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Abstract 

Blocking queueing networks are of much interest in performance analysis due to their 
realistic modeling capability. One important feature of such networks is that they may have 
deadlocks which can occur if the node capacities are not sufficiently large. A necessary and 
sufficient condition for the node capacities is presented such that the network is deadlock 
free. An algorithm is given for buffer allocation in blocking queueing networks such that no 
deadlocks will occur assuming that the network has the special structure called cacti-graph. 
Additional algorithm which takes linear time in the number of nodes, is presented to find 
cycles in cacti networks. 
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1. Introduction 

Since in actual  systems the resources  have  a f ini te capaci ty ,  queue ing  ne tworks  
with b locking must  be  used for p e r f o r m a n c e  analysis.  In  queue ing  ne tworks  with 
blocking,  a node  can be  thought  of  as a device wi th  a f ini te length  queue.  Th e  
ne twork  is s imply a set of arb i t rar i ly  l inked nodes.  Blocking arises due  to the 
l imi ta t ions  imposed  by  the capac i ty  of  these nodes.  In  par t icular ,  b lock ing  occurs  
when  the  f low of  jobs  th rough  one  node  is m o m e n t a r i l y  suspended  due  to the fact  
that  ano the r  node  has reached  its capac i ty  l imitat ion.  

Several papers  have  been  publ i shed  deal ing wi th  var ious  types of  blocking.  
Previous  work  regarding the b locking  ne tworks  falls in to  three  classes, Onvura l  
and  Perros  [10]: 
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(i) Transfer blocking. Upon completion of the service at a node i, a job attempts 
to enter the destination station j. If node j is full at that moment,  the job is 
forced to wait in node i 's  server until it can enter destination node j. The 
server remains blocked for this period of time. It cannot serve any other jobs 
waiting in the queue. This type of blocking has been used to model systems 
such as production systems and disk I / O  subsystems, Akyildiz [1,2], Perros 
and Altiok [12]. 

(ii) Service blocking. A job at node i declares its destination node j before it 
starts its service. If node j is full, the i-th server is blocked before service 
begins. When a departure occurs from destination node j ,  the i-th server 
becomes unblocked and the job begins receiving service. This blocking type 
has been used to model systems such as production systems and telecom- 
munication networks, Boxma and Konheim [5], Gordon and Newell [6], 
Konheim and Reiser [9]. 

(iii) Rejection blocking. Upon service completion at node i, a job attempts to join 
destination node j. If node j is full at that moment,  the job receives a new 
service at node i. This is repeated until the job completes service at a time 
when it can proceed to station j ,  Balsamo and Iazeolla [3], Hordijk. and van 
Dijk [7]. 

Several other investigators in recent years have published results on blocking 
queueing networks, Perros [11]. 

An important consideration in blocking queueing networks of any type is that 
finite node capacities and blocking can introduce the deadlock situation. In a 
simple example, deadlock may occur if a job wh ich  has finished its service at 
node i 's server wants to join node j ,  whose capacity is full. That job is blocked in 
node i. Another  job which has finished its service at j - th  node now wants to 
proceed to the i-th node, whose capacity is also full. It blocks the j - th  node. Both 
jobs are waiting for each other. As a result, a deadlock situation arises. Further- 
more, the possibility of deadlock in a network increases with the ratio of the 
number of jobs in the network to the total capacity of the network. As the total 
number of jobs approaches the total capacity of the network, the probability of 
deadlock increases. 

The most important issue is the allocation of node capacities in a queueing 
network such that deadlocks cannot occur. In this work we give a necessary and 
sufficient condition for a queueing network to be deadlock free, and present an 
algorithm for computing the capacities for the nodes such that no deadlock will 
occur in the network. 

2. Deadlock freedom in blocking networks 

Let F be a closed queueing network of type 1 with N nodes and K jobs where 
all jobs are of the same class. Each node contains m i >~ 1 servers with a single 
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queue. There are no restrictions regarding the service time distribution and 
scheduling disciplines of the nodes. Let Bi be the buffer size, or capacity, of the 
i-th node where Bi = Queue Capacity i + m (for i = 1, . . . ,  N).  There can be at 
most B i jobs at node i at any time, including the jobs which are currently being 
serviced. A job which is serviced by the i-th node proceeds to the j - th  node with 
probability pij for (i, j = 1, 2 , . . . ,  N),  if the number  of jobs at the j - th  node has 
not exceeded that capacity B 9. Otherwise, the job is blocked at the i-th node until 
a job at node j has completed service and a place becomes available. This model 
is classified as type 1 blocking above. It is understood that once a job selects a 
destination (probabilistically or deterministically) it cannot change the destina- 
tion. This is implication in type 1 blocking network definition. We assume that 
each job has a fixed class assigned to it and this cannot change because it is 
blocked at some point in time. 

The following theorem describes a necessary and sufficient condition for a 
closed queueing network to be deadlock free. A cycle C is a sequence of nodes 
(x 1, x2 , . . . ,  xj) such that each pair of consecutive nodes is joined by an arc 
(xi, xi+l) , including the arc (xj, xl). 

THEOREM 1 
A closed queueing network of type I with finite node capacities { B i : 1 ~< i ~< N } 

is deadlock free if and only if for each cycle C in the network the following 
condition (1) holds. Simply stated, the total number  of jobs in the network must 
be smaller than the sum of node capacities in each cycle. 

K <  E Bj. (1) 
j ~ C  

Proof 
(i) Necessity. Suppose that there is a cycle C =  (1, 2 . . . .  , M),  (M~< N),  which 

violates the condition (1). Consider a state of the network in which each node 
i in C is saturated, i.e., the current number  of jobs at node i, 1 ~< i ~< M, 
equals its buffer capacity B i. There is a positive probability for such a state of 
the network since K >~ F~j ~ cBj. Now, assume that for each node i in C, the 
job which is currently being serviced at i finishes and it wants to move to the 
next node i + 1 in the cycle ( M  + 1 = 1). There is also a positive probability 
for this to happen. This, however, results in a deadlock within the cycle C. 
Since there is also a positive probability that a job in another node may want 
to move to a node in C, eventually all nodes will be deadlocked with 
probability 1. 

(ii) Sufficiency. Suppose that there is a blocking. For example, the node 1 is 
blocked. Then there is another node 2 such that the job at node 1 which has 
completed service wants to move to node 2 cannot do so. This means that 
node 2 is saturated and must itself be blocked. Otherwise, at some point in 
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the future, the current job at node 2 would move out, and the job from node 
1 could then move to node 2. By repeating the above argument for node 2 
and so on, we get a sequence of nodes (1, 2 . . .  ) with the following proper- 
ties: 

a) Each node i is blocked and is saturated. 
b) (i, i + 1) is an arc of the network F. 

Since F is finite, the nodes ( i :  i >  1} must include a cycle, C =  (1, 2 , . . . ,  M},  
without loss of generality. Since each i, 1 ~< i ~ M, is saturated, we have 

K>~ Z Bj, (2) 
j ~ C  

This violates the inequality (1) for the cycle C, a contradiction. This completes 
the proof. , 

If F is a tandem network, consisting of a single cycle, then the inequality (1) 
corresponds to the total buffer size B = ~ = l B i  of the network being at least 
( K +  1). This can be achieved by taking B 1 = B 2 = B(X 1~ = 1, and B N = K -  N + 
2. (Indeed, a better throughput may be achieved by allocating buffer sizes at the 
nodes in inverse proportion to their service rates. This has been verified in some 
experimental cases, but has not been established formally. The issue of buffer 
allocation problem for improving throughput is not considered here.) 

C O R O L L A R Y  

A necessary and sufficient condition for a tandem network to be deadlock free 
is 

N 

K < % B, (3) 
i = 1  

3. Deadlock free buffer allocation in blocking networks 

A set of buffer sizes ( B i : i = 1, 2 , . . . ,  N} for which inequality (1) holds for 
every cycle C is called a deadlock free buffer allocation, or dfba. We denote by/3 
the minimum value of B = EN=IB taken over all dfoa's for the network. The 
minimum buffering requirement of the network for avoiding deadlocks is ft. It is 
clear that for a buffer allocation { Bi : 1 ~< i ~< N ) to be deadlock free, it needs to 
satisfy only those inequalities in (1) which correspond to the elementary cycles, 
i.e., the cycles which do not pass through the same node more than once. We 
assume here that each node and each arc of the network belongs to at least one 
cycle; a node, however, can belong to several cycles. We give below an algorithm 
for computing ]3 and a corresponding buffer allocation { B~ : 1 ~ i ~< N } for the 
case where the network F has the form of a tree of elementary cycles. Figure 1 
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Fig. 1. A network and  a deadlock free buffer  al location for K = 6 jobs;  next to each node  is the 
value B i. 

shows such a network, where the direction of each arc is clockwise around the 
cycle. Such a network is called a cactus network, Behzad et al. [4]. A cactus has 
the property that no two cycles have more than one node in common. We define 
the following terms to describe the algorithm: 
(i) A contact node is a node at which two or more cycles meet. Since we assume 

that every node belongs to a cycle, this is the same as saying that there are 2 
or more arcs leaving the node. 

(ii) A terminal cycle is a cycle which contains at most one contact node. Unless 
the cactus is a cycle, a terminal cycle has exactly one contact node, and there 
are at least two terminal cycles in a cactus. In fig. 1, the cycles (1, 2, 3, 4) and 
(7, 8) are two of the four terminal cycles, with the contact nodes 4 and 8, 
respectively. 

The algorithm BUFFER given below assigns values to Bi in an "outside-in" 
fashion. The correctness of the algorithm is based on lemma 1 which shows that 
given any terminal cycle C there is a deadlock free buffer allocation where all 
nodes other than its contact node (if any) has buffer size 1. The step (d) of the 
algorithm makes use of this principle. The other steps of the algorithm extends 
the current buffer allocation gradually until the condition (1) is satisfied for all 
cycles. 

Algor i thm B U F F E R ( N ) :  

(a) Assign B i = 1 initially for each node of the network. 
(b) Choose a terminal cycle C of the network. 
(c) If C is equal to the entire network, and C does not satisfy (1), then increase 

the buffer size at one of its nodes to make F~=IB i = ( K  + 1), and stop. 
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(d) Let i be the contact  node  of C. If C does not  satisfy (1), then increase Bi such 
that 

E B , = ( K + I )  
i ~ C  

(e) Delete all nodes in C from the network, except the node  i. 
(f) Repeat  steps (b)-(e) until  " s top"  is encountered.  

If we are given an existing buffer allocation in which the condi t ion (1) does not 
hold, then the algori thm B U F F E R  can start with the given allocation instead of 
using the initialization B~ = 1, for 1 ~< i ~ N in step (a) above. In that  case, the 
new buffer allocation { B [ : I  ~< i ~< N} obtained by the algori thm satisfies the 
following conditions, and gives a minimal  increament  in B/"s so that  the 
condit ion (1) is satisfied. 

! 

(i) B i >1 Bi, for i =  1, 2 , . . . ,  N. 
(ii) { B 7 } satisfies (1), and 
(iii) Ei=aBiN ' or equivalently, the total increase F.~=I(B ~ N  ' - Bi) is m i n i m u m  subject 

to  (i). 

LEMMA 1 

Let { B i } be any buffer allocation scheme which satisfies inequality (1). Let j 
be the contact node of a terminal cycle C. Then there is another  dffoa { B 7 } where 
each non-contact  node  of C has unit  buffer allocation, i.e., B" = 1 for i #=j and 
i ~ C such that ~ B  i = EB' .  

Proof 
Let i be any node  in C and i :~j. If the buffer size B i at i is greater than one, 

then decrease B i to B , '=  1 and increase the buffer size at j f rom Bj to 
Bj = Bj + Bi - 1. It is easy to see that  { B/' } is still a dfba and EB~ = EB ' .  Repeat  
the above process for each i :~j ~ C. This proves the lemma. 

4. Example 

We illustrate the algori thm by comput ing  a set of B i's for the network in fig. 1 
using K = 6 jobs. Each row in table 1 below shows only the changes made  to the 
buffer sizes in that  step. In particular, step (e) is not  shown. 

5. The algorithm C Y C L E  for cacti networks 

�9 The step (b) of the algori thm for comput ing  fi requires that  a terminal cycle of 
the network be found. The algori thm CYCLE below finds all cycles in a cacti 
network. A terminal cycle can be then selected by first f inding the number  of 
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contact nodes in the cycle.~A node is a contact node if and only if its outdegree 
( - -number  of arcs leaving that node) is greater than one. Since F is a cactus 
network, and each arc of /7 belongs to a cycle, the outdegree of a node equals its 
indegree (--- the number of arcs entering that node). When a cycle is deleted from 
the network in step (e) of the algorithm for fi, the outdegree of each node in the 
cycle i s  decreased by one. This will allow the deletion of a terminal cycle 
subsequently. The algorithm takes linear time in the number of nodes in the 
network. The more general algorithm in Johnson [8] for finding all cycles, which 
works for all directed graphs and is also linear in the number of cycles and nodes, 
is considerably more complex. This prompted us to design the simpler algorithm 
CYCLE given here. The algorithm CYCLE is presented in a different format 

a d j [ 1 ]  = ( 2 )  

adj[2] = ( 3 )  

adj[3] = ( 4 )  

adj[4] = ( 5 , 1 )  

adj [ 5 ]  = ( 8 , 6 )  

adj [6 ]  = ( 4 )  

adj[8] = ( 1 2 , 9 , 7 )  

adj[12] = ( 5 , 1 3 )  

(i) The adjacency lists used in the computat ion shown in (ii) 

I l lustration of the procedure CYCLE 

Node  Stack S Startlist 
visited (top of S is on left) 

4 (4) (4) 
5 (5,4) empty 
8 (8,5,4) 

12 (12,8,5,4) 
5 cycle = (12,8,5) 

(5,4) (8,12) 
6 (6,5,4) 
4 cycle = (6,5,4) 

(4) 
1 (1,4) 
2 (2,1,4) 
3 (3,2,1,4) 
4 cycle = (3,2,1,4) 

empty 
12 (8) (12) 

(ii) Part of the computat ion starting at node 4 

Fig. 2. I l lustration of the algorithm CYCLE. 
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than the algorithm BUFFER in section 4.1 as it uses a more complex control 
flow and data structure to achieve its efficiency. The stack S stores the nodes that 
have been visited but not yet outputted as part  of a cycle; initially S is empty. 
The array visit[ ] is used for identifying the nodes which have been already 

procedure CYCLE(N) ; 
begin 
if  (there is no node of d[i] > 1) then  

N is a cycle 
else begin 

choose a node i such that d[i] > 1; 
initialize startlist to i; 
visit[i] ~-- 1; 
whi le  (startlist is not  empty) do 

begin 
choose i from startlist and remove it from startlist; 
add i to S; 
whi le  (S is not  empty) do 

begin 
i ~ top(S); 
if (adj[i] is non-empty)  then  

begin 
choose the first node j in adj[i]; 
remove j from adj[i]; 
d[i] +-- d[i] - 1; 
if  (visit[j] = 1) then  {a cycle is found at j} 

begin 
repea t  {output the cycle} 

k top(s); 
output k; 
i f ( d ( k )  > 1) then  

add k to the beginning of startlist; 
pop(S);  

until  ( top(S) = j); 
output j; 

end 
else begin 

visit[j] +-- 1; 
push(j, S); 

end; 
endif; 

else 
pop(S); 

endwhile;  
endwhile;  

endelse; 

{S is empty now} 

end. 
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visited, indicated by visit[i] = 1; initially, visit[i] = 0 for each i. The array d[i] 
denotes the outdegree of the node i. The "startlist" is a list of visited contact 
nodes for which all cycles containing them have not been outputted and needs 
further processing. We assume that the network is represented as a list of 
adjacency lists, adj[i], one list per node. The lists adj[i] are gradually reduced to 
empty lists as items are deleted from them. 

The algorithm CYCLE is illustrated in fig. 2 using the network in fig. 1. We 
show the values of the stack S and the startlist as they change in the first few 
iteration of the inner while-loop, assuming that the algorithm is started at the 
contact node 4. The nodes of the cycles are outputted in the reverse order. 

References 

[1] I.F. Akyildiz, On the exact an approximate throughput analysis of closed queueing networks 
with blocking, IEEE Transactions on Software Engineering (1988) 62-71. 

[2] I.F. Akyildiz, Product form approximations for queueing networks with multiple servers and 
blocking, IEEE Transactions on Computers (1989) to appear. 

[3] S. Balsamo and G. Iazeolla, Some equivalence properties for queueing networks with and 
without blocking, Proc. Performance 83 Conference, eds. A.K. Agrawala and S. Tripathi 
(North-Holland Publ. Co., 1983) 351-360. 

[4] M. Behzad, G. Chartrand and E. Lesniak-Foster; Graphs and Diagraphs (Wadsworth Interna- 
tional Group, California, 1979). 

[5] O.I. Boxma and A.G. Konheim, Approximate analysis exponential queueing systems with 
blocking, Acta Informatica 15 (1981) 19-66. 

[6] W.J. Gordon and G.F. Newell, Cyclic queueing systems with restricted queues, Operations 
Research 15, Nr. 2 (April 1967) 266-277. 

[7] A. Hordijk and N. van Dijk, Networks of queues with blocking, Proc. 8th Int. Syrup. on 
Computer Performance Modelling, Measurement, and Evaluation, Amsterdam, November 4-6, 
1981. 

[8] D.B. Johnson, Finding all the elementary circuits of a directed graph, SIAM Journal on 
Computing 4 (1975) 77-84. 

[9] A.G. Konheim and M. Reiser, Finite capacity queueing systems with applications in computer 
modeling, SIAM Journal Computing 7, No. 2 (1978) 210-229. 

[10] R.O. Onvural and H.G. Perros, On equivalences of blocking meachanisms in queueing 
networks with blocking, Operations Research Letters 5 (1986) 293-297. 

[11] H.G. Perros, Queueing networks with blocking: a bibliography, ACM Sigmetrics Performance 
Evaluation Review, (1984). 

[12] H.G. Perros and T. Altiok, Approximate analysis of open networks of queues with blocking: 
tandem configurations, IEEE Transactions on Software Engineering, Vol. SE-12, No. 3 (1986) 
450-462. 


