
Queueing Systems, 4 (1989) 4%56 47

D E A D L O C K FREE B U F F E R A L L O C A T I O N
1N C L O S E D Q U E U E I N G N E T W O R K S

S. K U N D U 1 and I.F. A K Y I L D I Z 2

J Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.
2 School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
Georgia 30332, U.S.A.

Received 30 October 1987
Revised 20 July 1988

Abstract

Blocking queueing networks are of much interest in performance analysis due to their
realistic modeling capability. One important feature of such networks is that they may have
deadlocks which can occur if the node capacities are not sufficiently large. A necessary and
sufficient condition for the node capacities is presented such that the network is deadlock
free. An algorithm is given for buffer allocation in blocking queueing networks such that no
deadlocks will occur assuming that the network has the special structure called cacti-graph.
Additional algorithm which takes linear time in the number of nodes, is presented to find
cycles in cacti networks.

Keywords: Performance evaluation, queueing networks, finite buffers, blocking, deadlock

1. Introduction

Since in actual systems the resources have a f ini te capaci ty , queue ing ne tworks
with b locking must be used for p e r f o r m a n c e analysis. In queue ing ne tworks with
blocking, a node can be thought of as a device wi th a f ini te length queue. Th e
ne twork is s imply a set of arb i t rar i ly l inked nodes. Blocking arises due to the
l imi ta t ions imposed by the capac i ty of these nodes. In par t icular , b lock ing occurs
when the f low of jobs th rough one node is m o m e n t a r i l y suspended due to the fact
that ano the r node has reached its capac i ty l imitat ion.

Several papers have been publ i shed deal ing wi th var ious types of blocking.
Previous work regarding the b locking ne tworks falls in to three classes, Onvura l
and Perros [10]:

2 Akyildiz's work was supported in part by School of Information and Computer Science, ICS, of
Georgia Tech and by the Air Force Office of the Scientific Research (AFOSR) under Grant
AFOSR-88-0028.

�9 J.C. Baltzer A.G. Scientific Publishing Company

48 S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation

(i) Transfer blocking. Upon completion of the service at a node i, a job attempts
to enter the destination station j. If node j is full at that moment, the job is
forced to wait in node i 's server until it can enter destination node j. The
server remains blocked for this period of time. It cannot serve any other jobs
waiting in the queue. This type of blocking has been used to model systems
such as production systems and disk I / O subsystems, Akyildiz [1,2], Perros
and Altiok [12].

(ii) Service blocking. A job at node i declares its destination node j before it
starts its service. If node j is full, the i-th server is blocked before service
begins. When a departure occurs from destination node j , the i-th server
becomes unblocked and the job begins receiving service. This blocking type
has been used to model systems such as production systems and telecom-
munication networks, Boxma and Konheim [5], Gordon and Newell [6],
Konheim and Reiser [9].

(iii) Rejection blocking. Upon service completion at node i, a job attempts to join
destination node j. If node j is full at that moment, the job receives a new
service at node i. This is repeated until the job completes service at a time
when it can proceed to station j , Balsamo and Iazeolla [3], Hordijk. and van
Dijk [7].

Several other investigators in recent years have published results on blocking
queueing networks, Perros [11].

An important consideration in blocking queueing networks of any type is that
finite node capacities and blocking can introduce the deadlock situation. In a
simple example, deadlock may occur if a job wh ich has finished its service at
node i 's server wants to join node j , whose capacity is full. That job is blocked in
node i. Another job which has finished its service at j - th node now wants to
proceed to the i-th node, whose capacity is also full. It blocks the j - th node. Both
jobs are waiting for each other. As a result, a deadlock situation arises. Further-
more, the possibility of deadlock in a network increases with the ratio of the
number of jobs in the network to the total capacity of the network. As the total
number of jobs approaches the total capacity of the network, the probability of
deadlock increases.

The most important issue is the allocation of node capacities in a queueing
network such that deadlocks cannot occur. In this work we give a necessary and
sufficient condition for a queueing network to be deadlock free, and present an
algorithm for computing the capacities for the nodes such that no deadlock will
occur in the network.

2. Deadlock freedom in blocking networks

Let F be a closed queueing network of type 1 with N nodes and K jobs where
all jobs are of the same class. Each node contains m i >~ 1 servers with a single

S. Kundu, J.F. Akyildiz /Deadlock free buffer allocation 49

queue. There are no restrictions regarding the service time distribution and
scheduling disciplines of the nodes. Let Bi be the buffer size, or capacity, of the
i-th node where Bi = Queue Capacity i + m (for i = 1, . . . , N). There can be at
most B i jobs at node i at any time, including the jobs which are currently being
serviced. A job which is serviced by the i-th node proceeds to the j - th node with
probability pij for (i, j = 1, 2 , . . . , N), if the number of jobs at the j - th node has
not exceeded that capacity B 9. Otherwise, the job is blocked at the i-th node until
a job at node j has completed service and a place becomes available. This model
is classified as type 1 blocking above. It is understood that once a job selects a
destination (probabilistically or deterministically) it cannot change the destina-
tion. This is implication in type 1 blocking network definition. We assume that
each job has a fixed class assigned to it and this cannot change because it is
blocked at some point in time.

The following theorem describes a necessary and sufficient condition for a
closed queueing network to be deadlock free. A cycle C is a sequence of nodes
(x 1, x2 , . . . , xj) such that each pair of consecutive nodes is joined by an arc
(xi, xi+l) , including the arc (xj, xl).

THEOREM 1
A closed queueing network of type I with finite node capacities { B i : 1 ~< i ~< N }

is deadlock free if and only if for each cycle C in the network the following
condition (1) holds. Simply stated, the total number of jobs in the network must
be smaller than the sum of node capacities in each cycle.

K < E Bj. (1)
j ~ C

Proof
(i) Necessity. Suppose that there is a cycle C = (1, 2 , M), (M~< N), which

violates the condition (1). Consider a state of the network in which each node
i in C is saturated, i.e., the current number of jobs at node i, 1 ~< i ~< M,
equals its buffer capacity B i. There is a positive probability for such a state of
the network since K >~ F~j ~ cBj. Now, assume that for each node i in C, the
job which is currently being serviced at i finishes and it wants to move to the
next node i + 1 in the cycle (M + 1 = 1). There is also a positive probability
for this to happen. This, however, results in a deadlock within the cycle C.
Since there is also a positive probability that a job in another node may want
to move to a node in C, eventually all nodes will be deadlocked with
probability 1.

(ii) Sufficiency. Suppose that there is a blocking. For example, the node 1 is
blocked. Then there is another node 2 such that the job at node 1 which has
completed service wants to move to node 2 cannot do so. This means that
node 2 is saturated and must itself be blocked. Otherwise, at some point in

50 S. Kundu, J.F. Akyildiz /Deadlock free buffer allocation

the future, the current job at node 2 would move out, and the job from node
1 could then move to node 2. By repeating the above argument for node 2
and so on, we get a sequence of nodes (1, 2 . . .) with the following proper-
ties:

a) Each node i is blocked and is saturated.
b) (i, i + 1) is an arc of the network F.

Since F is finite, the nodes (i : i > 1} must include a cycle, C = (1, 2 , . . . , M},
without loss of generality. Since each i, 1 ~< i ~ M, is saturated, we have

K>~ Z Bj, (2)
j ~ C

This violates the inequality (1) for the cycle C, a contradiction. This completes
the proof. ,

If F is a tandem network, consisting of a single cycle, then the inequality (1)
corresponds to the total buffer size B = ~ = l B i of the network being at least
(K + 1). This can be achieved by taking B 1 = B 2 = B(X 1~ = 1, and B N = K - N +
2. (Indeed, a better throughput may be achieved by allocating buffer sizes at the
nodes in inverse proportion to their service rates. This has been verified in some
experimental cases, but has not been established formally. The issue of buffer
allocation problem for improving throughput is not considered here.)

C O R O L L A R Y

A necessary and sufficient condition for a tandem network to be deadlock free
is

N

K < % B, (3)
i = 1

3. Deadlock free buffer allocation in blocking networks

A set of buffer sizes (B i : i = 1, 2 , . . . , N} for which inequality (1) holds for
every cycle C is called a deadlock free buffer allocation, or dfba. We denote by/3
the minimum value of B = EN=IB taken over all dfoa's for the network. The
minimum buffering requirement of the network for avoiding deadlocks is ft. It is
clear that for a buffer allocation { Bi : 1 ~< i ~< N) to be deadlock free, it needs to
satisfy only those inequalities in (1) which correspond to the elementary cycles,
i.e., the cycles which do not pass through the same node more than once. We
assume here that each node and each arc of the network belongs to at least one
cycle; a node, however, can belong to several cycles. We give below an algorithm
for computing]3 and a corresponding buffer allocation { B~ : 1 ~ i ~< N } for the
case where the network F has the form of a tree of elementary cycles. Figure 1

S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation 51

1

4

1

) 1

t 2

" 1

1

Fig. 1. A network and a deadlock free buffer al location for K = 6 jobs; next to each node is the
value B i.

shows such a network, where the direction of each arc is clockwise around the
cycle. Such a network is called a cactus network, Behzad et al. [4]. A cactus has
the property that no two cycles have more than one node in common. We define
the following terms to describe the algorithm:
(i) A contact node is a node at which two or more cycles meet. Since we assume

that every node belongs to a cycle, this is the same as saying that there are 2
or more arcs leaving the node.

(ii) A terminal cycle is a cycle which contains at most one contact node. Unless
the cactus is a cycle, a terminal cycle has exactly one contact node, and there
are at least two terminal cycles in a cactus. In fig. 1, the cycles (1, 2, 3, 4) and
(7, 8) are two of the four terminal cycles, with the contact nodes 4 and 8,
respectively.

The algorithm BUFFER given below assigns values to Bi in an "outside-in"
fashion. The correctness of the algorithm is based on lemma 1 which shows that
given any terminal cycle C there is a deadlock free buffer allocation where all
nodes other than its contact node (if any) has buffer size 1. The step (d) of the
algorithm makes use of this principle. The other steps of the algorithm extends
the current buffer allocation gradually until the condition (1) is satisfied for all
cycles.

Algor i thm B U F F E R (N) :

(a) Assign B i = 1 initially for each node of the network.
(b) Choose a terminal cycle C of the network.
(c) If C is equal to the entire network, and C does not satisfy (1), then increase

the buffer size at one of its nodes to make F~=IB i = (K + 1), and stop.

52 S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation

(d) Let i be the contact node of C. If C does not satisfy (1), then increase Bi such
that

E B , = (K + I)
i ~ C

(e) Delete all nodes in C from the network, except the node i.
(f) Repeat steps (b)-(e) until " s top" is encountered.

If we are given an existing buffer allocation in which the condi t ion (1) does not
hold, then the algori thm B U F F E R can start with the given allocation instead of
using the initialization B~ = 1, for 1 ~< i ~ N in step (a) above. In that case, the
new buffer allocation { B [: I ~< i ~< N} obtained by the algori thm satisfies the
following conditions, and gives a minimal increament in B/"s so that the
condit ion (1) is satisfied.

!

(i) B i >1 Bi, for i = 1, 2 , . . . , N.
(ii) { B 7 } satisfies (1), and
(iii) Ei=aBiN ' or equivalently, the total increase F.~=I(B ~ N ' - Bi) is m i n i m u m subject

to (i).

LEMMA 1

Let { B i } be any buffer allocation scheme which satisfies inequality (1). Let j
be the contact node of a terminal cycle C. Then there is another dffoa { B 7 } where
each non-contact node of C has unit buffer allocation, i.e., B" = 1 for i #=j and
i ~ C such that ~ B i = EB' .

Proof
Let i be any node in C and i :~j. If the buffer size B i at i is greater than one,

then decrease B i to B , '= 1 and increase the buffer size at j f rom Bj to
Bj = Bj + Bi - 1. It is easy to see that { B/' } is still a dfba and EB~ = EB ' . Repeat
the above process for each i :~j ~ C. This proves the lemma.

4. Example

We illustrate the algori thm by comput ing a set of B i's for the network in fig. 1
using K = 6 jobs. Each row in table 1 below shows only the changes made to the
buffer sizes in that step. In particular, step (e) is not shown.

5. The algorithm C Y C L E for cacti networks

�9 The step (b) of the algori thm for comput ing fi requires that a terminal cycle of
the network be found. The algori thm CYCLE below finds all cycles in a cacti
network. A terminal cycle can be then selected by first f inding the number of

T
ab

le
 1

Il

lu
st

ra
ti

o
n

 o
f

th
e

al
g

o
ri

th
m

 f
or

 c
o

m
p

u
ti

n
g

 t
he

 d
ea

d
lo

ck
 f

re
e

b
u

ff
er

 a
ll

oc
at

io
n

{
B

i
: 1

 ~
 i

 ~
 n

 }
 f

or
 K

 =
 6

;
h

er
e/

~
 =

27

.c,
z >

S
te

p

B
 1

B

 2

B
 3

B

 4
B

 s
B

 6
B

 7

B
 8

B

 9

B
lo

B

 n

B
12

B

13

"~

a)

1
1

1
1

1
1

1
1

1
1

1
1

1
b)

 C
 =

 (
1,

 2
,

3,
 4

)
~

d)

4
N

"
b)

 C
=

(4
,5

,6
)

d)

2
b)

 C
 =

 (
7,

 8
)

d)

6
b)

 C
 =

 (
8,

 9
,

10
,

11
)

~.
~

d)

n
o

 c
h

an
g

e
to

 B
 8

b)

 C
 =

 (
12

,
13

)
d)

6

~-
~

b)
 C

 =
 (

5,
 8

,
12

)
~Q

c)

n

o
 c

h
an

g
e

in
 a

ny
 o

f
th

e
B

 i'
s

"~

F
in

al
 v

al
ue

s
of

 B
~

1
1

1
4

2
1

1
6

1
1

1
6

1

54 S. Kundu, J,F. Akyildiz / Deadlock free buffer allocation

contact nodes in the cycle.~A node is a contact node if and only if its outdegree
(- -number of arcs leaving that node) is greater than one. Since F is a cactus
network, and each arc of /7 belongs to a cycle, the outdegree of a node equals its
indegree (--- the number of arcs entering that node). When a cycle is deleted from
the network in step (e) of the algorithm for fi, the outdegree of each node in the
cycle i s decreased by one. This will allow the deletion of a terminal cycle
subsequently. The algorithm takes linear time in the number of nodes in the
network. The more general algorithm in Johnson [8] for finding all cycles, which
works for all directed graphs and is also linear in the number of cycles and nodes,
is considerably more complex. This prompted us to design the simpler algorithm
CYCLE given here. The algorithm CYCLE is presented in a different format

a d j [1] = (2)

adj[2] = (3)

adj[3] = (4)

adj[4] = (5 , 1)

adj [5] = (8 , 6)

adj [6] = (4)

adj[8] = (1 2 , 9 , 7)

adj[12] = (5 , 1 3)

(i) The adjacency lists used in the computat ion shown in (ii)

I l lustration of the procedure CYCLE

Node Stack S Startlist
visited (top of S is on left)

4 (4) (4)
5 (5,4) empty
8 (8,5,4)

12 (12,8,5,4)
5 cycle = (12,8,5)

(5,4) (8,12)
6 (6,5,4)
4 cycle = (6,5,4)

(4)
1 (1,4)
2 (2,1,4)
3 (3,2,1,4)
4 cycle = (3,2,1,4)

empty
12 (8) (12)

(ii) Part of the computat ion starting at node 4

Fig. 2. I l lustration of the algorithm CYCLE.

S. Kundu, J.F. Akyildiz /Deadlock free buffer allocation 55

than the algorithm BUFFER in section 4.1 as it uses a more complex control
flow and data structure to achieve its efficiency. The stack S stores the nodes that
have been visited but not yet outputted as part of a cycle; initially S is empty.
The array visit[] is used for identifying the nodes which have been already

procedure CYCLE(N) ;
begin
if (there is no node of d[i] > 1) then

N is a cycle
else begin

choose a node i such that d[i] > 1;
initialize startlist to i;
visit[i] ~-- 1;
whi le (startlist is not empty) do

begin
choose i from startlist and remove it from startlist;
add i to S;
whi le (S is not empty) do

begin
i ~ top(S);
if (adj[i] is non-empty) then

begin
choose the first node j in adj[i];
remove j from adj[i];
d[i] +-- d[i] - 1;
if (visit[j] = 1) then {a cycle is found at j}

begin
repea t {output the cycle}

k top(s);
output k;
i f (d (k) > 1) then

add k to the beginning of startlist;
pop(S);

until (top(S) = j);
output j;

end
else begin

visit[j] +-- 1;
push(j, S);

end;
endif;

else
pop(S);

endwhile;
endwhile;

endelse;

{S is empty now}

end.

56 S. Kundu, J.F. Akyildiz / Deadlock free buffer allocation

visited, indicated by visit[i] = 1; initially, visit[i] = 0 for each i. The array d[i]
denotes the outdegree of the node i. The "startlist" is a list of visited contact
nodes for which all cycles containing them have not been outputted and needs
further processing. We assume that the network is represented as a list of
adjacency lists, adj[i], one list per node. The lists adj[i] are gradually reduced to
empty lists as items are deleted from them.

The algorithm CYCLE is illustrated in fig. 2 using the network in fig. 1. We
show the values of the stack S and the startlist as they change in the first few
iteration of the inner while-loop, assuming that the algorithm is started at the
contact node 4. The nodes of the cycles are outputted in the reverse order.

References

[1] I.F. Akyildiz, On the exact an approximate throughput analysis of closed queueing networks
with blocking, IEEE Transactions on Software Engineering (1988) 62-71.

[2] I.F. Akyildiz, Product form approximations for queueing networks with multiple servers and
blocking, IEEE Transactions on Computers (1989) to appear.

[3] S. Balsamo and G. Iazeolla, Some equivalence properties for queueing networks with and
without blocking, Proc. Performance 83 Conference, eds. A.K. Agrawala and S. Tripathi
(North-Holland Publ. Co., 1983) 351-360.

[4] M. Behzad, G. Chartrand and E. Lesniak-Foster; Graphs and Diagraphs (Wadsworth Interna-
tional Group, California, 1979).

[5] O.I. Boxma and A.G. Konheim, Approximate analysis exponential queueing systems with
blocking, Acta Informatica 15 (1981) 19-66.

[6] W.J. Gordon and G.F. Newell, Cyclic queueing systems with restricted queues, Operations
Research 15, Nr. 2 (April 1967) 266-277.

[7] A. Hordijk and N. van Dijk, Networks of queues with blocking, Proc. 8th Int. Syrup. on
Computer Performance Modelling, Measurement, and Evaluation, Amsterdam, November 4-6,
1981.

[8] D.B. Johnson, Finding all the elementary circuits of a directed graph, SIAM Journal on
Computing 4 (1975) 77-84.

[9] A.G. Konheim and M. Reiser, Finite capacity queueing systems with applications in computer
modeling, SIAM Journal Computing 7, No. 2 (1978) 210-229.

[10] R.O. Onvural and H.G. Perros, On equivalences of blocking meachanisms in queueing
networks with blocking, Operations Research Letters 5 (1986) 293-297.

[11] H.G. Perros, Queueing networks with blocking: a bibliography, ACM Sigmetrics Performance
Evaluation Review, (1984).

[12] H.G. Perros and T. Altiok, Approximate analysis of open networks of queues with blocking:
tandem configurations, IEEE Transactions on Software Engineering, Vol. SE-12, No. 3 (1986)
450-462.

