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Abstract 

We consider an M/G/1 queueing system in which the arrival rate and service time 
density are functions of a two-state stochastic process. We describe the system by 
the total unfinished work present and allow the arrival and service rate processes to 
depend on the current value of the unf'mished work. We employ singular perturba- 
tion methods to compute asymptotic approximations to the stationary distribution 
of unfinished work and in particular, compute the stationary probability of an 
empty queue. 
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1. I n t r o d u c t i o n  

We consider an M/G/1 queueing system where the arrival rate and service time 
density are modulated by a two-state stochastic process. An example of such a system 
arises when there are two independent arrival streams regulated by a switch that 
allows only one of the two streams to enter the queueing system. Here the switch 
is the modulating process, which is Markov if the switching times are exponentially 
distributed. Other examples of queueing systems which are modulated by another 
stochastic process are examined in [1 ] -  [8]. 

In [4], Regterschot and de Smit treat an M/G/1 queue with arrivals and 
service modulated by an N-state Markov chain and obtain exact expressions for several 
performance measures using a matrix factorization method. Here we treat the case 
where N = 2, but with the arrivals, service and modulating processes depending on 
U(t), the unfinished work in the system. This state-dependent model is no longer 
susceptible to analysis by the methods used in [4]. Therefore we employ singular 
perturbation methods which allow us to compute the asymptotic expansion of the 
stationary distribution of the unfinished work and in particular the stationary prob- 
ability of finding an empty queue. 

We denote the modulating process as Z( t )  with the state space { 0, 1 }. Thus 
the state space of the Markov process {U(t), Z(t)} is [0, oo) x {0, 1 }. We define the 
conditional switching rates a and/3 by 

Pr[Z( t  + A t )  = l lZ(t) = 0, 

Pr[Z(t  + A t )  = 0 lZ( t )  = 1, 

u ( t )  = w] =  (w)At + o( t) 

U(t) = w] = (3(w)At + o(At )  

(1.1) 

and the conditional arrival rates and service time distributions by 

Pr[arrivalin ( t , t  + A t ) l Z ( t )  = i, U(t)  = w] = Xi(w)At  + o ( n t )  

Pr[service time < z lZ(t*) = i, 

(a .2) 
Z 

U(t*) = w] = [ bi(s, w)ds (i = O, 1) 

where t* denotes the instant at which the customer enters the queueing system. We 
assume that the rate at which service is provided is unity and thus is independent of 
the state of the process (U(t), Z(t)) .  

The state dependence given by (1.1)-(1.2) describes a variety of effects. 
Having the switching rates sensitive to the buffer content creates a feedback mechanism 
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which can be used to control the system's work backlog. The dependence of  the arrival 
rates Xi on w, indicates possibly discouraged arrivals. The dependence of  the service 
time on the values of Z(t*) allows for the two classes of  customers to have different 
service requirements, while the dependence of the service time on U(t*) allows for 
the fact that a customer may be more likely to submit a longer (shorter)job if the 
system's buffer content is small (large). The latter would be an important consider- 
ation if shorter jobs are given priority over longer jobs. 

We make the following assumptions: 
(i) The switching rates a, /3, the arrival rates Xi and the densities bi(z, w) are 

smooth functions ofw.  
(ii) ~i(w) > 0, i = 0, 1; ~(w),/3(w) and X0(w ) + Xx(w ) are strictly positive for all 

w > O .  
(iii) the system's capacity of unfinished work is inf'mite, so that the state space of 

the process U(t) is [0, o0). 
(iv) The moment generating functions M(O, w, i) of  the service time densities 

M(O, w, i) = I e~ w)dz 
o 

q = 0 ,  1) 

exist in a neighborhood of 0 --- 0 for all w, so that all the moments of bi(z, w) exist. We 
remark here that the basic asymptotic approach developed in sect. 2 can also be used 
to treat the cases where the switching and arrival rates vanish either at a point or over 
an entire interval, or the functions are non-smooth in their dependence on w; this 
approach can also be used for finite capacity models in which the unf'mished work 
process is confined to the interval [0, K] for some K > 0. 

An important quantity associated with our model is the state-dependent traffic 
intensity r(w) defined by 

Xo(w)/3(w) x 1 (w) a(w) 
r(w) = Uo(W ) [a(w)+/3(w)] + ul(w) [a(w)+/3(w)] (1.3) 

where 

/ ,  

1 
= I zbi(z' w)dz (i = 0, 1). (1.4) 

ui(w) o 

Our final assumption is (v) r(w) -~ 1 - 6 < 1 for some 6 > 0, for all w sufficiently 
large. This guarantees the stability of the system and hence the existence of a station- 
ary distribution for the Markov process {U(t), Z(t)}. 

We show in sect. 2 that the structure of  the state-dependent model is much 
richer than the corresponding state-independent model discussed in [4]. The present 
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model is indeed very sensitive to the behavior of  the function r(w). We consider 
separately three cases distinguished by the structure of  r(w). These are 

1." 
2. 
3. 

r ( w ) < l  for all w > 0  
r(O) = 1 r'(O) < O r(w) < 1 for w > 0  
r(w) > 1 for 0 < w < w o r(Wo) = 1 r(w) < l for w > w  o. 

While these cases are by no means exhaustive, their consideration will be sufficient to 
demonstrate the rich structure of  the state-dependent model. We refer to a point w* 
where r(w*) = 1, as an equilibrium point. Hence, w* = 0 is an equilibrium point for 
case 2 while case 3 has an equilibrium point at w o in the interior of  the interval [0, oo). 

Due to the complexity of the state-dependent model, it is unlikely that exact 
expressions for performance measures such as the stationary density of  unf'mished 
work, can be obtained for arbitrary, smooth functions a(w), ~(w), and Xi(w). There- 
fore we obtain approximate expressions for the stationary distribution. We introduce a 
parameter e and write the rates as 

1 1 = l ? t  i , a = -d a(w),  ~ = ~ ~(w), X i (w) (1.5) 

and the service time densities as 

1 = b Z w ) .  bi e i ( e '  (1.6) 

We analyze the system for small e, i.e. 0 < e ,~ 1. To clarify the specific choice 
of  e, suppose we had a state-dependent arrival rate model with X o = 10/(1 + w), 
X 1 = 15/(1 +w), a = 30, /3 = 40 and b o = b 1 = 20e -2~ Then clearly we maywrite 

1 1 1 3 3 4 
Xo = ? "  l + w '  X~ = g -  2 ( 1 + w ) '  a = g ,  /3 = g ,  

bo = bl  2 e_2zle = E with e = 0.1. 

Alternatively, we could write 

2 3 6 8 
X~ e(1 + w ) '  Xl e(1 + w ) '  a e ,  /3 g and 

b o = b 1 = 4e-4Z/e with e = 0.2. 
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The choice of e is not unique, but our final asymptotic results are independent of  the 
particular choice of e. 

We observe from (1.5) and (1.6) that the mean requested service times are 

de 
zb i , w -U = e ub i(u, w) du 

0 o 

= O(e) (1.7) 

and are thus small, and that the system has rapid arrival and switching rates (O(1/e)). 
The scaling introduced above is similar to the scaling used to obtain diffusion 

approximations to more complex Markov processes (see e.g. Burman [10] and 
Iglehart and Whitt [ 1 1 ] - [ 1 3 ] ) .  Unlike diffusion approximations, however, the 
approximate methods developed in this paper are not restricted to the heavy traffic 
region (where r ~ 1) and the results we obtain involve all the moments of the service 
time distributions, rather than merely the first two. 

Our approximation techniques are based on singular perturbation methods 
such as the WKB method, boundary layer theory, and the method of matched asymp- 
totic expansions ([ 14] - [ 17 ] ). We suitably modify existing methods, developed in the 
context of differential equations to deal with integro-differential-difference equations 
that arise in queueing models. We have previously employed similar methods in other 
systems ( [ 18 ] - [23 ] ). 

This paper is organized as follows. In sect. 2 we formulate the stationary 
forward Kolmogorov equation associated with the Markov process {U(t), Z( t )}  and 
construct asymptotic approximations to the stationary distribution of  the process, 
treating each of  the cases 1 -3  separately. In particular, the probability of finding an 
empty system (i.e. U(t)  = 0) is computed. 

2. S t a t i o n a r y  distribution 

We compute the stationary distribution for the joint process {U( t ) ,Z ( t ) }  by 
solving the appropriate forward Kolmogorov equation. For i = O, 1 let 

d 
p ( w , i )  = t r i m - ~ w  Vr[U(t) < w,  Z ( t )  = i] ,  w > 0 

A. = lim Pr[U(t )  = 0, Z ( t )  = i] 
t t - + o ~  

(2.1) 

where the existence of  the limits follows from our assumption (v) that the state- 
dependent traffic intensity r(w) is less than and remains bounded away from unity for 
sufficiently large w. With the scaling (1 .5)-(1 .6) .  the functions p(w, i) satisfy 



360 C. Knessl et al., A Markov-modulated M/G/1 queue I 

d {p(w,O)~ + 1 [--a(w)-Xo(W ) [ 3 ( w )  ~{p(w,O)~ 
d---w ~p(w, 1)] g ~ a(w) -qS(w) - k , (w) ]  \p(w, 1)1 

+ g  

o 

X~(w ez) p(w ez, 1) b~(z,w 

(00) 
+ g (F, o)A,/ 

(2.2) 

(0) /~(0) + Xl(0 ) a x e \ p ( 0 ,  1) ' 
(2.3) 

and 

J ~o(w, o) 
o 

+p(w, 1)]dw + A  o + A  1 = 1. 

Our goal is to solve (2.2) and (2.3) asymptotically, for e ~ 1. We first construct an 
asymptotic approximation to p(w, i) for w = O(1) and w >> e, by employing aWKB 
technique. Next we construct an approximation to p(w, i) which is valid for w = O(e) 
and connect this approximation to the WKB approximation by the principle of  asymp- 
totic matching [14]. 

We now assume w >> e. We drop the last term on the left side of  (2.2) and 
extend the limit on the integral in equation (2.2) from w/e to oo. This leads to errors 
that are exponentially small for w = O(1), and hence smaller than any power of  e. 
With these two simplifications we seek solutions of  (2.2) for w = O(1) in the WKB 
form 

p(w, 1) l\K,(w)/ '~}*~(w) I 

(2.4) 
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Substituting (2.4) in (212), expanding the functions X i and b i for e @ 1, and equating 
the coefficient of each power of  e separately to zero, we obtain a recursive sequence of 
equations to determine the functions K[i)(w) and 4(w). The first of these equations 
is 

(Oo w  (Ko%= 

where 

Oo(W) = 4'(w) + : (w)  + Xo(W) - Xo(w) i bo(z, w) e z~~ 
o 

O~(w) = 4'(w) + t3(w) + X:(w) - X,(w) [ b:(z, w) e~'(W~dz. 
o 

(2.6) 

In order for (2.5) to have a non-trivial solution, the matrix in (2.5) must be singular, 
which implies that 

Oo(W) O,(w) = ~(w) a(w). (2.7) 

Equations (2.6) and (2.7) determine the function 4'(w). Clearly 4 '  = 0 is a 
solution of  (2.7) but this solution is unacceptable by normalization considerations. A 
routine convexity argument establishes the existence of  a unique non-zero solution of 
(2.7) which satisfies 4 '(w) > 0 if r(w) < 1, 4 '(w) = 0 if r(w) = 1, and 4'(w) < 0 
if r(w) > 1. Thus the solution 4 '  passes through the origin as the traffic intensity goes 
through the critical value one. Since 4 '  is uniquely determined, 4 is known up to an 
additive constant which must be chosen so that 4(w) vanishes at the point where the 
probability density peaks, in order to satisfy the normalization condition. Hence for 
cases 1 and 2 we choose 4(0) = 0, while for case 3 we choose 4(Wo) = 0 where w o 
satisfies r(Wo) = 1. 

With (2.7) satisfied, (2.5) has the solution which we write as 

~(w) Ir 
Iq(w) = ~(w) + Oo(W) 

~(w) 
Kl(w) = o~(w)+ Oi(w ) K(w) (2.8) 

where K(w) is as yet undetermined. 
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At the next order in e in the expansion of (2.2), we obtain 

Oo(w) -~(w)) (KoO)(w)~ = ([1-Xo(W) /o(W)] Ko(W)~ 

-~(w) 01(w ) ] \K~O(w)] [1 kx(w ) Ix(w)] K:(w)] 

_ ((~ ~ o ~  
\( r x~(w) 

where for ] = O, 1 

~"(w) Jo(W) + fo(Xobo) w z eZr Ko(w)) 

~"(w) Jl(w) + f~(klbl) w z eZ~'(W)dz) KI(W)/ 
(2.9) 

L(w) = Jzbi(z,w) eZr Ji(w) = z2b/(z,w) eZ*'(W)dz, 
o o 

(2,1o) 

with (~kibi) w = :-~ (X i (w)  bi(z , w)). The solvability condition for (2.9) is that the 
right side be orthogonal to the solution (Lo(w), Ll(W)) T (T denotes transpose), of 

(Oo w  (00) 
-~(w) Odw) / \Ldw) / 

This yields 

to(W) = a(w) Ko(w), Ldw) = ~(w) Kl(w). (2.11) 

Taking the inner product of (2.9) with the 2.vector (a(w) Ko(w), /3(w) Kl(w)) and 
using (2.8) and (2.10), we obtain the following first order linear differential equation 
to determine the function K(w): 

K'(w) = ~1 (w) + ~2 (w) 
K(w) ~3(w ) , (2.12) 

where 

_ 1 1~/" ~l(w) = -~ 
[i-~o~ ~ ~ +o~:1 

~2(w) = 
, 

t3+o o + o  o ] 
1 ) ' 

fl(1-XoI o) a(1-XlI ~) 
+ ~3(w) = 

(~ + Oo )2 (~ + O~ )2 
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We observe that the right side of  (2.12) is known in terms of  the function if(w) and 
hence K(w) is known up to a multiplicative constant. We have thus obtained the 
leading term in the asymptotic expansion o fp (w,  i), valid for w >> e, as 

/ t3(w) ) 
~p(w, =K(w*) \ a(w) 

\ a ( w )  + 01(w) 

(2.13) 

with ~0(w) satisfying (2.7) and K(w) is the solution of  (2.12). The point w* is chosen 
so that ~b(w*) = 0, thus w* = 0 for cases 1 and 2 and w* = w o for case 3. The 
constant C appearing in (2.13) is as yet undetermined. Note that the higher order 
corrections, Ki(])(w) for ] >- 1, can be obtained in a straightforward manner. 

We now determine the constant C and construct the asymptotic expansion of  
p(w, i) that is valid in the "inner" region, where w = O(e). Thus we introduce the 
stretched variable 

71 = w/e (2.14) 

and the local functions 

Qi01; e) = p(w, i; e). 

Rewriting (2.2) in terms of  r~, we expand the functions Qi(rl; e) as 

/ + 
@ @ i 

and expand the coefficient functions in (2.2) as 

(2.15) 

(2.16) 

x i ( e n )  --. ~ , i (o)  + e n x i ( o )  + . . .  

b~(z, e,7) - b~(z, O) + c,Tb~,,,,(z, O) + . . .  

,x (en)  --- ,x(O) + em~'(O)  + . . .  
(2.17) 

t3(en) ~. t~(o) + e n d ' ( o )  + . . . .  
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To leading order in e, we obtain the following set of equations for Qi(rl) 

d (Qo(rl)~ + ( - a ( O ) - X o ( O  ) {3(0) ~ (QoO?)~ 

drl \Q,O?)/ \ a(O) -fl(O) - XI(O)/  \Q,O?)] 

r/ 

o \Xl(O) Ql(r/ z) b,(z,O) 

+ e \ a l (O  ) bl(r/, O) A 1 = ' 
(2.18) 

-o~(O) ~(0) + X,(O y A 1 \QI(O)] 

In addition to satisfying (2,18), we demand that Qi(r~) for r/>> 1, agree with or 
"match" the WKB expansion (2.13) for w ~ 1. We write this matching condition as 

Qi (rl) n >> 1 ~ P(w,i) lw ~ x, erl = w. (2.19) 

Since the coefficient functions in (2.18) are frozen at w = 0, (2.18) is easily 
solved by introducing the Laplace transforms 

bi(s, O) = f e -sz bi(z , 0)dz, 
o 

O.i(s ) = ] e -sz Qi(z)dz (i = 0, 1) 
o 

(2.20) 

to obtain 
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A o A, /~,(s, 0)] r,(s, o) [go(O) - Xo(O) T bo( s, 0)] - /3(0)  [g , (o)  - X,(O) T ^ 

go(S) = O(s, O) 

O,~ )  = 

(2.21) 

A 1 A o 
ro(s, o) [O,(O) - x,(o) T ~,(s, o)] - ~(o) [Qo(o) - Xo(O) T ~o( s, 0)] 

D(s, O) 

where 

ro(s, o) = s - ~(o) - Xo(O) + Xo(O) ~o(S, o) 

r,(~, o) = s - / 3 ( 0 )  - x,(o) + x,(o) ~,(s, o) 

D(s, O) = ro(s, o) r,(s, o) - o,(o)/3(o). 

It can be easily shown [24] that the transcendental equation D(s, 0) = 0 has a positive 
root c = c(0) which satisfies a(0) +/3(0) < c(O) < a(0) + t3(0) + max { Xo(0), XI(0)}. 
This root corresponds to a simple pole of Qi(s) unless the numerators in the ex- 
pressions (2.21) also vanish when s = c(0). The matching condition (2.19) precludes 
this exponential growth of  the local functions Qi(rl), so the apparent pole at s = c(0) 
must be eliminated so that 

A o A~(O) [Qo(O) - Xo(O ) T /~o(c(O), 0)] = /3(0)  [ Q I ( 0 )  - X , ( 0 )  -~- 

(2.22) 

A! 
~o(O) [ ( 2 , ( 0 ) -  x , ( o ) T  S,(~(O), 0)] Z o 

= a(0)  [Qo(0) - ko(0 ) T bo(C(0), 0)] 

(2.23) 

where Ai(0 ) = Pi(c(O), 0), i = 0, 1. Equations (2.22)-(2.23) ,  together with (2.3) 
yield four equations that relate the four constants Ao, A1, Q0(0) and QI(0), but only 
three of  these equations are independent so that any three of the constants may be 
expressed in terms of  the fourth. Thus, the local solutions Q.i(s) are determined up 
to a single multiplicative constant. This constant, as well as the constant C appearing 
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in (2.13) will be determined by imposing the matching condition (2.19) and the 
normalization requirement. At this point it is necessary to distinguish among the three 
cases 1 - 3 .  

Case 1. Here r(w) < 1 for all w > 0. The stationary density will be peaked near 
w = 0 (where w = O (e)) so that it is appropriate, to leading order in e, to impose the 
normalization condition on the local solutions Qi(rl). This yields 

A = A o + A  1 = 1 - r ( O )  (2.24) 

Ao = /3(0) (1 - r(0)) Ax = a(0) (1 - r(0)) 
t3(o) + ~ ( o )  ' e(o) + ~o(O) 

(2.25) 

Qo(0) = Ao(a(0 ) + Xo(0 ) - A,(0))/e,  

Q,(0) = Ax(/3(0 ) + XI(0 ) - Ao(0))/e (2.26) 

and hence the local solutions Qt(r/) are now totally determined. It remains to fix the 
constant C in the WKB expansion by using the asymptotic matching condition (2.19). 
For 7/>> 1, the local solutions have the expansions 

( 1 -  r(O)) (s*(O)) [Ao(O ) r~(~*(o), o) - ~(o) ~(o)1 e ~*(~ 
Q o ( n )  "" e[,x(o) + Ao(O)] D(s*(O), O) 

(2.27) 

(1 - r ( 0 ) )  (s*(0)) [Aa(0) Fo(S*(0 ), 0) - ~(0) /3(0)] e s*(O)n 

QI(~) ~ e[t3(o) + ~ ( o ) ]  O(s*(0),  0) 

where 

d 
D(s*(0),  0) = ~ D(s, 0) Is= s*(o) 
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and s*(0) satisfies 

- ~(o) - Xo(O) + x0(o) i 
o 

(S - -  / 3 ( 0 )  -- Xl(O ) + Xl(O ) 

e - sw bo(w , O)dw) 

J 
0 

e - sw b l (w , O)dw) = a(O) fl(O) 

(2.28) 

with s*(0) = max{ s Is < 0 and (2.28) is satisfied}. The existence of  a negative solution 
of  (2.28) is an immediate consequence of the fact that r(0) < 1 for case 1. Note that 
s*(0) corresponds to simple poles of Qi(s). 

For w ~ 1, the WKB expansions look like 

p ( w , O )  "~ C e - ~ ' ( ~  w ( /3(0) \ 
~,t~(O) + %(0)) 

w ,~ 1 (2.29) 

p ( ~ ,  1) ~ c e - ~ ' ~ ~  TM ( ~(o)  
~a(o) + o1(o) I �9 

Noting that 7/= w/e  and s*(0) = -q/(O) from (2.28) and (2.7), the matching condition 
(2.19) fixes the constant C as 

C = (! - r (0))  s*(0) [Ao(0) (r1(s*(~ o) - a (o ) )  - a ( o )  (/3(0) - Fo(S*(0), 0))] 

eD(s*(O), 0) ~(0)  + ZXo(O) 

= (! - r(0)) s*(0) 
eD(s*(0),  0) /3(0) + a , (0 )  

[~,(o) (ro(,*(o), o) - ~(o)) - ~(o) (~(o) - r,(s*(O), o))] 

(2.30) 

where the last equality follows from the identities 

%(0)  ZX,(0) = a(0) /3(0) = ro(s*(0), 0) r ,(s*(o),  o). 

Thus, both the WKB expansion and the local solution are now completely determined. 
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Case 2. Here r(O) = 1 and r(w) < 1 for w > O. The stationary density will now be 
concentrated in an O(x/e) region about w = 0, rather than the thinner O(e) region 
as in case 1. Since the WKB expansion is valid for all w >> e and in particular for 
w --- O(x/e), we may impose the normalization condition directly on the WKB expan- 
sion. As we shall show, A i = O(x/e) for i = O, 1 so that the probabilities of finding 
the system empty may be, to leading order in e, excluded from the normalization 
requirement. Using Laplace's method for the asymptotic evaluation of integrals, we 
determine the constant C in (2.13) as 

C : (2~"(0)~ 1/2 (2.31) 
\ ~e / 

where 

"(0) = 

-2[~(o) + ~(o)] r'(0) 
t 

a(O) Xx(O ) rn}2)(O) + fl(O) Xo(O ) m~2)(O) - 2 (1 
\ 

m} 2)(0) = i bi(z' O)z2dz' i = O, 1. 

Note that ~"(0) > 0 since r '(0) < 0. Thus, the WKB approximation to the stationary 
density is given by 

p(w,O)) ~ [2~"(0)) 1/2 K(w) 
p(w, 1) \ zre l K(0) 

I . . . .  13(w) \ 
e-~w) (13(w) + ~ 

\ l \~(w) + Ol(w)/ 

w>~ e. 

(2.32) 

We now determine the probability A = A o + A x Of finding the system empty 
by matching the local solutions Qi(r?) to the WKB expansion. First, we note that 
4 ' (0)  = 0 implies 0o(0 ) = cz(O), 0a(0 ) = t3(0) so that for w ~ 1 the WKB expansion 
reduces to 

~ 1 

p(w, 1) \ ~re / or(O) + /3(0) \~(0)1"  
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Since r(0) = 1, s = 0 is a double root ofD(s, 0) = 0 (i.e. D(O, 0) = Ds(O, 0) = O) and 
hence the local solutions Qt(r/) tend to a constant as r/-~ oo. Using Dss(O, 0) = 2r'(0) 
[a(0) +/~(0)]/r we obtain 

r,m ( 0 o ( ' 0 ~  = �9 [SOoO)~ -e"(o) (Ao + A,) (~(0)X 
-~ oo  ~Ql ( r0 ]  s~mo ~s(~l(s)] = e(a(0) + ~(0)) r ' (0 )  \a(O)) " (2.34) 

Matching (2.33) to (2.34) determines A as 

A =Ao  + A1 = 2 ( ~ ) 1 / 2  Ir ' (0)l .  (2.35) 

Finally, using (2.35), (2.3), and (2 .22)- (2 .23)we obtain the constants A i as 

A o 

AI 

ao(O) 
~(o) + ~o(O) 

AI(O) 
~(o) + A~(O) 

2e 

2e ,r'(O,, ( )lj2 
(2.36) 

This completes the analysis of case 2. 

Case 3. Here r(Wo) = 1 for w o > O. The stationary density is now peaked in an 
O(x/e) neighborhood of  w o. For this case the local solutions Q/(rl) represent only a 
distortion in the exponentially small tail of the WKB solution. As in case 2, we may 
normalize the WKB solution to fix the constant C in (2.13), thus obtaining 

/ ~(w) \ 
[p(w,O)) (~k"(Wo))l/2K(W)e-~(w) ([J(w)+O~ 
~p(w, 1) ~ \ 2~re / K(Wo) ~ a(w) ] (2.37) 

\a (w)  + O,(w)/ 

for w >> e. For small w, (2.37) looks like 

/ ~(o) t [p(w, O) ~ .-, ( /3(0)  + 0o(0 ) (.~"(Wo) ~ 1/2 

~p(w, 1H ~ a(O) ] \ 27re ] 
\~ (o )  + 01(0)/ 

K(O) e - ~  (o) K(wo ) e- ~ '(O)w/~. 

(2.38) 
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The large r/expansions of the local solutions Q~ are given by 

~eS*(~ [ ( x~176 Zo~,o(S,, o)) Qo(n) ~(s*(O), o) r~(s,(O), o) ao(O) - - - ~  

( )1 - - - -  A l b , ( s * ,  O )  [3(0) QI(O) e 

QI(~) "" eS*(~ [ (a X' (~ ^ ) 
- ~ Albi(s*, O) D(s*(0), 0) ro(s*(~ o) ,(o) e 

(2.39) 

- a ( 0 )  ( Q o ( 0 )  - - -  X~ A~176 0 ) ) ] .  

Matching (2.38) to (2.39), noting that s*(0) = -~ ' (0)  > 0 since r(0) > 1, and using 
(2.3) and (2.22) we obtain 

 o(O) 
Ao = [a(0) + 01(0)] [Ao(0) + 0o(0)] \ 2rr / K ( W o )  s*(0) 

(2.40) 

AI(O) e-l~(~ (/_e~tt(W0).~ 1/2 K(O)[D(s*(O),O)[ 
A1 = [/3(0) + 0o(0)] [AI(0 ) + 0,(0)] \ 2rr / K(Wo) s*(0) 

(2.41) 

Thus, the probability A of finding an empty system is exponentially small 

for e < 1. Note that for case 3, ~(Wo) -- 0 and ~(0) > 0. 
We have thus completed the computation of the stationary density. The results 

can be summarized as follows. 
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RESULT 

Asymptotic expansions for the stationary density 

p(w, o) 
p(w, 1)) 

/ ~(w) ,,,\ 
Ir e_~(w)/o (~(w) + ~176 

+ . . . ,  W > ~  
c K(w*) ~ ~(w) l 

\a(w) + Ol(w) / 

( Qo(w/e)] + . . . ,  

9.x(w/e)/ 
w = o ( e )  

where ~'(w) is the unique solution of Oo(w ) 01(w ) = a(w) [3(w) that satisfies ff'(w) < 
or > 0 when r(w) < or > 1 and ~(w*) = 0. The Laplace transforms ofQi(r/)are 
given by (2.21) in terms o f A  i and Qi(O). Qi(O) are given in terms o f A  i in (2 .22)-  
(2.23) and the A i are given below. Here 

Oo(W) = ~/(w) + a(w) + Xo(W ) - Xo(W) i bo(z,w) eZ~'(W)dz 
0 

ol(w) = r + ~(w) + X~(w) - X~(w) lbx(z,w) eZ~'(W)dz 
0 

w 

K(w) = K(w*) exp { f [(~l(Z) + ~2(z))/~3(z)ldz} 

w *  

with ~i defined in (2.12). The constants  Ai, w*, and C are given by 

Casel: r(w) < 1, w > 1. C is given by (2.30), w* = 0, and 

Ao = /3(0) (1 - r(O)) Aa = a(O) (1 - r(O)) 
t3(o) + Ax(o) ' a ( o )  + ao(O) 
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Case 2: r(w) < 1, w > 0; r(0) = 1, r'(O) < 0. Here w* = 0, 

C = [2q/'(0)/rre] ~A 

A~ = a(0) + 2Xo(0 ) Ir'(0)l 2e y~ 

Zx = /~(0) + AI(0)Ir ' (0) l  

Case 3." r(Wo) = 1. Here w* = w o , Aj is given by (2.40), 

. a/2 c = [~  ( W o ) / 2 ~ e ]  . 

The Ai(0 ) are given (for all three cases) by 

~o(O) = c (0 )  - ~ ( o )  - Xo(0) + Xo(O)/,o(C(O),  o) 

zxl(o) = c(O) - ~(0) - x l (0)  + x l (o )  ~,~(c(0), o) 

where c(0) is the largest positive root of  the transcendental equation D(s, 0) = 0 (see 
(2.21)). Note that D(s, 0) = 0 has a unique positive solution for cases 1 and 2 and has 
two positive solutions for case 3. 

3. R e m a r k s  

Our analysis indicates the wide range of behaviors that are possible for the 
state-dependent model depending on the nature of the traffic intensity function r(w). 
For case 1 we found that A = 1 - r(0) + O(e) which is similar to the result for state- 
independent systems. This is reasonable since if the traffic intensity r(w) < 1 for all 
w > 0, and the mean jumps in unfinished work are small, the total work backlog in 
the system remains an O(e) quantity for most times. Higher order corrections to A, i.e. 
O(e M) terms with M = 1 , 2 , . . .  , could be obtained by systematically computing the 
higher order terms in the WKB expansion and the expansions of the local solutions 
(2.16), and requiring the matching condition (2.19) to hold to all orders in e. For 
example, the O(e) terms in the expansion of A would involve derivatives of the func- 
tions r, a,/3, and Xi, evaluated at w = 0. 
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In case 2, A = O(x/e). Again the density is peaked near w = 0, but since 
r(0) = 1, the stationary density is concentrated in an O(x/e) region about w = 0, 
rather than the thinner O(e) region for case 1. If  we had not assumed that r '(0) < 0, 
but rather that r '(0) = r"(0) = . . .  = r TM - 1)(0) = 0 and r(M)(0) < 0 for someM, a 
similar analysis would show that A = O(e M/(M + 1)). In case 3, A is exponentially 
small for e ~ 1 which is also intuitively reasonable since in this case the stationary 
density is sharply peaked about w 0 and the system only very rarely becomes empty. 

Finally, we observe that when a, /3, Xe and b i are all independent of  w, the 
WKB expansion (2.4), as well as the local expansion (2.16) truncate after one term 
since ~O" = 0 and the correction terms involve derivatives with respect to w of a,/3, X i 
and bi , which are now zero. When all the functions are independent of w, we must 
assume that the (constant) traffic intensity r < 1. Thus, the state-independent model 
is contained in case 1. Furthermore, the leading term in the local expansion (2.16) is in 
fact an exact solution to the problem, while the WKB expansion gives the exponential 
tail of  the stationary distribution. The exact state-independent solution is discussed in 
more detail in [24]. 
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