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Abstract

This is a sequel to Part I of “A Subjective Bayesian Approach to the Theory of
Queues”. The focus here is on inference and a use of Shannon’s measure of informa-
tion for assessing the amount of information conveyed by the various types of data
from queues. The notation and terminology used here is established in Part I.
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6. Inference in queues; preliminaries

In this section we address issues pertaining to the revision of probability
statements regarding the behavior of a queueing system based on observed data. As
stated earlier, the literature on this topic is exclusively sample theoretic, with the
initial work by Clark [3] and Cox [4] outlining a general strategy, and the seminal
paper by Basawa and Prabhu [2] culminating in an impressive demonstration of a use
of this strategy. To discuss the various facets of a subjective Bayesian approach to
inference in queues, we need to introduce certain concepts, notation and terminology
and invoke these in the context of the M/M/1 queue.
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A key step in undertaking inference in queues is a specification of the likelihood
function. Difficulties here often stem from a failure to recognize that all probability
statements are always conditional, the conditioning to be done on all the background
information that is available when the probability statement is made. The background
information must necessarily include the circumstances and conditions under which
new information, say ¥, is to be obtained. This means that consideration must be
given to 9, the design of the experiment. Since the likelihood function is derived
from a probability statement, it is clear that a change in % may lead to a change in the
likelihood, with possible implications for inference. Bearing the above in mind, the
next important issue in inference pertains to a set of instructions or a rule which
either explicitly or implicitly tells us the process by which new information ¥ is
extracted. One of the functions of such a rule is to tell us when to begin and terminate
the information extraction procedure. In the context of queueing theory, these
instructions might typically include, inter alia: 7, the time at which observation on
a queueing process starts; T, the duration of time over which the queueing process is
continuously observed; M(V), the number of arrivals (services) for which the queueing
process is to be continuously observed; #,, f,, . . . ,?;, the time epochs at which
“snap-shots” of the queueing process are taken, etc. Those quantities which are
specified in advance of the experiments become a part of 9, the design of the experi-
ment. Those quantities which become known to us after the experiment is performed
constitute new information ¥, and may include things such as: N(¢), the number in
the system at time ¢ € [£;, £y + T1; 2o + Tpg(yy, the time until the Mth(Nth) arrival
(service completion); A, 4,, . .., Ay, the times between arrivals of the M customers;
Sy, 85, ..., 8y, the service times, etc. Thus, all quantities which describe observation
of a queueing process have membership either in 9 or in ¥, but not both, and the
choice between @ and ¥ can vary from experiment to experiment, on the same
queueing process.

Of particular concern to us is whether certain members of ¥ are “informative”
or “non-nformative” with respect to a parameter of interest. The elements of %, being
specified in advance of experimentation, are necessarily non-informative. The above
are important, because members of ¥ which are non-information will not require an
introduction of their probabilities in the likelihood function. Contrast this to the situ-
ation involving a sample-theoretic analysis which would involve an accounting of non-
informative members of ¥ (e.g. a “stopping rule”) via an elaborate and sometimes
complicated development. Thus, for example, Cox [4] in the last paragraph of page 294
says . . . confidence intervals and significance tests would require for a careful
analysis a specification of the stopping rule”. By way of clarification, suppose that¥
consists of two members w, and w,; then w, is said to be non-informative with
respect to an unknown parameter 0, if w, is independent of 0, given w, — otherwise
it is informative for 9. If w, is non-nformative, then its probability cancels out in a
Bayesian analysis of the problem, making w, irrelevant for inference.
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To illustrate the above notions, suppose that € denotes the narrative specifica-
tion of the experiment; then € and % become a part of ¥, the background information.
Given %, inference for a parameter @ is prescribed by Bayes law as

2OIX, %) < pX10,%) p(813), 6.1)

where p(%10, ¥), viewed as a function of @ given ¥, is the likelihood of 8. Suppose
that & = (w,, w, ) so that we may write

p&10.%) = p(w,Iw,,0,%) p(w,10,%). 6.2)

If w, isnon4nformative about @ given w,, then p(w,iw,, 8, %) is independent
of @ and is thus a constant with respect to 8. Such members can be eliminated from
the likelihood since they cancel out as constants of proportionality in an application
of Bayes Law. Since the elements of & are specified in advance of experimentation,
they are necessarily independent of & (although they could be dependent on our
knowledge of 0), and are thus non-informative about 0. It is important to note that
the informative or non-informative nature of any variable is a statement of (conditional)
independence, and this according to the subjective Bayesian paradigm is a judgement
by an analyst.

7.  Experimental designs for the M/M/1 queue

In this section we consider some experimental designs for the M/M/1 queue,
write out the elements & and ¥ for each design and discuss the informative or non-
informative nature of the elements of X. As before, we let @ = (A, u) and let
%o = m(@l w) denote our current knowledge about 0. We start off by considering the
simplest of the possible sampling schemes suggested by Cox [4].

Case 1: Here the scheme is described as follows:

€,: observe an M/M/1 queueing system continuously for a duration of #($,)
units of time, commencing at time #,, and record the interarrival and the
service times only. Assume that the initial system size N(z, ) is unobserv-
able. The notation #($,) indicates the fact that our choice of the dura-
tion of observation could be influenced by our current knowledge of 0.
If this choice is not influenced by $,, then #($,) =t¢.

1: {to: t(%)}-
M
%, : l(Al, e Ay, Ay = (t(ﬂo) - A].>,M); (S,,---,SN,N)}

i=1

%
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where the A’s (B;’s) are the interarrival (service) times and M(V) are
the number of arrivals (service completions) that are observed in
[2o, to T t(%,)). If thereis a customer who is in-service at z, [, + £(J, )],
then we shall assume that service for this customer has begun [completed]
at 1o [75 + ($o)].-

Let A =(Ay,...,A4y, Ay), $=(Sy,...,Sy);also, let g;(s;), a(s), and m(n)
be realizations of 4;(S;). 4(8) and M(N), respectively. Then

p(%lkﬂ‘%) = p(m) n; a: sit(): t('g)O)" 6)7

the likelihood of @, can be written as the product
p(m, nla, s, t5,1(9,),0) pla,slt,, 1(5,),0) p(t,y, 1(9,)10). (7.1)

Clearly, the first term is degenerate at 1; this means that given 4 and S, M and
N are non-informative for @, and thus we do not have to include their probabilities in
the likelihood function. Contrast this to what would happen in a sample-theoretic
analysis (other than point estimation by the method of maximum likelihood), wherein
an introduction of the probabilities of M and N (the stopping rule) would be necessary
and would complicate our analysis. Since our choice of ¢, and #(4,) is independent
of @ — #(%,) being dependent on $,, our current information about @, rather than@
itself — the third term of (7.1) is a constant independent of @. Thus, all that matters
for inference about @ is the second term of (7.1), p(a, sl ¢,, £(J,), @), and this can be
written as

( n ?\e’)“a ( ﬁ ue'”si> . 7.2)
i=1 i=1

Inference for @ given &, assuming the prior (8| w), follows via an application
of Bayes Law, eq. (6.1). When n(@|w) is. given by (5.1) of Part I, m(@I%,, w), the
posterior density at @ given &, , takes the simple form

m n
. -AB;+ 2 ap) -8+ T S
Cl )\O‘l+m'1e 1=0 Cv2 'ua2+n-1e j=1 , (73)

where C; and C, are constants. The above posterior is a product of two Erlang densi-
ties, so the appropriate material in sect. 5 follows by recursion. The choice of a conju-
gate (Erlang) prior thus leads to a convenient mechanism for updating statements of
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uncertainty regarding @ and predicting the future behavior of the queue. When n(8| w)
is given by (5.3), the recursive mechanism does not hold and a numerical approach
becomes necessary — the details are not given here.

We note that (7.3) is equivalent to that obtained by Armero [1], whose work
was unknown to us when our work was undertaken.

Cuase 2: Here the scheme is described as follows:

€,: observe an M/M/1 queueing system continuously, from time ¢, until
the arrival of the m($, )"h customer (or alternatively, until the comple-
tion of the n(9, Y1 service), and record the interarrival and the service
times only. The argument $, with m reflects the fact that our choice of
m could be based on our current knowledge of 0.

D, : {to’ m(&o)}

% AL A Ay )i (508, Sy, N}

We note here that when we fix m($,), the number of service completions N
in the time interval [z, ¢, + 2;’1:(? 0)Al-) would be random; thus, NV would be a member
of &, . This fact appears to have been overlooked by Lilliefors [8], Harris [7], and
Schruben and Kulkarni [10], who in a sample-theoretic analysis of case 2 have failed
to take into consideration the sampling distribution of &. Since A is non-informative
for @, when 4 and § are given, a Bayesian analysis of this case does not require an
introduction of the probability of N and thus simplifies the calculation. To see the
above, we note that the likelihood p(n, a, sit,, m(3,), @) can be written as the
product

p(nla, s, ty, m(9,), 0) p(a, slty, m(Jy), 0) p(ty, m($,)10),

with the first term being degenerate at 1 and the third term being independent of 6.
Thus, all that matters for inference is the second term, which can be written as

m(%,) n
IR e~ [Tue™i. (74)
i=1 j=1

Equation (7.4) is similar to (7.3), and the material following (7.3) applies
here too. A similar analysis would apply if n($,) were fixed so that M would be
random. It is not possible to fix both n(%,) and m(9,). This case illustrates the fact
that non-informative stopping rules, as exemplified here by N, play no role in Bayesian
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inference for @, whereas they do require an explicit accounting in a sample-theoretic
approach to inference in queues.

Case 3: The scheme here is the following:

€;: observe an M/M/1 queueing system continuously for a duration of
t(%,) units of time, commencing at time ¢,, and record the inter-
arrival and interservice times and also N (¢, ), the number in the system

at £,.
%, : {to, 1(%5)} . and
A {N (o) %1} , where %, is described under case 1.

Let n(ty) be a realization of N(¢f,). Then the likelihood of 0,
plm, n,n(ty),a, sty t(9,), 0) can be factored as

p(m,nin(ty), a,s, t,, t($,). 0) pla, sln(ty), t,, t($). 0)

P(”(to)”o’ t(«g’o)s ﬂ)p(to: t(g’o)m)- (7.5)

Since 4 and § are independent of n(z,), the second term of the above
product can be written as p(a, slt,, £($,), 0). making (7.1) and (7.5) differ only by
the term p(n(ty)lt,, t(%y), ). Thus, as far as the likelihood is concerned, all that
matters regarding inference for 0 is the product

p@, slty, 1(3g), 0) p(n(ty)lty, t(5), 0), (7.6)

for which the first term is given by eq. (7.2). The second term of (7.6) is more elaborate,
it being given by eq. (4.1) [4.1a], with ¢ replaced by ¢,, n replaced by n(t,), and
assuming that N(0) = i, for the (M/M/1/o) [M/M/1/K] queue.

It is clear from the above that an evaluation of the likelihood (7.6), and
T(0iw,D,), the posterior at @, will have to be undertaken numerically, as was done in
sect. 5. This is a straightforward, but cumbersome, task. Thus, at least for the case of
the prior given by (5.1), the inclusion of additional information provided by N(z,) has
complicated our Bayesian analysis; the same would also be true of a sample-theoretic
analysis. Cox [4] in his analysis tries to work around the problem by defining a
“‘conditional likelihood” which de facto reduces to making n(t,) an element of &,
or by assuming that the queueing system has attained a steady state so that
p(n(ty)l+, 8) may be written (A/ )" (1 — (A/u)). Both of the above strategies are
questionable, since making 7 (#,) a member of &, implies “start observation on the
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queueing process when the system size is n(¢,)" — a dubious proposition since the
n(t,) may never be attained in a particular situation, and assuming a steady state when
A and u are unknown and inference about them is sought is conceptually untenable.

In view of the above difficulties posed by the quantity N(¢,), a fundamental
question regarding the amount of information conveyed by N(t,) for inference about
@ arises. This question has also been raised by Cox, who provides an answer using a
sample-theoretic approach based on a large sample theory and an assumption of the
steady state. In sect. 8, we shall formally address this question within the Bayesian
paradigm by using Shannon’s measure of information.

Case 4: In this final case the scheme is described as follows:

é,: observe an M/M/1 queueing system at (% + 1) discrete epochs of time
Lo, Lo+ 84, ..., g+ 8, where§, <8, < ...< 8;andrecord N(j),
the number in the system at the jth epoch; the quantities 6,,
i=1,...,8 and £ could be a function of $, — for convenience, the
argument J, will be suppressed.

By 10,08, <8, < ... <8y

Fo: NG Nt +8,) ..., Nty + 8)} -

Let n(+) be a realization of N(-). Then the likelilhood of 0,
p(n(ty),...,n(t, + 84)I9,, 0) can be factored as

p(n(ty +6)ln(ty + 8¢ ), ..., n(ty), 94,0)
P(n(to + 62-1)] nit, + 552-2), oo n(25), Dy, 0) - .. p(n(2y)19,. 0). (7.7)

Due to the Markov property of N(¢) for the M/M/1 queue, (7.7) can be
written as

P(n(to + 552)]”(2‘0 + 52_1),@4, 0)

pn(ty+6g_Dnty +6y_,).9,.0)...p(n(t,),. 0). (7.8)

Assuming that N(0) = i, the last term in the above expression is given by
eq. (4.1) [4.1a], with ¢ replaced by ¢,, for the (M/M/1/*) [M/M/1/K] queue. The
other terms can similarly be evaluated by successively replacing n by n(z, + &),
n(ty +6p_ 1) ... 0ty +6,)and NO) by n(ty +8,_, ), n(ty +84_,),...,n(,),
mutatis-mutandis.
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Once again, it is clear from the above that the likelihood (7.8) and the
posterior at @, m(@iw, X,), will have to be evaluated numerically, a cumbersome
though straightforward task. Cox [4] encounters a similar difficulty in considering a
sample-theoretic approch to the above problem, but circumvents it by assuming a
steady state and focusing on inference about p = (A/u) via a likelihood which involves
a product of terms of the form p”(')(l — p). This strategy, besides being conceptually
untenable, is necessarily inefficient since it ignores the Markov property of N(¢).

8. The use of Shannon’s measure of information for inference in queues

In this section, we describe a general procedure which can be used to assess the
amount of information provided by a member or a collection of members of ¥ with
regard to inference for . We then illustrate a use of this procedure for addressing the
question of how much additional information is provided by ¥, as compared to ¥, ;
recall that &, = (%,, N(t,)). The idea hereis that if the additional information provided
by N(t,) is small in comparison to that provided by ¥,, then we may base our in-
ference for @ on ¥, alone and ignore N(¢,), whose incorporation calls for much
computational effort.

We should state at the outset that the Shannon measure of information which
will be described here calls for much computation. However, such computations
have to be undertaken only once for each of the various experiments that we wish
to compare. In what follows, we shall undertake the above computations for a limited
situation of interest. As stated before, our aim here is expository; we therefore confine
ourselves to outlining the general principles and point out the various possibilities.

(@) AN OVERVIEW OF A MEASURE OF INFORMATION

Suppose that 8 € @ is a parameter of interest and ¥ is some background in-
formation. Suppose that @ is endowed with a o-field of subsets, and let p(91%) be a
prior probability density at 8 € © with respect to a measure denoted by d@. In what
follows, we shall suppress #. Then, the amount of information with respect to d0 is
defined by Shannon (c.f. Lindley [9])is

g, = [p(e)logp(o) a0 ;

o
for any @ for which p (@) =0, we define p(@) log p(8) =0.
Suppose that an experiment ¢ is performed and that € results in data x € &.
The space % has a o-field % of subsets X. For every @ € X, a probability measure on
R is defined; each probability measure is described by a probability density fuction
p(x10) such that the probability measure of a subset X is given by [, p(x|0)dx. The
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ordered quadruple € =1{¥,%, 0, P}, where P is the set of p(x|8), characterizes an
experiment €. After the experiment is performed and x observed, the posterior
distribution of @ is p (8] x); the amount of information with respect to d@ is

F ) = /P(Oix)log p(0lx)de.

e

The amount of information provided by € with prior knowledge p(@), when x
is observed is

}(%,p(O),X) = }l(x) - }0'

The above quantity depends on x; thus, we must average it with respect to x according
to the predictive density

pe) = [px10)p @) c0.
o
Thus, the average amount of information provided by experiment €, with prior
knowledge p(@)is

$(&. p(0) = E,[H(x) - %] . (8.1)

where E (-) denotes expectation with respect to p(x). When the particular prior
distribution does not have to be stressed, (8.1) may be written $().

Suppose that € comprises of two experiments € W and €@, where
£ = {%(i),%i, 0, 97; }, where P, is the set p(x;10), i =1, 2. We also need to consider
the experiment €@(x,) = {¥®,%,, 8, P,(x,)}, where P, (x, ) is the set of densities
p(x,10, x,).

Consider (%(2)(x1), p(@lx,)), the average information (with respect to
p(x,18, x,)) provided by an observation on *® after €V has been performed and x,
observed. The average of the above, over x,, is the average information provided by
€@ after €™ has been performed. We suppress p(8lx,) and denote the above by
$(€@1€W). We say that two experiments, €® and @ with @, = 0, = O are inde-
pendent if p(x,, x,10) = p(x,10) p(x,10),V 0 € O. The following results given by
Lindley [9] are relevant to us:

(@) $(€ > 0 with equality iff p(x|0)is independent of 0.
(b) F(ED) + (&P 1ED) = $(%).
(c) If X, is sufficient for @ in the sense of Neyman and Fisher, then

F(EW) = §(%).
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(@) I and €@ are independent, then
Q) F@&@1e®) < $€@), and
@) FEV) + J&D) > $8)
with equality iff X, and X, are independent.

The result (a) above says that any experiment is informative on the average,
whereas (c) establishes no loss in information if attention is confined to observation
on a sufficient statistic. If €® = €@ then part (i) of (d) says that an independent
repeat of the same experiment is less informative, on the average, than the original
experiment.

(b) THE INFORMATION PROVIDED BY EXPERIMENT %,

We first consider the experiment ¢, described under case 1 of sect. 7, and let
T, = 2L, S;, the "busy time”, and T, = #(%,) — T,. Note that (M, (%)), (N, Tp)
and (M, N, T, T,) are sufficient for X, u, and @, respectively. Thus, by property (c)
of our measure of information

${e,.m@Iw. 2} = e, 7 @w), 01 N, T, T,)}.

To evaluate the above, we may decompose €, as € and €®, where
eV = {M,B,,0, P} and P = {(N, T,),R,. 0, P,}, where B, and B, are the
o-fields of (0, 1,2, ... )and (N, T}), respectively, &, is the set p(m|0) = p(mIX, y)
= p(mI\) and &, the set p(n, t,10) for each @ € Oand 1, is a realization of T} . Since
%;&1) ‘and %gz) are characterized by the same @ and since p(m, n, ,10) = p(min, t,, 8)-
p(n, t,10) = p(m|8) p(n, t,10), writing in a temporal order of occurrence of the
variables, the experiments %11) and ‘é(f) may be judged independent. However, the
random variables M and (, T, ) are not independent™ and so we cannot use the result
that $(€1) + $(8?) = $(%). Rather, in our case $(&V) + F(&P 12D = §(2).

We shall first consider the evaluation of j(%‘;(ll)', 7 (A\] w)), where 7 (A w)isan
Erlang density with parameters o, and §, . Thus

oo 610[1 }\0(1"‘1 e“ﬁl A B;Xl Aal -1 e—31 A
Fo = f N
[1]
B
= log (F(clx )) + (o —1) W(a,) —loghy) — oy, (8.2)
1

*To verify this, we extend the conversation to include N (z,) and note that N < N(z,) + M.
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where Y (a,) is Euler’s psi function (Gradshteyn and Ryzhik [S5], p. 943); Y (a,)
can be evaluated recursively using the relationship Y (n + 1) = Y (n) + (1/n), with
Y(1)=-0.57721 ..., the Euler constant.

After performing %gl)'and observing M = m, the posterior density at A, given
o, B, t(9,)and m is also a gamma with shape parameter a, + m and scale parameter
B, + t(9,). Thus, F (m) is (8.2) with &, replaced by a, + m, and B, replaced by
By + (%), and

$@&D) = E_[$,0n) - %]
= 2 [Hi(m) - %] fmiw),
m=0
where
f(mlw) =[f(ml>\)1r1(>\lw)d)\
0

1]

a, +m—1 B, _ B, '
( m )(ﬁmwo)) <1 61+t(¢o)>’ 53

a negative binomial density for m =0, 1, 2, . . . ,; note that f(ml)) is a Poisson
mass function with a rate A and nl()\lw) is a gamma density. Thus, the average
amount of information provided by experiment € D with prior knowledge 7 (A w)is
given by

o S fag tme (_ﬁ_><_ﬁ_>m
5’(%1) mz=:o( m > B, + (%) ! B, +t(%)

NG By +t( o)
[log F(?-:—;n—) + log—l—-?l—o— t(,+m-DY(, +m) — (¢, - 1) \l/(a)—mJ.

84)

We next consider the evaluation of $(&P[€) = E,, [$(ED (m), 7 (8] m, w))],
where

J(EP(m), m @lm, w)) = By, o [$,(t,,n) = % (m)].

Since m (1| w) is an Erlang with parameters o, and 8, , 7 (ul?,, n, w) is Erlang
with parameters a, + n and B, + t,. Thus, %, (¢,, n)is (8.2) with o, replaced by
a, + n and B, replaced by g, + #,. Thus,
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$EP(m). 7 @lm, w) = E, (1, ) = F1(m).
where

Etb’n 3 (t,, 1)

(B, + 1)
=E n [log <—;aﬁ“n)—> (o, +n—1)(Y(a, *+ n)

—log(B, 1) — (o, * n)] .

The computation of the above expectation is quite involved — see the develop-
ment below; one possibility is to undertake it via a Monte Carlo simulation for different
values of m, m =0,1,2, ..., . Note that the above expectation is a function of m,
and thus it is best that we denote this dependence by writing Ey, ,, (5, 1) = Fi(m).
Once the expectation is computed, we may obtain

JEP1EW) = 2 [g1(m) — $(m)] fF(miw).

where f(m|w)is given by (8.3). We then obtain
$(&,) = $60) + J(eP1ED).

To appreciate the nature of the difficulties for computing ¥} (1), and also the
fact that Etb,ng)l (ty, n) is a function of m, we note that to compute the desired
expectation we need to evaluate p(t,, nlt($,)). Extending the conversation to
include 0, m, and n(t,), we have

p(t, ni1(3,)

= |S 2 pt,,nl8,m n(t,) (%) p® m, n(,)lw)de
e m n(t,)

= ] > 2 p(t,|n,8,m, n(ty), t($)) pnl8, m, n(ty), (%))
o

m n(t,)

p(mi0, n(ty), w) p(n(ty)10. w) p(61w) d0
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= fz z p(t,1n,0) p(nl8, m n(t,), 1($))
(]

m n(t,)
p(mi0, 1(3,)) p(n(t,)10) p(BIw) do.

The first term in the above is an Erlang density with scale u and shape-n
evaluated at ¢,, whereas the third term is a Poisson mass function with a parameter
A t(9,) evaluated at m. The fourth term is given by eq. (4.1) or [4.1a], whereas the
fifth term is simply m (8! w). The second term p(nl@, m, n(t,), t($,)) is difficult to
evaluate; however, since n =0, 1,. .. ,m + n(t,), the second term does indeed
depend on m. It is for this reason that $7 () has the index .

It is clear from the above that a computation of $(€) is by no means a trivial
exercise. All the same, it needs to be undertaken only once and for all. The same
would also be true if we attempt to obtain $(§,) and J(%;), except that in the case
of $(%é,) we will have an additional variable N(¢,) to worry about. The difficulty
always arises when we try to evaluate }(%,(2)]%,@)), i =1,2,3. As suggested before,
one way out would be to perform a Monte Carlo simulation. This we have not done
for now. However, since the motivation for undertaking the exercise is to evaluate
the merits of observing N(z,) and accounting for it in terms of the additional informa-
tion that is provided, we may focus attention on the experiment €, described in the
next section.

(c) EVALUATING THE ADDITIONAL INFORMATION PROVIDED BY N(Z,)

We shall now consider the following experiment:

€. observe an M/M/1 queueing system continuously, from time ¢, until the
arrival of the m(¢$,) = mth customer, and record N(¢,) and the inter-
arrival times. Assume that N(0) = i.

@5: {tO:m’i}
%s : {N(ty), A}, 4y, .. Ay}

Let T, = Zi2, 4; and let 7, be a realization of T,. Then T, and N(z,) are
jointly sufficient for @. Thus, by property (c) of our measure of information

985, m(BIW),%s) = $(&s,m(OIW), (N(to), 1,)). (8.5)

To evaluate (6.14), we may decompose € into %gl) and %§2), where
€ = {N(t,). B}, 0, P} and €? = {T,, B, 0, P }. B} and B} are the o-fields of
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(0,1,2,....) and T,, respectively. P} is the set p(n(,)l8, i), and P, the set
p(t,18, m) = p(t, I\, m) for each 0 € . It is easy to verify that &0 and ¢ are
independent, but that N(t,) and T, are not; thus, $(¢,) = $(@P )+ F@L1E€P). In
writing the last equality we have, for convenience, reversed thé temporal order in
which the experiments are performed.

Let us first consider the evaluation of }(%?), 7 (A w)), where 7 (A |w) is an
Erlang with parameters «, and g, . Note that € piovides us with information about
A alone and not about both X and , it is for this reason that %; is the set p(¢,| A, m).
It is now easy to verify that

F(al) B] + ta
@ = - = -7
9(%52 y 1TI()\| w), ta) }1 (ta) ﬁo log <F(O(1 n m)> + log ( [31 )

+ (o, tm-1) Yo, +m) — (o, — 1) Y(a,) —m.

To obtain $(8P), we need to evaluate

E, [}l(ta) — Sl = fp(fa) [h) ~ Flde,
0

where

- nom)r A wydn = ot M i 8.6
p(t,) = !pa;, MO = st |G ) 69

since p(t,|\, m) is again an Erlang density with parameters X\ and m. Some further
straightforward calculations lead us to the result that

I'(ey;)

@)y = —_—1
F(&57) = log D(a, +m)

t+ (o +m) Yo, +m) —a, ¥(a;) —m. (8.7)

It can be verified that }(cgg”) is concave and increasing in m. This behavior
supports the notion of decreasing marginal utility of observing an additional inter-
arrival time.

We next consider the evaluation of $(E|€@)). We first note that €
provides us with information about both A and u, and therefore

FENE) = E, 190 1,). 7@, W] ,

where
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F& (), m@l7,,w) = E, ., [ (n(t)) = %))
= E, ) () = $@,).

To evaluate $,(¢,), we first observe that upon observing ¢, the posterior
density at @ given a,, a,,,.B,, m and ¢, can be written (assuming (5.1) as the prior)
as the product of two Erlang densities, one with parameters « =a; + mand §=§, + ¢,
and the other with parameters «, and §, . Thus '

}l(ta) = /n(elta,w)logvr(ﬁ’l ta,,w)dﬁ, or
(]

. (ﬁl + ta)al+m .
$.@,) = [108<“’-'"—_> (o tm-1D)Wla +m)—log (B, + 1))~y —m]

(e, + m)

+ {10g l"(jx ) + (o, 1) (Y(a,) —logB,) —az} .

Note that the expression in the braces pertains to the amount of information
with respect to du that we have prior to accounting for %9), whereas the expression
in the square brackets pertains to the amount of information with respect to dA that
we have prior to accounting for &M but after accounting for £?. Recall that €@ does
not give us any new information about u. For future reference, let F1(¢,) denote
% (t,), given above, without the terms in the braces. That is

. I 1, a, +m
) = og (B 0] om0 s me G )0

We next consider the evaluation of

I (n@ty) = ln(ﬂln(to), t, i, m w)logn(@ln(t,), t,, i, m, w)de, (838)
(3]
where m(®)n(t,), ,, i, m, w) is the posterior density at 8 given i, m, and w, and
upon observing n(t,) and t,. By Bayes rule, we note that
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7 (8l n(ty), t, i, m, w) < p(n(t,), t18, i, m, w) p(0li, n, w)
= p(t,In(ty),0, i, m, w) p(n(£,)18, i, m, w) p(8li, m, w)
= p(z,18, m) p(n(2,)10, i, w) p(8l w)

= DI ) (0, () O, 1) 7 (01 W) 89)

To evaluate the above, we note that the first term is an Erlang density at ¢,
with scale A and shape m, whereas the second term is given by (4.1) for the M/M/1/e0
queue and by [4.1a] for the M/M/1/K queue; the last term is of course given by (5.1).
In view of the above, it appears that the evaluation of $, (n(¢,)) is best undertaken
numerically.

Should we desire to focus attention on A alone, then some simplification in
the above-mentioned numerical exercise will result, since we now need to obtain

oo

$i(n(ty)) = / ﬂ()\ln(toj, t, i, m w)logm (Nn(ty), t,, i, m)dx,
0

where

o

m(Ale) = [ﬂ(ﬁl-)du.

0

To obtain $(€L(z,), (8l t,, w)), we need to compute E,qy $(n(t,))
where the expectation is to be taken with respect to the distribution given by p; n(to)(tO)’
where

Prn©0) = [ B @107 @11, m, w20 8.10)
(3]

By Bayes rule, m(81¢,, m, w) = p(t,im, 0, w) m(8lw), where p(t,1m, 0, w)
is the Erlang density at ¢, with scale X and shape m. By an analogous argument, we
can also compute E,, ) $7(n(%,)).

Our next step is the computation of (&1 1¢@) = B [Epe,y 31(n(2)) — £ @)1,
where the expectation with respect to ¢, is to be taken with respect to the distribution
given by (8.6). Alternatively,should we wish to focus on the parameter A only, we would
compute $*(&P18P) = E[Enis Fi(n(ty)) — Fi(t,)] . Once we obtain the above,
we may compute () = HED) + JEDIED) or $*(8,) = $(&P) + I (6D 16D
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To assess the amount of additional information provided by N(z,) as com-
pared to T, alone, we need to compare $(&,) versus $(€P) or $* (&) versus F(ED)
should we want to simplify matters by focusing on A alone. In fig. 8.1, we show plots

1.0+
0.8+
g
8
S 0.6
ol
]
f'E A~ gamma (4,1)
k-] M~ gamma (4,.8)
3‘5’- 0.4+
“é Initial State i = 0
)
0.2 to=9
k = 3.
0.0+ -
1 I L
0 5 10 15

Sample size, m

Fig. 8.1. A plot of the expected information versus the specified
sample size m yielded by two experiments onan M/M/1/K queue.

of $*(¢,) and $(&P) versus m for the case i = 0, t, =5, K =3,a; =4,8, =1,
a, =4,and B, =0.8. Wenote that as m increases, $* (85 ) and $(€P) tend to converge,
implying that the additional information provided by N(t,) decreasesin m, the number
of observed interarrival times. Thus, for example, when m > 10, the relative loss in
information with respect to dX, ($*(&5) = H(EPN(F* (&) = F* &L 18D)/ (&5,
when N(t,) is ignored is less than 3%. However, since N(¢,) provides information
about both A and u, the relative loss in information with respect to d@ when N(¢,)
is ignored could be significant.

9. Extensions and conclusions

We have dealt with very simple queueing systems, the M/M/1/ec and M/M/1/K,
chosen both for ease of exposition and for the fact that closed form results are avail-
able for the transient and the steady-state measures of performance. Clearly, the
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subjective Bayesian approach is not limited to these simple models; any of the avail-
able models of classical queueing theory which are conditioned on @ can be completed
by averaging out the uncertainty with respect to the unknown parameters. A fertile
area for future research is to use the approach of this paper for situations involving
phase-type distributions and other more general situations such as multiserver queues,
bulk service and arrival processes, queues with priority networks of queues, etc. (See
Gross and Harris [6] for a compendium of the results available for such situations.)
For most choices of prior distributions on @, results can be obtained in a straight-
forward, albeit numerical, manner. For some of the classical Markovian queueing
models (e.g. M/M/0), the choice of Erlang priors for the service and arrival parameters
may yield results in analytical form for various measures of performance. It is not
our intent to pursue such issues and details here.

In applications of classical queueing theory, a commonly used technique is to
approximate a specified non-exponential input or service time distribution with a
phase-type distribution such as Erlang or hyperexponential, and thus work with a
Markovian model. From a subjective Bayesian standpoint, this is not an approximation
at all — there is no “real” distribution to approximate. Provided that the shape and
scale of the phase-type distribution (conditioned on @) adequately reflects one’s prior
belief about the interarrival and service times, its use in the queueing model is a
completely legitimate procedure. Of course, when the uncertainty regarding @ is
averaged out, the resulting distribution will, in general, no longer be phase type.

A prospect for further research would be the development of an interactive
computer graphic technique to assist an analyst in describing his or her uncertainty
about general interarrival and service times, representing these distributions as mixtures
of exponentials and obtaining the predictive measures of performance of the queueing
system.

As stated at the outset, the objective of this paper was to illustrate the sub-
jective probability paradigm and its ramifications as a new way of looking at queueing
systems. The motivation was on philosophical grounds, but the effects of the sub-
jective viewpoint have pragmatic importance as well. We have developed a coherent
approach to incorporating prior information (including expert opinion) about 9 into
the model used to predict the behavior of the queueing system. We have used this
coherent framework to incorporate observed data without dependence on assumptions
of steady state or large samples. We have pointed out a use of the Shannon informa-
tion measure as a means of comparing alternative experiments for observing queues.
Finally, we have alluded to broad and (in our opinion) fertile areas for further re-
search that can lead to substantial enrichment of queueing theory. We hope that
exposure to the subjective probability paradigm might prompt queueing theorists
to re-examine some long-held views and the pragmatic value of the results will be an
adequate inducement to further consideration by practitioners of queueing theory.
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