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We present a theoretical analysis o f  circular dichroism and birefringe in uncon- 
ventional B C S  superconductors with appropriate broken symmetries. We show 
that for  the effect to exist, that in addition to broken time-reversal and two- 
dimensional parity symmetries, it is necessary to take into account the weak 
particle-hole asymmetry o f  the low-energy excitations o f  the metallic state. 
Circular dichroism and birefringence are shown to arise f rom the order param- 
eter collective mode response o f  the superconductor; in the clean limit the 
contribution to the current response f rom the single-particle excitations does 
not give rise to circular dichroism or birefringence, even with particle-hole 
asymmetry. The magnitude o f  the circular dichroism is found to be small for  
the classes o f  superconduetor~ which are thought to be likely candidates to 
exhibit the requisite broken symmetries, namely the heavy fermions and oxide 
superconductors. The order o f  magnitude o f  the elliptical polarization o f  a 
linearly polarized incident wave is v f /c (~/J ,L)(A/Er)  In(Er/A), which is 
roughly 10 -7 [(}-8 rad at frequencies o f  order the gap, and decreases at least 
as fas t  as (2A/o~) 2 at higher frequencies. 

I. INTRODUCTION 

The physical properties of  nearly all known superconductors are suc- 
cessfully explained by the BCS theory, the central feature of which is the 
formation of  a condensate of  Cooper pairs which spontaneously breaks 
gauge symmetry)  '~ However, in the original theory, except for the broken 
gauge symmetry, the superconducting state has the full symmetry of the 
corresponding normal metallic phase. Since BCS proposed their theory, 
there have been numerous theoretical proposals and experimental searches 
for "unconventional"  superconductors in which the condensate spontane- 
ously breaks additional symmetries of  the normal phase. In recent years this 
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possibility has been actively pursued for the heavy fermion superconductors, 
where there is now considerable, but not conclusive, evidence for a multi- 
component order parameter associated with an unconventional supercon- 
ducting ground state. 3-5 There have also been theoretical papers arguing 
that the high Tc oxide superconductors are unconventional BCS 
superconductors ;6 however, the evidence is less conclusive than that of the 
heavy fermion superconductors. 

Numerous tests have been proposed to identify unconventional super- 
conductivity, but so far the only unambiguous unconventional superconduc- 
tor is superfluid 3He, which is well established to be a spin-triplet, p-wave 
pair condensate exhibiting broken spin and orbital rotation symmetries, and 
broken time-reversal symmetry in additional to broken gauge symmetry. 7 
The most definitive tests of unconventional pairing are measurements of a 
physical property of the superconducting state which exhibits a lower sym- 
metry than the underlying normal metal. In particular, Gorkov 8 proposed 
that measurements of anisotropy in the upper critical field of a superconduc- 
tor with a cubic or tetragonal point group would indicate an unconventional 
order parameter with lower rotational symmetry than that of the crystal. 
Similar proposals for measuring anisotropies in the London screening 
length 9 or thermoelectric effects 1~ as measures of broken rotational symme- 
try have been made. Recent theories 12 15 of the superconducting phases of 
UPt3 are based on a two-component order parameter that spontaneously 
breaks time-reversal symmetry, as well as elements of the point group, and 
several proposals to detect broken time-reversal symmetry were put forth. 
Choi and Muzikar showed that non-magnetic impurities, in an unconven- 
tional superconductor with broken time reversal symmetry, would deform 
the pair condensate and generate supercurrents, resulting in a local field at 
the impurity, which in principle could be detected as an NMR or pSR 
frequency shift. 16 Similarly, Tokuyasu et al.~7 showed that the same internal 
orbital currents that are connected with the induced magnetic field at an 
impurity would also interfere with the supercurrents that generate the flux 
of a vortex line, the result being that the lower critical field, He1, for flux to 
enter a superconductor depends on the relative orientation of the external 
field and the spontaneously broken symmetry axis about which the pairs 
orbit; this asymmetry in Hd would be strong evidence for broken time 
reversal symmetry of the superconducting state. To date, however, there are 
no experiments that have yielded a positive, unambiguous identification 
of the order parameter of an unconventional superconductor (other than 
superfluid 3He). 

A theory of superconductivity, not based on the phenomenon of pair 
condensation, has been proposed largely in response to the discovery of 
high-temperature superconducting oxides ~8 (see Ref. 19 for a detailed list of 
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references). In this theory superconductivity is a consequence of exotic sta- 
tistics (half-fractional statistics) that is presumed to describe the elementary 
excitations (anyons) of the two-dimensional (2D) CuO sheets from which 
most of the oxide superconductors are built. A central feature of the anyon 
model is spontaneously broken time-reversal (T) and parity (P) symmetries 
that are direct consequences of the statistics. Wen and Zee 2~ pointed out 
that these systems may then have circular dichroism and birefrigence; i.e., 
that right and left circularly polarized EM waves, when incident on the 
material in question, are reflected with different intensities and/or phase 
angles. Halperin e t  al.  ~9 have examined in more detail the possible conse- 
quences of broken T- and P-symmetries for anyon superconductors. This 
association between anyon superconductivity and broken T- and P-sym- 
metries has stimulated several experimental searches for these signatures. 
Experiments searching for circular dichroism and birefringence have been 
reported by three groups. 21-24 However, the experimental details and the 
results differ, and there is no obvious simple model capable of explaining all 
the experiments. Thus, so far no definitive conclusions have been reached 
about the existence or non-existence of a superconducting state exhibiting 
broken time-reversal and/or broken parity symmetry, much less any defini- 
tive conclusion about the relevance of the anyon model to high Tc 
superconductivity. 

It should be emphasized that the anyon model is not the only possible 
superconducting ground state that exhibits broken T- and P-symmetries that 
may be realized in the oxide superconductors, or any other candidates for 
exotic superconductivity. Many models of unconventional BCS supercon- 
ductivity that have been investigated (in the context of heavy fermion super- 
conductivity and to some extent the oxides) are pair condensates with broken 
T- and P-symmetries. In fact, if superfluid 3He-A were a charged fluid, 
it would exhibit, among other novel phenomena, circular dichroism and 
birefingence. So it is important for the current debate about the nature of 
superconductivity in the high Tc oxides to recognize that positive confirma- 
tion of broken symmetry in the superconducting state does not tell one much 
more about the nature of the ground state, at least not without a more 
quantitative theory of the signatures of the associated broken symmetries. 

This leads us to the main purpose of this report. We have calculated 
the circular dichroism and birefringence that one expects to observe from a 
good type II superconductor with an unconventional BCS order parameter 
possessing broken T- and P-symmetries. We confine our analysis to cases 
where the electromagnetic: radiation is propagated along a high symmetry 
direction, i.e. an axis with at least three-fold rotational symmetry, and where 
this rotational symmetry is either unbroken in the superconducting state, or 
can be restored by a gauge transformation. These assumptions, although 
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restrictive, are consistent with many of the proposals for the superconducting 
states of the heavy fermion superconductors as well as the high Tc supercon- 
ductors. If  the superconductor does not respect this additional rotation sym- 
metry, then the system will exhibit linear dichroism and birefringence. The 
observation of circular dichroism or birefringence requires broken 2D parity 
and time-reversal symmetries. We also show that this effect vanishes ident- 
ically if the normal metallic state is assumed to be invariant under the 
interchange of particles and holes (i.e. is particle-hole symmetric). Thus, it 
is necessary to consider particle-hole asymmetry effects. We find that the 
excitation contribution of the current response (the "empty bubble" in 
Green's function language) has particle-hole asymmetric terms that are 
identical for both circular polarizations. We call these "trivial" particle-hole 
asymmetric terms, in contrast to the "non-trivial" particle-hole asymmetric 
terms which differ for the two circular polarizations. These later contribu- 
tions are due entirely to the collective-mode response of the order parameter 
(these are the vertex corrections in Green's function language). 

We demonstrate these general features with an explicit calculation for 
a representative order parameter with broken time-reversal and 2D-parity 
symmetries, namely the Anderson-Brinkman-Morel (ABM) order 
parameter 25 (which also describes the A-phase of superfluid 3He). The 
broken symmetries are exhibited by a condensate of pairs all having orbital 
angular momentum l~-- ~ about a fixed spatial direction. Although the ABM 
state is a spin-triplet pair-condensate, the spin structure of the order param- 
eter is irrelevant for the electromagnetic properties we are interested in. In 
fact the ABM order parameter is representative of a large class of unconven- 
tional superconducting states (even- or odd-parity) exhibiting broken T- and 
P-symmetries. Thus, the qualitative features and order of magnitude of the 
circular dichroism are not specific to any particular state, and our prelimin- 
ary investigation of other states bears this out. The theoretical result for the 
magnitude of the circular dichroism is small. For a linearly ~-polarized 
incident wave, the relative magnitude of the fi-polarized reflected wave ampli- 
tude is of order (A~/COpEF)(~/J~o) 2 In(EF/A) for o) ~ A where A, cop, EF, ~o, 

are the energy gap, plasma frequency, Fermi-energy, London penetration 
depth and coherence length respectively. This is a small amplitude, of order 
10-7-10 -8 for parameters appropriate to the oxide superconductors, com- 
pared with 10 -(4-5) in experimental reports 2~'22'24 of circular dichroism and 
birefringence. For co > 2A, the magnitude of the circular dichroism decreases 
at least as fast as (2A/co) 2. If the reports of this effect in the high Tc oxides 
are indeed due to the superconducting state, then it almost certainly requires 
a different theory of the superconducting state than that of an unconven- 
tional BCS order parameter. Any theory capable of generating optical 
dichroism and birefringence from superconductivity with magnitudes the 
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size reported in Refs. 21, 22, and 24 must involve internal currents (respon- 
sible for broken T- and P-symmetries) which are much stronger than one 
would estimate on dimensional grounds from an energy scale, kBTc, and 
length scales, ~ and AL. 

Because the circular dichroism and birefringence reported here relies on 
particle-hole asymmetry and involves parameters that are generically small 
for both the oxide superconductors and the heavy fermions, the magnitude 
of the circular dichroism ]is probably beyond present experimental capabili- 
ties. It is hoped, however, that these capabilities can be improved in order 
to search for this effect, particularly in the heavy fermion superconductors. 
For if circular dichroism were observed to appear in the superconducting 
phase that would be convincing evidence for unconventional superconductiv- 
ity exhibiting broken time-reversal and 2D parity symmetries. 

The paper is organized as follows. In Sec. 2 we discuss the relevant 
symmetry relations applicable to the electromagnetic response function, and 
identify the symmetries that need to be broken in order for a superconductor 
to exhibit circular dichroism and birefringence. In Sec. 3 we present the 
microscopic theory for the current response of a clean superconductor with 
an order parameter that spontaneously breaks the necessary symmetries 
required for circular dichroism. We relate this response function to the 
reflectivity of electromagnetic radiation that is incident normal to the surface 
in Sec. 4, and discuss the results of numerical calculations in Sec. 5. 

2. SYMMETRY ANALYSIS 

Consider a plane EM wave directed along the surface normal (which 
we also assume to be a high symmetry direction) of a good type II supercon- 
ductor, i.e. A,L>> ~. The EM field typically penetrates deep into the supercon- 
ductor and probes the bulk order parameter. Effects associated with the 
surface region (thickness ~ )  where the order parameter may be strongly 
deformed are ignored here. In this case we can analyze the symmetry condi- 
tions obeyed by the current response of the superconductor with a spatially 
uniform order parameter. The role of the surface is then described by a 
boundary condition on the EM field which we discuss in Sec. 4. 

To calculate the reflectivity of electromagnetic radiation one needs the 
current-current response function of the system, which consists of paramag- 
netic and a diamagnetic part. Since the diamagnetic part has the same sym- 
metry as the crystal itself and has identical values in the normal or any 
superconducting state, we need only discuss the paramagnetic response 
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function defined by the Kubo formula, 

K/j(q, 09; A) = - i  dt dz e '~ t), Jj(0, 0)]) 
o o  o o  

(1) 

where i , j  denote the spatial components of the current and O(t) is the step 
function. The arguments of K U indicate that the response is evaluated for 
the wavevector q = q2, frequency (.0, and in the superconducting state with 
an order parameter specified by A (which is in general a complex spin 
matrix). We confine ourselves to wavevectors along the symmetry direction 
specified by ~, which is assumed to be an axis with at least three-fold rota- 
tional symmetry. Thus, the normal state response is proportional to the unit 
matrix (i.e. K~x = Kyy and K~.,. = Kyx = 0). 

We confine ourselves to the superconducting states in which this rota- 
tional symmetry is preserved up to a gauge transformation; otherwise, the 
response would be anisotropic in the x - y  plane, in which case the system 
exhibits linear dichroism or birefringence. Rotational symmetry requires 

K~x = K,,y, K~y = - K y x  (2) 

for identical arguments q, co, A. One can then write the response to the 
circularly polarized EM waves, A=A+e++A_e_ as J = J + e + + J _ e _ ,  with 
e~ = ( 2 •  ifi)/x/~ and 

J ~  = - K ~  A • ( 3 )  

K:~ = K ~  • iK~y (4) 

The following relations are readily derived by considering the appropriate 
physical symmetry operations or by suitable manipulations of Eq. (1) or its 
Lehmann representation. We simply state the results: 

(i) causality: 

K+(q, co; A)* = K_(-q,  - ~ ;  A) (5) 

(ii) z ---, - z  : 

K:~ (q, co; A) = K ~ ( - q ,  co; N') (6) 

(iii) 2D parity (x ~ - x  or y --* - y )  : 

K+(q, o9, A) = K_(q, co; A P) (7) 
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(iv) time reversal: 

K~-(q, o9; A) = K~_(q, -co; A*)* 

K+(q, co; A) =K_( -q ,  co; A*) 

(8) 

(9) 

Here A: denotes the state obtained from A by the operation z ~ - z  (in 
general A ~" :/:A) and similarly for the 2D parity operation P. We also note 
that time-reversal converts A into A* up to a gauge transformation. In 
general the time-reversed state should be o-~,A*o'y; however, we shall confine 
ourselves to physical processes that are symmetric with respect to spin. 
Notice that Eqs. (8) and (9) are equivalent because of causality (Eq. (5)). 

In addition to these fundamental symmetry relations, any good metal, 
and therefore essentially all known superconductors, possesses an approxi- 
mate symmetry under the interchange of particle and hole excitations; i.e. 
particle-hole symmetry. This approximate symmetry is connected only with 
the low-energy excitations of the metallic state, and thus is violated if a 
physical process depends on excitations well away from the fermi surface. 
The magnitude of particle-hole asymmetry in metals is dimensionally of 
order (kBTc/Ef) or (~iog/Ef) compared with the low-energy contribution to 
a particular thermodynamic or transport coefficient. Particle-hole asym- 
metry corrections to the low-energy Fermi-liquid properties are essential if 
the leading order contribution from the low-energy excitations vanishes for 
symmetry reasons. This occurs, for example, in the thermoelectric coefficients 
of simple metals. In superfluJids and superconductors particle-hole asymme- 
try is typically irrelevant, and essentially all know properties of superconduc- 
tors and superfluid 3He can be accounted for by assuming perfect particle- 
hole symmetry. Superfluid 3He provides a few important exceptions. Bas- 
ically, particle-hole asymmetry is important whenever it is associated with 
a coupling between excitations that are otherwise forbidden by selection 
rules. The most spectacular case is the observation of the J =  2 + collective 
mode in superfluid 3He-B, which is forbidden by particle-hole symmetry 
from coupling to either density orcurrent fluctuations, but is observed as a 
sharp resonant absorption line in the zero-sound attenuation, albeit with a 
strength determined by the small particle-hole asymmetry factor (knTc/E s ) 
(see the reviews in Refs. 26 and 27). As we show below, for the superconduct- 
ing state to exhibit circular dichroism and/or birefringence it is essential to 
consider the role of particle-hole asymmetry in the current response of the 
superconductor. 

Under the particle-hole transformation, a particle above the Fermi 
surface is interchanged with a hole an equal distance below the Fermi surface 
(see, for example, Refs. 28 and 29). This transformation changes the sign of 
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the particle current, transforms A into A* (more precisely cryA*o-y as in time 
reversal) and requires 

K• (q, co; A) = K:L (q, co ; A*) (10) 

if particle-hole symmetry is exact. 
We can now discuss the necessary conditions for the observation of 

circular dichroism or birefringence in the reflectivity. For this it is necessary, 
but not sufficient (see Sec. 4), that K+(g, c0;A)#K-(q ,  co;A). We see from 
Eq. (7) that the breaking of 2D parity is necessary. However, time-reversal 
symmetry (i.e. A = A*) by itself does not forbid the effect. But, if one also 
has reflection symmetry under z---,-z (i.e. A = AZ), or when the physical 
process does not distinguish the sign of g, then the effect would be forbidden 
(cf. the discussion of the zero-field Hall effect by Halperin et al. rag). Approxi- 
mate particle-hole symmetry puts a stringent constraint on the observability 
of  circular dichroism. Perfect particle-hole symmetry implies that the 
response of the system is identical to that of its time-reversed state. Com- 
bined with Eqs. (9) and (6), particle-hole symmetry implies 

K§ co; A) = K _ ( - q ,  co; A) = K_(q, co; A ~) ( l l )  

Thus, if A = A ~, or when one is interested in an experiment that is insensitive 
to the sign of  q, then there is no circular dichroism or birefringence. 

Note that Eq. (11) suggests a possible role of the surface in providing 
a mechanism for circular dichroism and birefringence; namely, surface scatt- 
ering acts as a depairing mechanism which suppresses, or deforms, the order 
parameter A in the surface layer of order 4. Surface depairing destroys the 
symmetry A = A ~ that may be obeyed for the bulk order parameter. Thus, it 
is possible that surface depairing will provide a contribution to circular 
dichroism from the surface layer of perturbed order parameter. We shall, 
however, not pursue this possibility here, but rather consider only the contri- 
butions to circular dichroism from the region of bulk order parameter, i.e. 
the layer of  thickness ~ < d <  AL. 

We show in the next section that the response of the Bogoliubov quasi- 
particles is particle-hole symmetric (except for the trivial asymmetric terms 
referred to previously). The response due to collective modes of the order 
parameter in general does have non-trivial particle-hole asymmetric contri- 
butions, thus the circular dichroism or birefringence is due entirely to the 
difference in the collective mode response to A§ and A_; hence, one expects 
a strong dependence of the circular dichroism on the frequency. Combining 
Eq. (8) and Eq. (10) gives 

K:~ (q, co ; A) = K:L (q, --co ; A)* (12) 
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which shows that the nontrivial particle-hole asymmetry terms are also those 
which are asymmetric under co ~ - c o  together with complex conjugation. 
We now show how Eq. (1 2) manifests itself in the microscopic calculation. 

3. MICROSCOPIC CALCULATION 

We assume an order parameter of the Anderson-Brinkman-Morel 
(ABM) form, the orbital part of which is given by 

A(p) = A(T)(px + ipy) (13) 

or A(px - ipy) for its time-reversed state. This choice is representative of the 
class of superconducting states which break both time-reversal symmetry 
and 2D parity, but are rotationally invariant about the 2 axis under at least 
three-fold rotations. Other order parameters exhibiting these properties are, 
A ~pz (px  4- ipy)(A ~ ~(Px 4- lpy)) and A ~ (p.~ 4- ipy)2((:~ 4- ifi)(px 4- ipy)), which 
belong to the 2D representations EIg(u) and EEgtu), respectively. All of these 
order parameters have been discussed extensively as possible ground states 
of the heavy fermion superconductors UPt3, UBej3, URUESi2, and to some 
extent the oxide superconductors. 3'5 Since these states exhibit the broken 
symmetries required for circular dichroism and birefringence, we expect the 
calculation presented for the ABM state to be qualitatively correct for this 
class of unconventional order parameters. 

We also confine the discussion to clean superconductors, i.e. mean- 
free path />> ~. Strong impurity scattering (1/ri,,p>> roTe) will destroy an 
unconventional superconductor making this analysis irrelevant, while weak 
impurity scattering is expected only to modify the quantitative details of our 
calculation by broadening the collective modes. 

To determine the reflection coefficient for EM waves incident on a 
superconductor we need a theory for the dynamics of the Bogoliubov quasi- 
particles as well as the condensate of Cooper pairs. We start from the formu- 
lation originally developed by Eilenberger, 3~ Larkin and Ovchinnikov. 32 
This quasiclassical theory is particularly well suited for calculating the EM 
response since "vertex corrections", which are closely related to the collective 
modes of the system, are included without special consideration. This theory 
has been further developed in the context of superfluid 3He and unconven- 
tional superconductors; we follow the notation of Serene and Rainer. 33 

The quasiclassical transport theory is formulated in terms of a 4 x 4 
matrix propagator in particle-hole and spin space. In 2 • 2 particle-hole 
space ~ has the form 

~(~, E; q, co) = f g 
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where each entry is a 2 x 2 spin matrix. The diagonal functions are closely 
related to the distribution function for the Bogoliubov quasiparticles, while 
the off-diagonal functions are the Cooper pair amplitudes. 

Since we are interested specifically in the reflectivity of unconventional 
superconductors with broken T- and P-symmetries we make the following 
simplifications of  the full quasiclassical transport equation: (i) we neglect 
impurity-scattering, (ii) we consider only weak-coupling superconductors 
and neglect inelastic processes from both phonons and quasiparticle scatter- 
ing--this amounts to retaining only the leading order mean-field self-energy, 
(iii) we assume an isotropic metal with a spherical Fermi surface, and finally, 
(iv) we calculate only the linear response of the superconductor to an inci- 
dent EM wave. None of these simplifications are particularly restrictive for 
the problem of interest; however, there may be nonlinear parametric effects 
that are closely associated with broken time-reversal symmetry, broken par- 
ity and the observability of circular dichroism and birefringence. 

For the linear response in the weak-coupling limit the matrix propagator 
satisfies the transport equation, 

(~e -1- ( D / g ) e 3 ~ g  -- a g (  E -- (D/R) "~3 "q- ivf(/19) " V a g  -4- a g a  - / ~ @  

+ a q ( e  + co/2)  [ ~ + g k ]  - [~ + akl~r  - co/2)  = 0 (15) 

where ~(/~) is the mean-field, equilibrium order parameter, # is the sum of 
the external field and the Landau mean field, and &~ is the time-dependent 
fluctuation of the order parameter that is driven by the EM field. 

Since we are interested only in the response to transverse EM waves we 
can choose a gauge in which the scalar potential is zero and the vector 
potential satisfies q- A = 0; in this case the external field is given by 

~(/~; q, co) =-e vf(/~) �9 A~3 (16) 
s 

There are also Fermi-liquid corrections to the external field; however, we 
ignore these effects here. But it should be kept in mind that Fermi-liquid 
corrections may be important, particularly if one is interested in the current 
response of heavy fermion superconductors. 

The matrix form the order parameter field in particle-hole space is given 
by, 

~  17, 
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where A(/3) = --A(/~)*. There is redundancy of information contained in the 
matrix propagator, which is reflected in the symmetry relations, 

g ~-~'g(-- /~,  - - 8 ;  q ,  a ) )  tr, f'~- - f ( - f i ,  - e ;  -q ,  -co)* (18) 

which follow from the definition of the propagators in terms of two-point 
Green's functions. 33 

The input to the linearized transport equation is the equilibrium 
propagator 

A A A ^ ^ 
geq(P, e )=a(P ,  e)r3+ fl(p, e)a(/3) (19) 

where 

a = - e f t  = - 2 ~ i N ( f i ,  e) tanh(e/2T) 

N@, ~) = lel O(e= _ IA@)I 2) 
, j e  2 -  La(p)l ~ 

(20) 

(21) 

The equilibrium propagator contains information about the spectrum of 
single particle excitations (N(/~, e)), the thermal distribution of these excita- 
tions ( tanh(e/2T)) ,  as well as the equilibrium order parameter (/~). This 
latter quantity is determined self-consistently from the weak-coupling gap 
equation 

(22) = ien' I_ ee e)A(p') A(/3) J 47r V'(fi'/~') o,c 4zr----i 

The diagonal and off-diagonal components of the matrix propagator are 
each 2 x 2 spin matrices. In order to solve the linear transport equation it is 
useful to expand the diagonal propagators in scalar and vector components, 

(23) 5g = gg, cro + gg" e ,  5~ = gg'Cro + gg'" et~ 

and the off-diagonal propagators in terms of spin-singlet and spin-triplet 
amplitudes, 

~f= gfoicr2 + ~f" iacr2, fir= ~f~icr2 + ~f ' -  icra~r (24) 

We make a similar expansion of the time-dependent order parameter, 

~A = doi(Y2 + d" i~0"2, ~ = d~icy 2 + d'" icr2a (25) 
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The mean-field self-consistency equations for the time-dependent order 
parameters are 

do(fi; q, co)= r d~ '  t ~176 d__ee V~(/~./~,)Sj~(/~,, e; q, co) (26) 
J 4zr j 47ri 

- - t ~  c 

d(~; q, co) = ~d~' I "  dE V'(p. y ) a f ( y ,  ~; q, co) (27) 
J 47r J_~,< 4:,ri 

Since we consider here only spin-triplet, p-wave pairing in the context of 
the ABM state, the self-consistency equation is considerably simplified by 
assuming only the triplet, l=  1 pairing channel is relevant, i.e. V '=0 and 

V'= 3 V]~. i f =  3 V][Yo(l~)Yo(fi')* +y+(~)y . (17)  * +Y-( t~)Y-( f f )*]  (28) 

where y,.(/~) are the spherical harmonics, 

normalized to 

Yo =P:. Y• = (Px 4- ipy)/x/~ (29) 

f d ~  ^ . l y , . (p)  y,.,(13) = ~ 8 ....... , (30) 

Although the ABM state is a spin-triplet condensate, the electromagnetic 
properties we consider here are independent of the spin structure of the 
order parameter and depend only on the broken time-reversal and 2D parity 
symmetries of the orbital part of the order parameter. Thus, only the scalar 
component of the diagonal propagator, and the components of the order 
parameter which couple to these scalars are relevant. 

In terms of the functions a, fl and the equilibrium order parameter, the 
relevant linearized transport equations become, 

? -.  o 

0 D .  - i SpAs  

= _ D~ 0 - D ~ A R  

- i S p A l  DpAR 0 

\ - S ~ A ~  iDpA1 S~ 

;D.,,,//.+/ 
.o IV I 
o i t"Zl 

(31) 
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where 1/=q" v/(/~)=q~ofpz, and AR(z) is the real (imaginary) part of the 
equilibrium order parameter. The matrix elements Da(p) and S~(#) are given 
in Appendix I, while the 4- functions are defined by B• '. The 
subscript L refers to the "longitudinal" component of the time-dependent 
pair amplitude, i.e. 

8 .fL = (6f +" d)d ,  (32) 

where d is a unit vector defining the spin quantization axis of  the ABM 
phase order parameter, 

AABM = dA(T)(px + ipy) (33) 

The ABM pairs have spin projection d - S  = 0. The + functions are intro- 
duced in order to block diagonalize the full linear transport equation. These 
linear combinations are also important because they obey simple relations 
under e --* - e  and fi ~ -/~; e.g. t~g~(~, e) ~ 4- 6g~(-l~, -e). We can simi- 
larly define the transverse component of the pair amplitude, 

,Sf~- = 6f ~ - 5r~ (34) 

These transverse amplitudes, which are needed to construct the full time- 
dependent gap equation, satisfy the same matrix equation, except that the 
column vectors, IgL) and leL), respectively, in Eq. (31) are replaced by 

=/Sg+'/ and 00 
Igr) ~i6fr] l e t>= idT 

\i6f~] \id +] 

where BT,=d•  Br. The solution of Eq. 

(35) 

(31) yields the linear response 
functions in terms of the external fields e ~ and the fluctuations of the order 
parameter d ~ ; 

]gL(r~) = -rh(/~, e; q, co)leLCrj) (36) 

where the matrix elements of th(/3, e; q, co) are given in Appendix I. 
Since the order parameter and mean-fields are independent of the excita- 

tion energy, e, the standard procedure is to e-integrate Eq. (36), in which 
case we need only calculate the equal-time functions, 

tS~*=f d~it~g~(p, e; q, c0) 

= ~f (p, e; q, co) 

(37) 

(38) 
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However, direct integration of the quasiclassical propagator implicitly 
assumes exact particle-hole symmetry. This is clear from inspection of the 
solution of the linear transport equation (see Appendix I) ; the matrix ele- 
ments involve terms that are explicitly even or odd under e - - . - e .  Odd 
contributions, i.e. terms which are odd under the particle-hole transforma- 
tion, vanish when integrated. Particle-hole asymmetry contributions to the 
response functions are included by noting that quantities like the quasiparti- 
cle density of states, Fermi velocity, pairing interaction, etc., vary weakly 
with excitation energy away from the Fermi surface. Since the typical energy 
scale for this variation is the Fermi energy, this weak energy dependence is 
of little consequence for processes that are determined by excitations near 
the Fermi surface. However, certain properties, in particle circular dichroism 
and birefringence, vanish when these high-energy contributions are neglec- 
ted; i.e. particle-hole symmetry, combined with the symmetry z ~ -z ,  pro- 
vides a selection rule prohibiting these effects. Thus, we retain the particle- 
hole asymmetric contributions to the propagators. An expansion of the 
density of states near the Fermi surface leads to corrections to the particle- 
hole symmetric equal-time propagators of the form 

~g~ fd-~i(l+a--~) • ^ = ~g (p, e; q, co) (39) 

where a is a material parameter of order one. Most importantly, the current 
response is given by 

j(q, co)=-eN(Ey)  ~ - v / ( / ~ ) ~ ( p ;  q, co) (40) 

where the scalar part of the equal-time propagator, including particle-hole 
asymmetry terms, is given by ~ = (6~+ + 6~-)/2. Similar expressions for the 
equal-time, off-diagonal propagators hold. The time-dependent gap equa- 
tions, including particle-hole asymmetry terms, are then given by 

1 ( ' d ~ '  
d+(/); q, co) =~  J-~--  V'(/)./~')6]'+ (/)'; q, co) (41) 

Inspection of the matrix solutions to the scalar equations for ~ •  and the 
related order parameter response shows that, although there are particle- 
hole asymmetry corrections to fi~-, they do not contribute to circular dichro- 
ism or birefringence. However, the contributions to the transverse current 
from 6~ + are only non-zero because of particle-hole asymmetry. Most 
importantly these terms provide the entire contribution to the circular 
dichroism. 
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The solutions for the scalar propagators a r e  

; q, 02 �9 A) 

+rlX(AR �9 d - -  iAI" d +) 

co _(co)(AR. d§ _iA, d-) (42) 
+co2_ r/2 p 

+ro,~(AR �9 d- - iA l "  d +) 

+ - - @ ~ _  ~2 ~ +(co)(A. �9 d + -  iA, �9 d-) (43) 

where the function ~ (/~; q, co)= IA(/3)t2• is the Tsuneto function (defined in 
the Appendix I) and/~ -~ (co) are particle-hole asymmetry response functions, 
which are typically of  order 

l.t \E:] \ A / (44) 

compared with the particle-hole symmetric terms of  order ~ ~ 1. Note that 
the particle-hole asymmetry terms are cutoff-dependent, reflecting their ori- 
gin as high-energy corrections to the low-energy response functions. While 
we do not give a systematic discussion of the leading order high-energy 
corrections to the low-energy response, the important contributions to the 
current response can be parametrized by a small number of  particle-hole 
asymmetry response functions. 

An important feature ,of the scalar solutions is that the coupling of the 
current to the order parameter is determined entirely by the orbital response 
of  the order parameter, i.e. d • = d" d :~. The equations for the spin-independ- 
ent order parameter fluctuations, d and d', are easily obtained from Eq. (36), 

- 2 e  . A1 d(/~) = 12J4rcfd~' V'(/~./~') (-�89 (r/'& +/2)A(ff) [-ff v/(ff) 3 
+[~,(p') + �89 ~- ,7,~),qd(f) 

-~,[IA(P')l=d(/9 ') + A(f)2d'(p')]l, (45) 
) 
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d,(fi)=~ fdf~'Vt(l~.  ,.,,~, , ,~ . . .,, r2e A] 
.Ja~r P)],  tr/z-p)A (P)[7 vAF)" 

+[ r (F )  + �89 2-  rl'2)X]d'(P ') 

-X[IA(P')I2d'(p ') + A *(p')2d(p')] }. (46) 

where fi = top-/(c0 2 -/7'2). These are inhomogeneous integral equations for 
the order parameter response; note that both the real and imaginary parts 
of the order parameter are excited by the field. 

The solutions to the homogeneous equations for d(/~) and d'(l~) deter- 
mine the collective modes of the ABM phase, rather the spin-independent 
collective modes. These modes have been studied extensively in the context 
of superfluid 3He (cf. W61fle 34"35 and Halperin27). 

Assume that the ground state order parameter is the ABM state with 
m = + l ,  

A(p) = x/~ A(T)y+(/~) (47) 

The collective modes are then given in terms of the amplitudes 

d,, = 3 I df~y*(~)d(~) (48) 
.J 4rc 

and similarly for d~,. In particular the modes with m = 0, the "flapping 
modes" of 3He-A, are important for the EM response. Both do and d6 obey 
the same homogeneous equation; the collective mode frequency is deter- 
mined by the transcendental equation, 

cog _ 1 ( _A.201q q~v} Z20 
2A(T) 2 200 ( y j - y ~  200/ 2A(T) 2 200 

(49) 

where the functions Z,,,, and 7,,, are defined in Appendix I. There are in fact 
multiple solutions to this equation; a low frequency mode called the "normal 
flapping mode", with COnn~-(T/Tc)A(T) for T--*O, and a high-frequency 
mode termed the "superflapping mode" with C0s~- 1.56A(T) for T ~  0. The 
flapping modes are not sharp excitations. The excitation frequencies are in 
fact the solutions only to the real part of Eq. (49); the imaginary part of 
Eq. (49) is typically small, but non-zero, at these frequencies. As a conse- 
quence the flapping modes are resonances rather than sharp collective excita- 
tions because the continuum of single-particle excitations that exists in the 
ABM state gives rise to pair-breaking at any temperature and frequency. 
The effective width of these resonances is, however, small except near To. 
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The excitation of the order parameter by the EM field is easily obtained 
by expanding the order parameter in terms of the eigenmodes, 

a(p) = E d,.(co)ym(p) (50) 
m 

and similarly for d'. By inserting this expansion into Eqs. (45) and (46) it 
is easy to see that only the m = 0 modes are excited by a transverse field, 

do(qz, co) = x/~ ( ~ ) ( ~ )  R(c0)A- 

d6(qz, c o ) = - , 4 ~ ( ~ ) ( e c ) R ( c o ) A +  

(51) 

(52) 

where the frequency dependence of the function R(co) is determined prim- 
arily by the flapping modes, 

A.21 (53) 
R(q., co) - (co2/2A2)L~o _ [ (~  _ 70) + (q~v}/2A2),~2o + (2oo- 2~o)] 

The electromagnetic response function can now be calculated. The contribu- 
tions are from the Bogoliubov excitations, and the m = 0 collective modes, 
so the response functions fbr the circularly polarized amplitudes can be 
written 

K• = k'ex 4-/(mode 4- ~r(mode (54) 

The contribution from the excitations is obtained from Eq. (42), 

3 d• -p~) 1 -X(/~; qz, co)) 
\co - q:vy p j  

(55) 

where K0 = 3(e2/c)N(Er)v~ determines the Meissner current in the static, 
long wavelength limit. In particular, the zero-temperature London screening 
length is given by 1/2~=4zcKo/c. Note that the first term in Eq. (55) is 
simply the pure diamagnetic response of the metal. 

There are two collective mode contributions to the EM kernel; the 
particle-hole symmetric contribution (from Eq. (42)) 

K~ ~ Ko ( ~ ) 2 2 , 2 , R ( c o )  (56) 
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which does not produce circular dichroism or birefringence, and the particle- 
hole asymmetric term (from Eq. (43)) 

K m~ K0 (~)2/ . t  § (co)R(co) (57) 

which determines the magnitude and frequency dependence of the circular 
dichroism and birefringence. 

4. REFLECTION OF POLARIZED RADIATION 

From the current response we are now able to calculate the reflection 
coefficient of an incident EM wave, and in particular the change in polariza- 
tion of the reflected radiation. The analysis is similar to that of Ref. 36 for 
the absorption of radiation from collective modes for an unconventional 
superconductor in the Balian-Werthamer state. Consider a linearly polarized 
beam normally incident along the 2 axis of crystal. The two circularly polar- 
ized components are in general reflected with different amplitudes and 
phases, and hence the reflected beam is elliptically polarized. 

In order to calculate the reflection amplitude for light incident from 
vacuum (z < 0) we first need to solve the half-space boundary value problem 
in terms of the electromagnetic response function K~: (q, co) calculated for a 
bulk superconductor. This requires a boundary condition for the electromag- 
netic field and current at z = 0. The half-space boundary-value problem is 
mapped onto the full space by assuming specular boundary conditions at 
the vacuum/metal interface. The kernel relating the current at point rl to 
the vector potential at another point r2 is the sum of a direct contribution 
from r2 and an indirect contribution from the image of r2 due to specular 
reflection from the surface. Thus, we determine the physical vector potential 
by continuing the vector potential into the region z < 0 by mirror reflection 
about z = 0. The vector potential is then obtained by solving the Maxwell 
equation, with the mirror boundary condition and the constitutive Eq. (3), 
by Fourier transform, 

(q2"- + ~- K- ) " A= "iq: disc A(O) -T disc ~-~-A (58) 

where the right side contains the discontinuities of the EM field at z=0  
for the fictitous full-space problem. In particular, the specular boundary 
condition gives, disc A(0)=0 and disc OA/&(O)=2t~A/&l..=o +. We now 
match this solution for z > 0 to the physical situation of an incident EM 
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wave from the vacuum side. Consider the circularly polarized incident wave, 

Ai,c(z, t) = Ao(e- e i~'/c)~- o,0 + c.c.). (59) 

The corresponding reflected wave is parametrized by 

Aref(Z, t )=  Ao(r-e- e i(-(~ o,,) + c.c.) (60) 

where r_ is a complex reflection coefficient specifying the amplitude and 
phase relative to the incident wave. The total vector potential in the half- 
space z < 0  is A = Ainc+ Arer, and since the tangential components of  both 
the electric and magnetic fields are continuous at the half-space boundary 
we obtain the desired relation determining the reflection coefficient in terms 
of  the current response of  the superconductor from continuity of  the vector 
potential and its z derivative at the surface. Combining the last three equa- 
tions we find that the spatialliy varying vector potential in the superconductor 
is given by 

- - . ,  e _  e i(q~z-t~ +c.c .  (61) 
c q~ + (4n/c)K_(q:, 09) 

Continuity of  the vector potential at z = 0 gives 

1 + r _ = - 2 i  -~ I dqz I - r _  (62) 
c .1 2re q2 + (4tr/c)K_(q:, co) 

In terms of  the dimensionless integral 

f~.~ 1 (63) I_(co) = - 2  ~c dq-. q~ + (4rr/c)K_(q.., co) 

we obtain 

1 - -  i I -  
r_ = - - -  (64) 

1 + i l _  

Clearly for an incident wave of  the opposite circular polarization we simply 
replace r_ ~ r §  ~ I+, with K_ ~ K§ Now the reflected wave of  a linearly 
polarized wave is completely determined by the reflection coefficients r+,  or 
in terms of  the Stokes parameters, 

So = �89 2 + Ir+[ 2) (65) 

Sl = Re(r*_r+) (66) 

$2 = Im(r*-r+) (67) 

$3 = �89 2 -  [r+I 2) (68) 
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which specify the total reflected amplitude (,70), relative phase and amplitude 
(~,2), and the difference in the amplitudes (~3) of the two outgoing circularly 
polarized components. 

In order to calculate these quantities the evaluation of the integrals I .  
is enormously simplified by noting that the typical values of the wavevector 
contributing to the integral are q~A,Z ~ so that q~v}/co2<<l for relevant 
frequencies co >~A; for co = A this ratio is already very small, of order (~ /  
A,L) 2. With this assumption the EM response function simplifies to 

47rK.(q~,  co)~-~  / 202\ 
c l1 +b.(co)  ~ )  (69) 

The integral in Eq. (63) is simple to evaluate and gives 

i . = _ c o ; t o  1 ,,~_coAO(l_�89 o} ~ (70) 
c ~/1 +b+(co)(v~/~co 2) c 2~co 21 

barring anomalously large values of the coefficient b~(co) (see below). 
Finally, the reflection coefficient is obtained to leading order in (vf/~oco), 

1 + i( co )Lo/ C) (1 - ib + (co) vf/c(vfAo/co)~ (71) 
r:~ = - -1 ~ i(coAo/C) 1 + (coCo~c) 2] 

The corresponding Stokes parameters can be written in terms of the dimen- 
sionless function b~(co) as 

So-- ,-{~ -- 1 + Sof(co), S2 = S2f(co), S3 = Saf(co) (72) 

where 

f ( c o )  - ( v f / c ) ( v l / A o T c )  

1 + (coZo/C) 2 

So = (-~)(Im b_+Im b+) 

$2 = (-~)(Re b_-Re b+) 

$3 = (~)(Im b_-Im b+) 

(73) 

(74) 

Note that c / ~  = cop is the plasma frequency, so that for the materials we are 
interested in the relevant frequencies are small compared to cop, and hence 
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f(co) is essentially frequency independent and small, of order 10-5-10 -6 for 
both the heavy fermion and oxide superconductors. 

From Eqs. (57), (72), (73), and (74) we can estimate the order of 
magnitude of the circular dichroism, 

S ~ ~ A A 
~2(3) ~ ( = ) ( ~ ) ( = ) ( ~ - ) I n  (A)R(co)  

which for parameters appropriate for the high T~ or heavy fermion supercon- 
ductors is of  order 10-7-10 -8 at frequencies co ,~A. 

Finally, we comment on the assumption made in evaluating the integral 
in Eq. (63), namely that Ib~=lvz/~co<< 1. This is a good approximation pro- 
vided that tb~l<< ~o/~. This is not a priori obvious, particularly for frequen- 
cies near the flapping mode frequencies, since one can in principle have 
strong absorption of the EM field by the collective mode and consequently 
decay of  the field on a length scale much shorter than the London length. 
If this were so the characteristic wavevectors contributing to the integral in 
Eq. (63) are much larger than Ao -I. However, because of the nodes in the 
equilibrium gap of the ABM phase there is pairbreaking at all temperatures 
and frequencies so that the resonant absorption from the collective mode is 
broadened, sufficiently so that the inequality Ib~l<< ~/~ is not violated even 
for frequencies near the flapping mode resonance. 

5. NUMERICAL RESULTS AND DISCUSSION 

Before we discuss our results it is useful to review the properties of the 
flapping modes. 34"35'37 The collective mode frequency is defined as the solu- 
tion to the real part of the denominator of Eq. (53). In fact there are two 
solutions at a fixed temperature. The low-frequency mode, known as the 
"normal flapping mode," has a frequency that is linear in temperature at 
low temperature, co ~ T, and is proportional to the maximum energy gap at 
higher temperatures, con~=:~/4-~A(T) for T ~ T c .  The high-frequency 
mode, known as the "superflapping mode," has a weaker temperature 
dependence of the frequency, cos~---1.6A for T<<Tc and cos~--*2A(T) for 
T ~  To. We emphasize that the imaginary part of the denominator is non- 
zero at these frequencies because pair-breaking exists at any temperature 
due to the nodes of the ABM gap. As a consequence the flapping modes are 
resonances rather than true collective modes. 

We present the numerical results for the optical dichroism and birefrin- 
gence for the model system with Es/Tc = 100, cbc/Tc= 10. The gap parameter 
A(T) is represented by the interpolation formula given by W6fle and Koch, 37 
with a weak coupling value for the specific heat jump (which determines how 
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Fig .  1. The real and imaginary parts o f  b~  o f  the collective mode response at 
T / T , . = 0 . 5  as functions of  frequency (o)/7', .).  F u l l  c u r v e s  a n d  dashed curves are 
for b_'2 ~ a n d  b'2 ~ r e spec t ive ly .  (a )  R e ( b ~ ) ;  (b )  I m ( b ~ ) .  

fast the gap opens up as T decreases below To). The asymmetry parameter a 
is chosen to be 0.1. Since the (scaled) Stokes parameters $2, $3 arise from 
the difference of the response to the two circular polarizations, they are 
simply proportional to the particle-hole asymmetry parameter a, for 
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a<<Er/A. The contributions to So are mainly from particle-hole symmetric 
terms, and hence So is roughly independent of  a. The results are presented 
with frequencies in units of T~. 

In order to interpret the behavior of  the Stokes parameters, we first 
show in Fig. 1 the behavior ,of the collective mode contributions to Re(b~) 
and Im(b:~), for the temperature T =  0.5To, and frequencies near the normal 
flapping mode frequency (co ~0.8Tc). The functions Re t-,a:/"m~ Im b~ ~ show 
the characteristic form of a resonance for the in-phase and out-of-phase 
components of the response, respectively. The effect of  the particle-hole 
asymmetry is barely discernible as a horizontal displacement of  the two 
curves b~ ~176 for the two circular polarizations. Figure 2 shows the (scaled) 
Stokes parameters So, $2, $3 as functions of  frequency at the same tempera- 
ture. At this temperature, besides the normal flapping mode at co ~0 .4A(T)  
(co =0.8T~) there is also the superflapping mode at co = 1.65A(T) (co/T~= 
3.3). At the normal flapping mode, So has a strong negative dip, whereas 5;2 
goes from a negative maximum to a positive maximum and then goes nega- 
tive again above the resonance. $3 in turn has a negative and a positive 
maxima on the two sides of  the resonance. This behavior is easily understood 

/.,mode Im/.,mode by inspecting Eq. (74) and the resonance behavior of Re ~,+ , ~,• 
above. 

At higher frequency, co ~ 3.3Tc, near the superflapping mode, we do not 
see any significant features ]in any of  the three Stokes parameters, though 
we checked that the real part of the denominator in Eq. (53) does vanish 
there. 

This absence of  any sharp feature near the superflapping mode is 
because of  a significant imaginary part of the denominator, representing 
damping of  the mode (pair-breaking and Landau damping by thermal exci- 
tations both increase strongly with frequency). This is similar to the case of  
sound attenuation in 3He-A, where the superflapping mode gives features 
much less significant than the normal flapping mode. 

At even higher frequency, co ~4Tc,  where co = 2A(T), we see that there 
are sudden changes in slope for So, $2, $3 (the latter two may be too difficult 
to see for the scales used in Fig. 2). These anomalies are due to sharp 
increases in pair-breaking for co > 2A(T). Thus, the response of  the system 
follows a different frequency dependence for co ><2A(T), although there is 
no discontinuity of  the response itself at co =2A(T) .  

Figures 3 and 4 show the scaled Stokes parameters at fixed frequencies 
as functions of  temperature. Figure 3 shows the typical case for a " low" 
frequency. At co/T~ = 0.6, the normal flapping mode has strong temperature 
dependence even when scaled by A(T);  the frequency matches the collective 
mode frequency at two temperatures: T/Tc~0.35 (co ~0.28A(T)) ,  and T/ 
T ~ 0 . 9 5  (co~0.8A(T)) .  This "reentrant"  behavior is well-known in the 
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ultrasonic attentuation in 3He-A. The frequency also matches the superflap- 
ping mode and 2A(T) at T very close to T,., but no observable feature can 
be seen for the scale used in Figs. 3 and 4. 

Again S0(co) shows significant absorption near the normal flapping 
mode frequencies. The structure in $2 and $3 can be understood in terms of  

/ ,mode the resonance behavior of ~,~ as in Fig. 2. Note that $2 and $3 approach 
zero as T ~  To, since the broken symmetry exists only in the presence of  the 
order parameter. 

F i g .  2.  T h e  s c a l e d  S t o k e s  p a r a m e t e r s  o f  E q .  ( 7 4 )  as  f u n c t i o n s  o f  f r e q u e n c y  
(co/T, . )  a t  T/T,=0.5. ( a )  So;  (b )  $2 ;  (c )  $3 .  
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The typical "high frequency" behavior is shown in Fig. 4 (note the 
difference in scale from Fig. 2). At co = 3.0To the frequency does not match 
the normal flapping mode. The frequency does match the superflapping 
mode at T~0.71Tc,  but again no significant feature can be resolved. At 
T~0.8T~,  however, co =2A(T) ,  where we expect changes in slopes of  the 
Stokes parameters as functions of  temperature. We can see this rapid change 
for So and $2 (notice that there is no change of  sign), however, the behavior 
of  $3 is much more dramatic. It has a sharp dip near T ~ O . 8 T c ,  reaching a 
very small, but nonzero value. By increasing the particle-hole asymmetry 
parameter from the present value of  0.1, we can smooth out this dip and, in 
fact, at a ~ 4  the slope on the high temperature side changes from positive 
to negative, and the dip evolves into a simple kink, where the magnitude of  
the (negative) slopes decreases suddenly. 

We now briefly comment on the experimental searches for circular 
dichroism and birefringenc, e in light of  our calculations. Lyons et al. 21 

reported a nonzero signal for circular dichroism or birefringence well above 
Tc for Ba2YCu307 and Bi2Sr2CaCu208. However, no change across Tc was 
observed. Thus, their signal[ is unlikely to be related to superconductivity. 
In their second experiment 2:" on RbxBa~-xBiO3 as well as the experiment on 
YBaCuO and BiSrCaCuO by Weber et al., 24 the signal increases dramatically 
when T <  T~. Thus, there is :no a priori reason to exclude the hypothesis that 
these signals are due to superconductivity. However, one should notice that 
the magnitude of  these signals are several orders of magnitude larger than 
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the theoretical values obtained here. On the other hand, no signal was 
reported in the experiment by Spielman et a / .  23 Though some effects not 
included in the present calculation (see below) are expected to modestly 
increase the magnitude o f  the signal, the reported values are still much too 
large (and the operating frequencies of  the experiments are much higher than 
the energy scale Tc) to be attributed to unconventional  BCS superconducting 
states o f  broken 2D parity and time-reversal symmetries. 



C i r c u l a r  D i c h r o i s m  a n d  B i r e f r i n g e n c e  283 

x10-2 
1 . 2 0  

$3 
0.72 

0.24 

-0.24 

-0.72 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  

co/To=0.6 

. . . .  I . . . .  I . . . .  I 
0.40 0.55 0.70 

T/Tc 

-1.20 . . . .  I . . . .  e~ 
0.25 0.85 1.00 

F i g .  3. C o n t i n u e d .  

In conclusion we have investigated the possibility of observing circular 
dichroism and birefringence in a superconductor with the appropriate 
broken symmetries, and have presented a calculation for one model state, 
namely the ABM state. It is pointed out that the existence of the effect relies 
on particle-hole asymmetry, and comes from the collective response of the 
system. The effect is found to be very small for good type II superconductors. 

Our calculations have been done for an ideal system with complete 
spherical symmetry. Fermi surface anisotropy will affect the position of 
the flapping mode resonance. 38 However, we do not expect any significant 
qualitative difference from this effect. Similar remarks apply to other mod- 
ifications from fermi-liquid effects and weak impurity scattering. However, 
two possible exceptions should be noted. The amplitude of the signal near 
resonance is controlled by the gap nodes, thus for a cylindrical Fermi surface 
(as may be appropriate to the quasi-two-dimensional oxide superconduc- 
tors) and for the ABM state, the magnitude of the effect (on resonance) 
would be significantly increased because the collective mode resonances 
would be much sharper. Secondly, the surface-induced distortions of the 
order parameter may give rise to an additional contribution to the induced 
current, which is difficult to estimate a priori. However, we leave the investi- 
gation of these possibilities to the future. 

Recently we received a preprint by Li and Joynt 39 which also addresses 
the question of circular dichroism and birefringence in unconventional super- 
conductors. Their analysis and conclusions differ significantly from ours. 
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APPENDIX I 

Here we collect the formulas obtained for the solution to the linearized 
tansport equation, together with the definitions of the functions appearing 
in Eqs. (42)-(46) in Sec. 3. 

The inversion of Eq. (31) yields Eq. (36) with the matrix elements of 
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rh(fi, e; q, 0)) given by 

m l 3  = ioAzL- DaAR D ~ DpA~ 

112:D,AR-i2e~D2 S, AR 

m14 = -r/ARL + :DpAI D tD~ 

+ r/2~ . . . .  2er/2 
D t~a~t  ~ SaiA I 

CO 0)2 2 

. . . .  [ 1/ ~ _  .40)21AI 2 
(75) 
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rico = 2er/co 
- - -  DeA R - - -  SpA R 

D D 

t'DpA I m24 = coARL + iDpA1 D 

+ r/co___2_2 iDpAt+2er/co SpiAi 
D D 

__ !  S I t'co2 172__ 4A2R)L m33 = 2 /3 - -  ~1. - -  

eS~ r/co (092 _r/2 4IARIZ ) Dp 
m34 = -2 iAnARL- r/(CO2__ q2) D 2 -D- 

m44 = --1Sp -- �89 02_ 4A~)L 

m21 = m 1 2  

m31 = - m ~ 3 ,  m32 = - m ~ 3  

m41 = - m ~ 4 ,  m42 = --m2"4, m43 = m~4 

where the functions appearing in these equations are defined by 

- -  ~ D a  �9 ( e ; ~ ) =  ' 

L( e ; co) = [ q2Sp + 2eco D~]/D 

D(e; co)= (4e 2 -  r/2)(w 2 -  77 2) + 4r/2lA(p)[ 2 

with 

(76) 

(77) 

S~ = a (e  + co/2) + a(E - co/2) 

se =/~(e+ co/2) + p (e -  co/2) 

D~ = a (e  + co/2) - a ( g -  co/2) 

Dp = fl( e + r - fl( e - co/2) 

(78) 

Note that S~, Dp (Sp, D~) are odd (even) functions of e and co. The particle- 
hole symmetric response functions appearing in Eqs. (42)-(46) are 

X(fi; q, co)= 2, (fi; q, co)/IAI 2= f ~ i  L(fi, ~; q, co) (79) 
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and 

y(•) = S~ = 27ri 

which is logarithmically divergent, but can be regularized by noting that the 
equilibrium gap equation (22) is given by the following angular integral of 

7, 
3 ~df~ • 

ty+(fi) lZy(fi) (81) r, =v, 
The particle-hole asymmetric functions are also logarithmically divergent 
and are cutoff at an energy scale Tc<<toc<E I reflecting the origin of these 
terms as high-energy corrections to the low-energy transport equations. The 
are formally defined by the integrals 

# - (w)  = ,.c 2tr~ a p (82) 

l ,+(02)=.-+p- v 1-4- (83) 

v(02) =: - -  a D0 (84) 
2tri 

I ~  c 

p(02)=: ~'c27r ~ aEy)St~---~-- ) (85) 

Finally, the angular averages of these integrals that determine the response 
functions and dispersion relations of the collective modes are given by 

~mn(qz, 033' =3 [ d~"~ ly,,,(fi)12p,~A(r)Z~,(fi ) (86) 
2047r 

f ly,.(fi)12r(p) (87) 

Note that although the integrals Ym are logarithmically divergent, they enter 
the equations of motion for the order parameter only in linear combinations 
that are convergent, or that can be regularized by the equilibrium gap equa- 
tion (cf. Eq. (49)). 

APPENDIX II 

In this appendix we record some of the technical details used to evaluate 
the integrals given in Appendix I. We handle the temperature dependence 
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of the various integrands by transforming to Matsubara frequencies via 

1 tanh (~-T) = T ~ 1 (88) 
~. e~ + e 2 

where e. = (2n + 1)~rT. For example, the first term in Eq. (49) for the normal- 
flapping mode frequencies can be transformed to 

2_{~2 (lYo(P)I -lY+(P)I ) to -r ,=3  a ~ T  e.~+42+lA(P)l = e. 

(S9) 

where the angle brackets denote an angular average. Note that we have 
regularized the integral by subtracting off a term which would give zero after 
angular integration. The 4-integration can now be performed, leaving a 
rapidly convergent Matsubara sum and angular integration which can be 
done numerically. 

After we expand to leading order in (q~vf/(o) 2, all of the particle-hole 
symmetric functions can be expressed in terms of integrals of the form 

/~oo de fl(e) . \  F. = \ j  (90) 

Using Eq. (88) we can rewrite this integral as 

(f , ) F.=  d4 2Ty', 2 1_ 2-ol 2 
~,, 44 +41A(p)I 42+ e2.+lA(P)l 2p" 

(91) 

One needs to pay careful attention to the zeros of the denominator in Eq. 
(91) by interpreting co--,01+i8 with S-*0. The E-integral must be per- 
formed separately for the two cases, 012>< 41A(/~)I 2. A straightforward calcula- 
tion yields 

1 ~ | Z 012). .  | 41A(p)2)t ] 
F.=({2~T~e~+012/4[.x/(41A(~)21_012 ) l - t ~ j  

.~ , , /e~ + IA(~)I 2 e~.+~o2/4 p" (92) 

The angular integration is twice the integral carried out over the half sphere, 
p..> 0, since the ABM gap function is given by IA(~)I 2= A(T)2(I-p~). The 
square-root singularities, which occur for 01 <2A(T), are handled by a 
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change of variables; 
.~1 -(~o/2A(T)) 2. The resulting angular integrals are 

Fn= 1 {~tanh(O~,](f,/Gdt2(zo_t2), " f ~,/F~-~o 
A(T) \4T/kJ o ~ + i ~o dt 

fiz = Zo - t2 and /~z = z0 + t 2, respectively, with Zo = 

2(Zo + t2)n I 

- m 2 ~ r y ~  2+ro2 /4  ifro<2A(T) (93) 

o r  

where 

I tanh(t~ f dt 
Fn=A(T) k4T]\ do 

- f fdt(2~rT~ 2 1 2 ~ ) }  
\ ~,, ~,,+ co/4 

if to > 2A(T) (94) 

z l= I - 1  and a .=  lq en 
A(T) 2" 

Thus, Fn is reduced to a rapidly convergent sum and simple integral, which 
can be evaluated easily on a computer. The particle-hole asymmetric terms 
can be integrated by parts and expressed in terms of the integrals F, and 
angular integrals of yp. 
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