thus generalizes 
to ferromagnetic, many-spin interactions the results of Lebowitz and Martin- 
LSf (11) for the case when the interactions are such that the Fortuin, Kasteleyn, 
and Ginibre (FKG) inequalities hold, e.g., when only pair interactions are 
present, q~K = 0, [KI > 2Y> In that case, however, the results are stronger; 
there is a unique Gibbs state (and so T = G) whenever ~W(fi, h)/Oh exists. For  
pair interactions this is true for all h r 0, and is always true at sufficiently 
high temperatures. (1,3) 

The positivity requirement on OW/Oh is, however, not as restrictive as it 
might appear. First, by GKS, (a~)(fl, h; + ) >  0 if h > 0 and hence 
O~F(fl, h)/ah = 0 => h = 0. Second, if the interactions are such that 
{oE)(fl, h = 0; + )  > 0 for IEI even, e.g., when the nearest neighbor pair 
interaction is positive, then it is easy to show (~4) that (cr~)(t3, 0; + )  = 0 =~ 
((rQ)(fi, 0; + )  = 0 for all ]QI odd. This implies, by GKS, that qbK = 0 for all 
IKI odd. These facts in turn imply that the odd correlations vanish for all 
b.c. since, by (7), for I QI odd, 

0 = (CrQ)(fl, O; + )  /> (aO)(fl, O; b) = --(aQ)(fl, O; - b )  (13) 

where - b  is the b.c. obtained from b by reflection; a-b = _orb. We are 
therefore left, when 8vF(fl, h)/~h = 0 at h = O, only with the possible non- 
uniqueness of the even correlation functions. We shall now consider this 
problem, which is also, as we shall see, the central problem when ~W(fi, h)/~h 
is discontinuous at h = 0 and there are only even interactions, e.g., in the 
Ising model with ferromagnetic pair interactions. 

Def in i t i on .  We call a (finite) collection of bounded sets {K,}, K~ ~ {0) 
all ~, generating for the even sets, {K~} = G, iff, given any bounded set 
E ~= Z v, ]El even, we can write 

Er E ----- ~ G{Kat+Xn} 
~=I 

rn finite, with K~, ~ G, and x~ a lattice vector (we may have K~, = K~). 
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By the proof  of part (ii) of the Corollary to Lemma 1, G will be generating 
iff it generates all the sets consisting of  pairs of sites {i, j}. Letting e~ be the 
unit vector in the ath direction, it is now easy to see that the v nearest neighbor 
sets, K~ = {0, e~}, a = 1,..., v, are generating, e.g., the product (aoa~)(a~a~+~) 
=a0a~+~,  where e~ + e2 is one of the next nearest neighbor sites of the 
origin, etc. 

It follows from part (ii) of the Corollary to Lemma 1 that if the expecta- 
tion values of  aK, in a translation-invariant state/x are positive and equal to 
(cr~)(/3, h; + )  > 0, for all K~ ~ (7, then all the even correlation functions of 
/~ are the same as in the plus state. This will be the case for all translation- 
invariant/z whenever tF is differentiable with respect to J ~ ,  for all K~ r K 
and ~tF/~J~= > 0. We now show that this is equivalent to having tF(/3, h) 
differentiable with respect to t3. 

T h e o r e m  2. Let the conditions of  Theorem 2 hold and let ~K~ > 0 for 
all K~ ~ G. If  DtF(/3, h)/~/3 exists, i.e., the energy per site (apart from the 
magnetic field contribution) is continuous in/3, then the expectation value of 
aE, [E[ even, is the same in all translation-invariant states: <aE)u = <a~)+ 
for ~ c T. 

Proof. By the general arguments (3-5~ mentioned earlier, atF(/3, h)/~/3 
continuous implies that for every/x ~ T, ~ o ~  ~K<a~>+ = ~.K~o~ qbK(crK)u. 
By (7), (crK)+ /> <aK>,; hence the continuity of 9~F(/3, h)/9/3 implies that 
<crK> + = <crK), for all /~ z T and all K such that ~K > 0. In particular 
~K~ > 0 for all K~ e G and by GKS, <crK=> + > 0, so part (ii) of the Corollary 
to Lemma 1 implies that <G~>+ = <cr~>~ for all [El even. 

The interest of Theorem 1 lies primarily in what it tells us about the 
number of extremal translation-invariant Gibbs states for a system with 
even ferromagnetic interactions, when h = 0, and ~(/3, h) not differentiable 
at h = 0. Since ~F(/3, h) is now symmetric (and convex) in h, the nondifferen- 
tiability of LF at h = 0 corresponds to the existence of a spontaneous magneti- 
zation with al~ 

~'V(/3, h) ~( /3 ,  h) 
m*(/3) = lim = - l i m  

n~.o ~h h,.'o 8h 
- -  = <~,>(~,  n = 0 ;  + )  

= - < . , > ( / 3 ,  h = 0 ;  - )  (14)  

Here < c ~ a ) ( f l , - h ; - )  = (--1)LAl(aa)(fl, h; + )  is the expectation of aa in 
the infinite-volume Gibbs state /x_ obtained, as A S Z ~, with "minus"  
boundary conditions (translation invariance is assured if h >1 0). As already 
mentioned, there are cases, i.e., only pair interactions (ferromagnetic), when 
h = 0 is the only place where a phase transition is possible. With more 
general even interactions only the symmetry h - + - h  is known a priori. 
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In a recent paper (~*) we were able, using the GKS inequalities, to obtain some 
information about the Gibbs states of such a system at h = 0. The following 
theorem greatly extends those results. 

T h e o r e m  3. Let the conditions of Theorem 1 hold and let q)K = 0 for 
all ]K[ odd and qbK= > 0 for all K= e G. If  ~F(/3, h = 0)/e/3 exists, then there 
are at most two extremal translation-invariant Gibbs states /z+ and /z_. 
These states coincide if 0~(/3, h)/ah exists at h = 0. 

Proof. By Theorem 2 the differentiability of  W(fi, 0) implies that the 
<oE>., IEI even, are the same in all/z e T. If, furthermore, O~F(/3, h)/~h = 0 
at h = 0, then, by the remarks following Theorem l, the odd correlations 
vanish for all/~ e G and the state/z e T is then unique. (When the F K G  
inequalities hold, differentiability with respect to h implies differentiability 
with respect to ft.) When W is not differentiable at h = 0, m*(fl) > 0, there 
are at least two extremal translation-invariant Gibbs states/z+ and ff_.(~l) 
Let/z(/3, 0; b) be an invariant state; then fi(fl, 0; b) ---- �89 0; b) +/z(fi, 0; -b)]  
is an invariant state in which all the odd correlations vanish by symmetry. 
Hence/7(/3, 0; b) = �89 +/z_) ,  which, since invariant Gibbs states form a 
simplex, i.e., each state has a unique decomposition into extremal states, 
implies that/~(/3, 0; b) = y/z+ + (1 - 7)/z_, 0 ~< 7 ~< I. This completes the 
proof. (The last part of  the argument, which is also used in Refs. 7 and 8, 
I heard originally from Ruelle.) 

Remarks.  (i) It follows (1) from GKS that there exists a unique tic such 
that 

~ = o ,  ~ < ~  
m*(~)~ > o, /3 >/3~ 

We always have (1"I5) tic >I/30 > 0 and for v >1 2 (with nonvanishing OK), 
/3c ~< tip < ~ ,  by the Peierls argument (or the more recent method of Frohlich 
et al. (16) for v >7 3). Using the convexity of tF(/3, 0) it follows from Theorem 
3 that with the possible exception at a countable number of  values of  fl, 
there is a unique tz a T for/3 </3c and two extremal states/z E T for fl >/3~. 
In particular there are no triple or higher order points at h = 0 when the 
energy is continuous in ft. 

(ii) The state at h = 0 obtained with "ze ro"  (or periodic) b.c. fz0 (/~v) is 
translation invariant and has vanishing odd correlations. (1'15) Hence /z 0 = 
/% = �89 +/~_).  This implies in particular the existence of "long-range 
order"  in these states for fi > tic, i.e., 

( ~ ) . o  j~2ji~ ~ [m*(/3)] 2 > 0 
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for/3 > /3c. (The converse of this statement, long-range order ~ m*(/3) > 0, 
is also true. m ) 

(iii) Setting B = {i} and C = {i,j} in (7c), we find that for/3 > 0 and 
h~>0  

[1 + (a~j)(/3 + 8, h + ~; +)][m(/3 + 8, h + E; +)  - m(/3, h; +)1 

>/ m(/~ + 8, h + e; +)[(a, aj)(/3 + a, h + e; +)  - (~,~j)(/3, h; +)] (15) 

with e i> 0 for h = 0. We shall use (15), and forms related to it, to derive 
various interesting inequalities in the next section. We mention here one. 
Letting h = 0 and 3 = 0 and noting that (a~,j) ~< 1, we obtain, for/3 >/3c, 

m*(/3 + a) - m*(/3) >/�89 + ~, 0; +)  - (a~aj)(/3, 0; +)] (16a) 

We see from (16a) that continuity of the spontaneous magnetization m*(fi) 
implies continuity of the pair correlation (aiGj)(/3, 0; -1-). By similar argu- 
ments we obtain continuity of all (aE)(/3, 0; +)  and also continuity of the 
energy. Hence, m*(/3) continuous implies, for/3 >/3c, the existence of only 
two extremal invariant states. 

(iv) For the two-dimensional Ising system with nearest neighbor pair 
interactions the continuity of a~F(/3, h = 0)/a/3 follows from Onsager's (1,17~ 
exact computation of T(/3, 0). Hence Theorem 3 establishes the existence of 
exactly two extremal states for all/3 >/3c [/3c being here the place where the 
second derivative of T(/3, 0) diverges logarithmically~18>]. This result for the 
square lattice was proven earlier, using duality, by Messager and Miracle- 
Sole.~7~ For more general Ising systems with even ferromagnetic interactions 
this result is known at low temperatures (not all the way to To) from the work 
of Gallavotti and Miracle-Sole and of Slawny/8~ Gallavotti and Miracle-Sole 
used (for nearest neighbor interactions) a beautiful version of the Peierls 
argument, while Slawny used the Asano-Ruelle method of locating zeros of 
the partition function to prove analyticity of ~F(J) in the even interactions at 
sufficiently large/3. Using the above theorem, it is sufficient to establish that 
~F(/3, 0) is C 1. This can be done readily if the correlation function in the plus 
state clusters sufficiently well for ~18~ 

[<~+~>(/3 ,  0; +)  - <.~)(/3, 0; +)<~.+~)(/3, 0; +)1 < oo 
X 

The latter can be easily proven for large /3 by a Peierls-type argument, ~xg~ 
which actually establishes exponential clustering. 

(v) Theorem 3 can be generalized, in a fairly direct way, using the ideas 
of Slawny, Gruber, and their co-workers to noneven interactions. One then 
gets a larger number of extremal states: these are related to the group, 
acting on the spins, that leaves the Hamiltonian invariant. 



Coexistence of Phases in Ising Ferromagnets 473 

4. D IVERGENCE OF GENERALIZED SUSCEPTIBILITIES 
AS 3-,3~ 

Various authors (z4"2~ have investigated the asymptotic behavior of 
higher order correlation functions, e.g., the triplet correlation (a~%.ek), as 
h xa 0 and/3-~/3~. Some results were obtained by Barber (22~ for the triplet 
correlation in the case of only ferromagnetic pair interactions and by 
Lebowitz(l~ for all odd correlations in the case of even interactions (satisfying 
the conditions of  Theorem 3). The latter results may be summarized as 
follows: Let 

(erA)*(3) = lim(aA)+(3, h) = (erA)+(13, 0) 
h \o  

and let 

x(A,/3) = lim sup h-~[@A>+(/3, h) - (aA)*(13)] 
IzN0 

Then for all [A[ odd,/3 ) e, E > 0 arbitrary, 

Cim*(fi) <<. (~.~)*(/3) ~< C2m*(fi) 

and 

Gx(/3) ~ x(a, 13) ~< c~x(/3), for 3 -< 3~ 

(16b) 

(17) 

where Cl and C2 are positive constants, 0 < C1, C~ < m, and x(fi) = X({0}, t3) 
is the usual susceptibility. In particular, if m*(fl) ~ (13 -/3o) 8 as/3 xa /3e (b is 
"usual ly"  called/3, the critical exponent for the spontaneous magnetization), 
then also (erA)*(13) ,,~ (/3 -- /3~)~ for IAI odd. (For/3 </3c we of course have 
(~)*(13) -- 0, IAI odd.) Similarly, if X(/3) diverges as ( /3 - /3c) - '  when 
/3S 3~, so do all odd IA[. Barber also showed, for pair interactions, that 
x(A, 3) for [A 1 = 3 does not diverge as 13 "a /3~ any faster than X(3). He could 
not, however, show that it diverges as fast as X(/3). 

It follows, however, directly from Lemma 2 with C = {i} that for h > 0 

0<-B~,>(13, h; +) o<~>(3, h; +) 0m(/3, h; +) (I8) 
c3h + re(f, h) Oh 1> <orB>(3, h; +) ~h 

Letting h "x 0 then yields immediately 

x(Q, fl) + m*(fl)x(B, 3) >>" (a.)*(/3)x(fl) (19) 

with ~o -'--- aBa*. If  [Q[ is odd, [B[ is even and @B)*(13) >/ C > 0 for fl > tic. 
Hence if x(Q,/3) does not diverge as fast as x(fi) for some [Q[ odd, x(B, ]3) 
has to diverge as X(fl)/m*(fi) when fl ",a tic [and rn*(fl) -+ 0] for an even [B[, 
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aB = ao~i. It is easy to show that this cannot happen generally, e.g., it 
follows from Lemma 2 (after some manipulations) that 

OJA OJA 

0 
=, ~ (%aB+~x)a~)+ >~ (1 - 2E)<aB)+ 2 0<~)+ (20) 0JA 

so at least " m a n y "  x(Q,/3), [QI odd fixed, must diverge as X(/3). I have not, 
however, been able to find an argument that this is true for all Q, I QI odd, 
with general even ferromagnetic interaction. 

If  we restrict ourselves, however, to pair interactions, then it follows 
easily from the F K G  inequalities aa~ that the divergence of X(/3) dominates 
that of x(A,/3) for all A. To see this, we note that 

O(aA)(/3, h; +)/Oh = ~ [(crach) + - (aa)+(a~)+] 

<~ CA ~ {(a,a,)+ - [m(/3, h; +)12} 
ie~v 

= ca am(~3, h; +)/Oh (21) 

where ca < oo. Combining (21) with (18) and letting h "-a 0, we obtain the 
desired result: 

T h e o r e m  4. For an Ising system on 7/" with ferromagnetic pair inter- 
actions (such that nearest neighbor correlations do not vanish identically) 
x(Q,/3) diverges like X(fl) as t3-+/3r whenever m*(/3)-+ 0 as /3 "a /3c for all 
I Q[ odd. Under the more general conditions of  Theorem 3 either x(Q,/3) or 
x(Q',/3) (or both) must diverge at least as fast as X(/3): The set Q' is obtained 
from Q by the addition or deletion of any site. 

Remark. It is clear that many additional relations between singularities 
in different correlations, e.g., in derivatives with respect to/3, or derivatives 
with respect to h at t3 = tic, can be derived from our basic inequality. The 
results are consistent, but do not prove the assumption, often made, that all 
even correlations have the same decay near fie when separated into two odd 
sets. 

5. S O M E  G E N E R A L I Z A T I O N S  

(i) The use of cubical lattices is of course not essential. All our results 
(suitably rephrased) remain valid for any regular v-dimensional lattice. 

(ii) While all our results have been stated for the case of spin-l/2 Ising 
systems, ar = + 1, they remain valid also in the case of "h igher"  Ising spins, 
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i.e., when the spin variable at each lattice site S, takes on the integer values 
{n, n - 2,..., -n} .  The reason for this is the discovery by Griffiths ~I'23~ that 
it is possible to relate the n > 1 system to an ordinary Ising system by intro- 
ducing at each site {i}, n spin-l/2 variables at.~, ~ = 1 ..... n. We may then, in 
equilibrium, use the transcription S~ = n-  1 ~ a~,~ for obtaining probability 
distributions of the {S~} variables, provided one introduces additional ferro- 
magnetic pair interactions of the formj~,a~,~%~, at each site i. Thej~,~, i> 0 
are chosen so as to give equal a priori weights to the different (n + 1) values 
of each St. 

The (formal) translation-invariant Hamiltonian of the spin-�89 system 
has the form 

~H(S) = - h  ~ St - fi ~ r - j ) S t S ,  - [3 ~ 00(3'(i - j ) (St2Sj  + S, Sj 2) + ... 

Since all the aO's are nonnegative for ferromagnetic interactions, the basic 
inequalities (7a)-(7c) clearly remain valid for the at,~. The important observa- 
tion now is that, identifying plus b.c. with Sr + = n, it follows from the GKS 
inequalities (as in the proof  of  Theorem 2) that (St)+ = (St) ,  implies 
(~t.~)+ = (~t,~)~ and (S~Sj)+ = ( S t S j ) .  implies (~t,~j,~,)+ = (at.~j,~,)~. 
Here the measure tz on the {St} induces in a natural way, using the Griffiths 
interactions j . . , ,  a measure on the {at,.}. 

All our results therefore remain unchanged as long as n is finite. We 
have not investigated in detail what happens for continuum spins, which can 
also sometimes be constructed from spin -�89 Ising systems ~3'2~) or can other- 
wise be shown to satisfy the GKS inequalities. It can be readily shown, 
however, <25) that the inequality (7a) with cr B replaced by ]-L~B St "', etc., 
remains valid for general (continuous or discrete) Ising spin variables when- 
ever the "intr insic" spin measure dr(SO satisfies condition Q3 of  Ginibre, ~9) 
e.g., when 

dr(S) = C e x p ( - a S  2~ + bS  2~-2 + ... + cS  2) dS  

Some of  the results of  Section 4 therefore also remain valid in this case. 
(iii) The results of  Section 3 may be restated to say that, under suitable 

conditions, there is only one translation-invariant state, tz E T, with a given 
magnetization (a~). = m. It seems reasonable to conjecture that, under the 
same conditions, specification of  (at)~ for all i ~ Z ~ is sufficient to uniquely 
characterize all Gibbs states,/~ s G. 
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