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Abstract 

This is the first of an expository two-part paper which outlines a point of view 
different from that currently used in queueing theory. In both parts, the focus is 
on concepts. Here we adopt a personal probability point of view to all sources of 
uncertainty in the theory of queues and explore the consequences of our approach 
by comparing our results to those that are currently available. For ease of exposi- 
tion, we confine attention to the M/M/1/oo and the M/M/1/K queues. In Part I we 
outline the general strategy and focus on model development. In Part II we address 
the problem of inference in queues within the subjective Bayesian paradigm and 
introduce a use of Shannon's measure of information for assessing the amount of 
information conveyed by the various types of data from queues. 
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1. Introduction 

The theory of queues deals with the problem of making statements of uncer- 
tainty about future events in waiting lines. The models used in the theory consist of 
deterministic and stochastic components. It appears that, from the inception of the 
theory and to date, the stochastic components have been viewed as quantifying the 
variability of observed interarrival and service times rather than as quantifying the 
uncertain nature of the times yet to be observed. That is, the distributions of the 
times between arrivals and the times to complete services have been viewed as being 
objective with a fixed but unknown value for the underlying parameters. This means 
that the distributions in question can be realized via an indefinite repetition of the 
interarrival and service processes. Such a view has influenced the direction in which the 
subject has evolved, with respect to both the development of models and the attitude 
towards inference. The latter has subscribed to the sample-theoretic paradigm and 
its accompanying paraphernalia of point estimates, confidence intervals, tests by 
hypothesis, etc., for the unknown vector of parameters, say 0. Other issues of general 
interest, such as the informative or non-informative nature of various types of data, 
the role of stopping rules, the amount of information provided by the data, etc., 
appear not to have been carefully addressed. 

Philosophical objections to, and practical difficulties with, adopting an objec- 
tive view of probability have been well voiced in the literature. A seminal source of 
this is the two-volume work on probability theory by de Finetti [9]. These objections 
and criticisms apply equally to the existing results in queueing theory. 

In this paper, we adopt a subjective point of view of the theory of queues 
according to which we treat all the stochastic elements in the theory of queues as 
expressions of the analyst's betting behavior. That is, any probability statement 
corresponds to the odds that one is willing to place on the outcome of an unknown 
quantity (event or parameter). That this point of view can lead to results that are 
quite different from those currently available, will be apparent from a reading of the 
subsequent text. 

Familiarity with the terminology and results of queueing theory will be as- 
sumed; for convenience, we shall refer to these results as classical queueing theory. 
Since the main tenets of the subjective view towards the quantification of uncertainty 
may not be familiar to the intended audience of this paper, a quick review is given 
in the section below, along with some notation and a criticism of some current 
approaches used in queueing theory. In sect. 3 we shall give the specific objectives and 
an overview of this paper. 
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2. The subjective probab i l i ty  pa rad igm 

There are three main tenets of the subjective approach towards the treatment 
of uncertainty. The first of these is that "probability is the only satisfactory way of 
quantifying uncertainty" (Lindley [14] ). This means that notions such as point 
estimates, confidence limits, tests of hypotheses, etc., which are used in connection 
with inference in classical queueing theory are, according to this paradigm, untenable. 
The second tenet states that all probability statements must always be conditional, 
conditioned on ~f, the background information available to the assessor of uncertainty, 
at the time the probability statement is made. The role of data, or new information, is 
to expand the knowledge base ~f, and thus data should cause us to revise (update) our 
previous statement of uncertainty. The third tenet of subjective probability states that 
the revision of uncertainty statements should be done using the calculus of probability 
alone, of  which Bayes' Rule is the appropriate vehicle. It is because of this tenet that 
we have used the term "subjective Bayesian" in the title of this paper. 

Typically, the dimensions of ~ are very large because ~f could conceivably 
include everything that we know. This could make the initial specification and the 
subsequent updating of our probability statements a difficult proposition. To simplify 
this task, abstract quantities called parameters are introduced in our specification of 
the probabilities. This introduction of parameters is facilitated by the calculus of 
probability, via what has sometimes been referred to as "the law of the extension of 
conversation" (cf. Lindley [15] ), which is mathematically equivalent to the law of 
total probability. The parameters have dimensions much smaller than ~ ,  and a simpli- 
fication of the probability statement is achieved via an assumption of independence, 
which defacto justifies the replacing of  ~f by the parameter(s) 0. Since a specification 
of probability models is subjective, the models may vary from individual to individual, 
and thus 0 need not have a unique fixed value (as is assumed in classical queueing 
theory). Furthermore, since 0 is an unknown quantity, its uncertainty must be de- 
scribed via probability. Contrast this to the strategy taken in classical queueing 
theory in which uncertainty about 0 is expressed via point estimates and confidence 
limits, typically obtained by the method of maximum likelihood and often involving 
an appeal to a large sample theory, and the restrictive assumption that the queueing 
system is in a "steady state"; an exception is Basawa and Prahbu [6]. Note that for 
some queueing models (e.g. the M/M/1/~) inference about 0 under steady state is a 
circular proposition, because such an assertion can only be made when we have precise 
knowledge about 0. From a subjective Bayesian point of view, the assumption of a 
steady state violates Cromwell's Rule (Lindley [15] ) which states that no uncertain 
quantity shall be assigned, a priori, a probability of 0 or 1. Furthermore, no amount 
of data can lead us to claim a steady state with probability 0 or 1. Finally, inference 
under steady state, even under the sample theoretic paradigm implies an approxi- 
mation which becomes exact only when the data used for inference is obtained from a 
queueing system which has been in operation for an infinite length of time. 
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3. Object ives  and  overv iew 

Notwithstanding the philosophical differences in basic attitudes between 
classical queueing theory and the point of view proposed here, a subjectivist may view 
the available results of  queueing theory as being incomplete, they being conditional on 
0, with the next step of averaging out-with respect to the uncertainty of 0 being 
omitted. Thus a first objective of this paper is to complete the specification of uncer- 
tainty about the various measures of performance of queueing systems by averaging 
out the uncertainty of 0 via its distribution. This is done in sect. 5, where for simplicity 
only the M/M/1/~ and the M/M/1/K models of classical queueing theory are con- 
sidered. It may be useful to remark that a lack of appreciation of the basic differences 
in philosophical attitudes between objective and subjective probabilities may cause 
one to view the process of averaging out the uncertainty of 0 as one which is just 
probabilistic mixing which merely leads to an enrichment of the existing models of 
queueing theory. Such a view is limited, and perhaps even incorrect, even though the 
net results would be the same. 

We have stated before, that observations of the queueing process lead us to 
revise our previous assessments of uncertainty via Bayes' Rule. An intermediate, 
though fundamental, step in this process is also the revision of our statement of 
uncertainty about the abstract quantity 0 - this process will be referred to as Bayesian 
inference for O. The second objective of this paper is to develop an approach to 
inference about 0 which does not depend on the assumption of steady state, which 
does not appeal to a large sample theory, and whose ultimate goal is to make revised 
statements of uncertainty about the measures of performance of queues in a logically 
consistent* (coherent) manner. In undertaking this objective, we will also be able to 
revise our statements of uncertainty about the attainment of a steady state in the light 
of  new information (data). All of the above will be undertaken in Part II, sect. 6, 
where again, only the M/M/1/~ and the M/M/1/K models will be considered. In sect. 6 
we will also introduce and discuss the informative or non-informative nature of the 
various types of data, and a use of the "Shannon Information Measure" for assessing 
the role and importance of certain data for inference about 0. This latter feature is 
motivated by a desire to determine the relative loss in information caused by ignoring 
certain data which are computationally burdensome to deal with in our inference 
regarding 0. 

Finally, we would like to state at the outset, that the examples presented 
in this paper are admittedly narrow - they involve computer intensive numerical 
solutions, are restricted to a small class of models of queueing theory, and focus on 
limited issues within this class. However, since the goal of this paper is to advocate and 

*It is by now well known, that interval estimates based on the notion of confidence limits and 
other such sample theoretic arguments may lead to logical inconsistencies - see for example 
Cornfield [7] or Robinson [24]. 
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explore the ramifications of a point of view different from that of  classical queueing 
theory, the contributions of this paper should be judged in the light of  its expository 
merit. It is possible (and quite likely) that the numerical work can be undertaken more 
efficiently and that it can be carried out to a higher level of  completeness than we have 
attempted. The next steps in this research would be to undertake the above and also to 
extend the methodology we have outlined to other queueing models. 

4. T e r m i n o l o g y ,  n o t a t i o n  a n d  s t a t e m e n t  o f  s o m e  k n o w n  resul ts  

To establish terminology and notation, and also to facilitate the development 
of the subsequent material, we present here some well known results from classical 
queueing theory pertaining to the M/M/1/~ and the M/M/1/K queues. 

The notation M/M/1/~ [M/M/1/K] denotes a single channel queueing system 
with interarrival and service times that are conditionally (given the parameters X 
and U, respectively) independent and exponentially distributed, and with unlimited 
[truncated at system size K] waiting room capacity. The parameters X and U are often 
referred to as the arrival and the service rates, respectively, and X -I  and U -1 are the 
means of the interarrival and service time distributions. Arguments which motivate the 
choice of an exponential distribution based on subjective considerations are given in 
Singpurwalla [26]. Let N(t)  denote the number of customers in the queueing system 
(including the one being served) at time t; N(t)  is referred to as the system size. 
Suppose that the limit probability 

(pnlX, u) = lim P { N ( t )  = niX, U} 
s ---* oo 

exists. Note that (pnlX, #) is merely conceptual since it is defined as a limit. The 
queueing system is said to be in a steady state at any finite time t, if 

P{N(t )  = niX, U} = (pnlX, u); 

when this happens N(t)  is said to be in statistical equilibrium. The aforementioned 
limit always exists when K < ~,  but for the M/M/1/~ model, it exists 

i f fp = (X/U)  < 1. 

The parameter p is referred to as the traffic intensity, and the condition p < 1 is 
known as the ergodic condition for the M/M/l/co queue. The following well known 
results (see for example Gross and Harris [11], p. 137)will be needed. 
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FOR THE M/M/l/oo MODEL: 

(p in( t ) lX,  la) = e {N( t )  = nlN(0)  = i, X , , u }  

p-(i-n)/2 + p-( i -n+DI2 I = e-O+P)l~t I - i  n + i + l  

o o  

+ (1 - p)p" ~ p-~/' ,r ], 
s  

where 

o o  

,q,t v~) "+ 2j 
In = ] ! (n  +] ) !  

] = o  

is a modified Bessel function of  the first kind and p = kiP. 

= I p n ( 1 - p ) ,  for all n, if  p < 1 

(PnlP) 
I 0, for all n < 0% if p > 1. 

That 

tY~n (pm(t ) lk ,  la) = (pnlp) [ 0 ]  

when p < [=] 1, has been verified by Gross and Harris [11], p. 137. 

(4.1) 

(4.2) 

FOR THE M/M/1/K MODEL (Morse [22], p. 66): 

(Pin(t)[k,l.t) = (pnlp) + 2p(n-i)/2 ?1 ~ [ siTr 
K + 1 = s in K + 1 

l 1 1 

for n = 0, 1, . . . ,  K, where 7s = 1 + p - 2X/p cos (srr/(K + 1)) and 

sin s(i + 11) q 
K +  

(4.1a) 
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( pn lp )  = 

pn(1-P) for all n <_ K, if P * 1 
l _ p ~ + a '  

1 
for all n < K, if 19 = 1. 

K + I '  

(4.2a) 

The quantities (Pin(t)lX, la) and (PnlP) are often referred to as the transient 
distribution and the Steadystate distribution of system size, respectively. 

5. Specification of uncertainty in the parameters and its consequences 

With the notation of  sect. 4, suppose that 0 = (X,/a) and that our uncertainty 
about O is described by 7r(0 Iw) a prior distribution for 0 given a vector of  "hyperpara- 
meters", say w. We shall consider two possibilities, the first involving independence of 
X and/a, given w, and the second involving their dependence. We are also able to model 
the case X < /~ (for the M/M/1/-queue, where ergodicity is an issue)with probability 1, 
but refrain from doing so because there is no physical nor intuitive basis for certainty 
regarding the relationship between these two abstract quantities in question. According- 
ly, let w = (a 1, a 2,131,/32, 3') where ai,/3/> 0, (i = 1,2), and the value o f ' / depends  
on the nature of  dependence between ;k and/a. 

(a) THE INDEPENDENCE CASE 

Suppose that 3' = 0 and ai (i = 1, 2), is a positive integer. Then a reasonable 
strategy for describing the independence between ?, and/a  is via a product of two 
Erlang distributions with means ai//3i and variances ai//3~ (i = 1, 2), respectively. The 
Erlang density is flexible enough to capture many subjective feelings about X and/a 
that the analyst has, and ai and/3i can be chosen to correspond to our best guesses 
about X and/a, and our measure of  uncertainty associated with these guesses. Thus the 
joint density at X and/a may be written 

zr(0lw) = exp (-X/31 
2 /3?/ 

_ #/32 ) X~,-1  /aa2-1 I-I F(a i )"  (5.1) 
i = 1  

Since the ratio of  two independent Erlang distributions can be transformed to 
have an F distribution, it follows that the density at p induced by (5.1) is of  the form 
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§ ( ,  > o). (5.:)  ( - .(piw) = r( 1) I + 

Thus, wi th  the assignment of (5.1) as a prior distribution for 0, the induced 
distribution for p would admit values of p > 1, even if (al//31) < (a2//32). This 
implies, a priori, a non-zero probability that the ergodic condition will not be met for 
the M/M/1/oo queue. The a priori probability that the ergodic condition will be met is 
given by the F-distribution function based on the density (5.2), evaluated at 1. As 
pointed out by Armero [4], the probability that p < 1 is itself a very useful quantity 
that has no parallel in classical queueing theory. 

(b) THE DEPENDENCE CASE 

It may happen that in the subjective opinion of  the analyst, the arrival and the 
service processes bear a qualitative relationship to each other. Such an opinion might 
be prompted by the physics of the queueing process, wherein an increase in the arrival 
pattern, as measured by some criteria, may tend to cause an increase (or a decrease) in 
the service process. A reasonable strategy for modeling dependencies is via a Bivariate 
Normal Distribution (BVN) with a positive (negative) value for the coefficient of 
correlation; independence can be modeled as a special case by setting the correlation 
coefficient equal to 0. An approach for the subjective assessment of the correlation 
coefficients in the multivariate normal case has been given by Gokhale and Press [10]. 
Since X and p are positive quantities, a suitable approach for describing the stochastic 
relationship between them is via a Bivariate Lognormal Distribution (BVL). That is, 
log ~t and log # are BVN with a parameter vector w whose elements a i and/3i (i = 1, 2) 
represent the location and scale parameters, respectively, and 3' the correlation coef- 
ficient. Since the functional form of the BVL is well known (see for example Aitchison 
and Brown [3], p, 11), we may denote the prior density at 0 by 

rr(01w) = B V L ( a  1, a 2,/31,/32, 9')- (5.3) 

In addition to the flexibility in modeling any subjective opinions about X and/a 
and their dependence, the BVL model for O has a technical advantage, in the sense that 
the induced distribution for p is also a lognormal with location a = oq - a2 and scale 
/3 = /3~ +/3~ - 3'~i/32 (see, for example, Anderson [2], p. 19). That is, the prior 
density at p can be written 

1 e x p [  l ( l ~  ( P - a ) )  2} (p > 0). (5.4) 
n'(p i W) = ~ /3P - ~" /3 
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The discussion following eq. (5.2) applies here also, with appropriate modifications. 
An approach for the subjective elicitation of the parameters a i and 13i (i = 1, 2) 

based on expert opinions and a modulation of such opinions based on the perceived 
expertise of the experts is given by Lindley and Singpurwalla [16] and also by 
Singpurwalla and Song [17]. Such an approach can be easily implemented for the 
scenario considered here. 

(c) EFFECTS OF UNCERTAINTY IN PARAMETERS 
ON THE ASSUMED DISTRIBUTIONS 

Recall that for the M/M/1 queue, given h > 0 and p > 0, the interarrival and 
service times are independent  and identically exponentially distributed with densities 
denoted by a(t[ h) = h e -x t  and s ( t  [p) = pe -" t ,  respectively. The assignment of (5.1) 
for rr(OJw) implies that, given w, the marginal distributions of h and ~ are Erlang, so 
that for (al,/31) E w, the density at t for any single interarrival time is 

i -1 e- ,x a(t[~l , /31) = a ( t lh )  F(~I ) dh 
o 

= Ol I /31'I(t+131)~'+1, 

a Pareto (a l ,  fll ) density, with mean/31/(al  - 1). Similarly, s ( t la2 ,  132) the density at 
t for any single service time, given (a2,132), is also a Pareto (a2,132). 

It is important to note that the above observation does not  imply that what we 
have here is a set-up for a "Pareto/Pareto/l"  queueing process. Such an assertion 
would be true if, given w, for any n > 0, the sequences { T/} and { S i } (i = 1 , . . . ,  n) of 
interarrival and service times, respectively, are independent and identically distributed 
with Pareto marginals; in our case, as we shall soon see, the {Ti}and {S i } constitute an 
exchangeable sequence (Kingman [12] ). If desired, a Pareto/Pareto/1 queueing process 
can be constructed via what is known as an Empirical Bayes type construction (cf. 
Morris [21]). That is, we first generate { hi} (i = 1 . . . . .  n) a sequence of independent 
variables from an Erlang distribution with parameters (a l ,  131), and then for each k i we 
generate a variable A i from an exponential distribution with parameter k i. Under the 
above construction, the independence of  the Xi's , given (a l ,  131), ensures that the 
{Ai[ X i } (i = 1 , . . .  , n) is independent and non-identically exponentially distributed, 
whereas unconditionally the sequence { A i } (i = 1, . . . ,  n) is independent and ident- 
ically distributed with a Pareto (a l ,  Pl)distr ibution.  A similar construction would 
enable us to generate the independent and identically Pareto (a2, t32)distributed 
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sequence { S i } (i = 1 , . . .  , n). In the above construction, if a generation of  the se- 
quences { Xi } and {/a i } (i = 1 , . . . ,  n) can be physically motivated (as has been done 
by Harris (1974) for the tzi's), then a proper Bayesian attitude to this situation would 
be to assign a prior distribution to w, and then operate within Deely and Lindley's [8] 
Bayes Empirical Bayes paradigm. We shall not further pursue this line of  argument 
here. 

Returning to our particular case, we note that the sequence {Ail ~} (i = 1 , . . . ,  n) 
is independent and identically distributed with ~ having an Erlang distribution with 
parameters (~1,/31)" This makes the sequence {Az.} (i = 1 , . . . ,  n) exchangeable, with a 
joint density at t 1, . . . ,  t n given by 

i . I e-a,x 
a ( q , ' " , t n l a l , / 3 1 )  = I--I Xe-Xti p(a l  ) 

0 i = 1  

d~ 

/3 1 r(a  +n) 
n r(%) w + 
1 

a multivariate Lomax distribution (Nayak [23] ). If we let A* = A i +/31, then the joint 
distribution of  A~, . . ,  An* would be the multivariate Pareto (Type I) of Mardia [18]. 
A similar argument leads us to an exchangeable distribution for the service times. Since 
exchangeable sequences are not necessarily independent - they constituting a weak 
form of dependence (Shaked [25] ), we conclude that our set-up involving uncertainty 
in the parameters has led us to a consideration of queues with exchangeable inter- 
arrival and service times. The same conclusion would also be true under the assignment 
of (5.3) for ~r(0 Iw) except that the marginal densities would no longer be Paretos. 

(d) EFFECTS OF UNCERTAINTY IN PARAMETERS 
ON MEASURES OF PERFORMANCE 

Our uncertainty about 0, as expressed via ~r(0lw), influences our previous 
statements of uncertainty about system size at time t (recall that these were condi- 
tional on 0 being known). If we average out the effect of O, we have 

(Pin(t)lw) = 1 (Pin(t)lO) zr(0lw) dO, 

0 

(5.5) 
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where (pin(t)lO) is given by (4.1) or (4.Ia), depending on the queueing model con- 
sidered. In either case, the evaluation of(5.5)wil l  have to be undertaken numerically. 
A computer code which undertakes the numerical evaluation of  (5.5) when (pin(t)lO) 
is given by (4.1a) is given in McGrath [20]. A similar exercise when (Pin(t)I0) is given 
by (4.1) proves to be involved (from a computational point of  view) and is therefore 
not given here. 

If we let t --> 0% extend the conversation to include ~ and/a, we may consider, 

t~o ,  (lain (t)lw) = t~ .o  / [(Pin (t) l (X' /J' X </a ,  w)) rr(X, #, X < #lw) 
0 

Q o  

=/ 
0 

+ (pin(t) I(X, #, ;~ >/J ,  w)) ~r(~,,/a, X > #[w)] dO (5.6) 

pn(1-p )  
1 - pK+ 1 Ir(p[w) dp, for the M/M/1/K case (0 < n < K). (5.6a) 

For the M/M/1/oo case, the last term in (5.6) drops off giving us the result 

( P i n ( t l w ) )  = 

1 

Jpn(l -p)  r* olw) dp 
o 

(0 < n < oo), (5.6b) 

where 7r*(,o Iw) is a truncated prior density on [0, 1). 

(e)  COMPARISON OF RESULTS WITH THOSE OF CLASSICAL QUEUEING THEORY 

The M/M/1/K case. In fig. 5.1, we plot (pin(t)l~,/.t), the transient distribution of 
system size for the M/M/1/8 queue, using eq. (4.1a), with i = 0, t = 2, X = 9 and 
/J = 10, for n = 0, 1 . . . .  ,8.  An inspection of  fig. 5.1 suggests that (pin(t)[X, #) decays 
geometrically in n, like (PnIP), the steady state distribution of system size for the 
M/M/1/K queue - see eq. (4.2a), which for p > (< )  1 places most of  its mass at 
n = O(K). Thus, as is expected, the transient distribution of  system size has a tendency 
to approach the steady state distribution. 

By way of  a comparison, in fig. 5.2, we show a plot of(Pin(t)lw), as given by 
eq. (5.5) with ~r(01w) having the parameters al = 9,/31 = 1, a 2 = 5 and/52 = .5, for 
n = 0, 1 , . . . ,  8. This assignment makes E(X) = 9 and E(#) = 10, a situation compatible 
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with that of  fig. 5.1. The computation of (pin(t)IX, ~) has to be undertaken numerical- 
ly. An inspection of fig. 5.2 reveals its U-shapeness with an accumulation of  probability 
mass towards both ends at n = 0 and n = 8. This can be explained in the light of  the 
behavior of (PnlP) for the M/M/1/K queue, since the specified uncertainty about 0 
admits the possibility that p can be less than or greater than 1. The difference in 
transient distributions manifests itself in terms of differences in E[N(t)],  the expected 
system size, which, in the case of  fig. 5.1(5.2), is 3.04(3.39). 

The M/MIll case. For the M/M/1 ~ queue, the computation of  the transient dis- 
tributions of system size via eq. (4.1) and eq. (5.5) with (Pin(t)lO) replaced by (4.1), 
poses numerical difficulties. The steady state expressions are more tractable and 
so in this section we compare the corresponding steady state distributions under the 
assumption of an ergodic condition. That is, in the case of  uncertain parameters we 
assign a probability zero to the event X > /1 .  Thus we seek to compare the quantities 

(pnlp, p < 1) = pn(1 - p), and (5.7) 

1 

(p*lw) = l(PnlP, p < 1)  r*(plw) dp, (5.8) 
0 

where n*(p Iw) is rr(p [w) truncated at 1 - see eqs. (5.2) and (5.4). 
A qualitative comparison of eqs. (5.7) and (5.8) is possible via the following 

arguments which are common in reliability theory. First, we note that (5.7) is a 
geometric distribution, a member of the class of distributions having a decreasing 
failure rate (DFR) - see Barlow and Proschan [5], p. 55. Next, we prove that (5.8), 
being a continuous mixture of discrete DFR distributions, is also DFR. Finally, in 
theorem 1 below, we state that the bound on the survival function of our discrete 
DFR distribution is given by the survival function of a geometric distribution. 

Let 

F (n lw)  = Z Pn*(TM) 
n = m  

be the survival function ofp*(w), and let 

G(rnlp*) = Z (p,)n (1 - p * )  
n - - m  
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0.3 

0.2 

0.1-  

0.0 

(Pin(t)l ~.,/~ ) 

n = O  
I 

n = l  n = 2  n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  

Fig. 5.1. A plot of  the transient distribution of system size for the M/M/1/K queue with specified 
parameters 

0.3- 

0 . 2  m 

0.1- 

0 ~ 0  " 

(Pin(t)l w) 

n = O  
I i i  

n = l  n = 2  n = 3  n = 4  n = 5  n = 6  n = 7  n = 8  

Fig. 5.2. A plot of the transient distribution of system size for the M/M/1/K queue with uncertain 
parameters 
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be the survival function of the geometric distribution (Pn IP*, P* < 1), where p* = E(p) 
with respect to the distribution rr*(p Iw). Then 

THEOREM 1 

a) ff(nlw) = G(nlp*)  (n = 0, 1), 

b) F(n Iw) > G(n IP*) (n = 2, 3, . . . ) .  

To prove this theorem, we first need to state and prove the lemmas given below. 
Let ~'D be the class of discrete distributions that are DFR, and let ~'DE be the 

set of  all the extreme points of  ~'D" Then Langberg, Leon, Lynch and Proschan [13] 
show that ~D is a closed convex set. 

DEFINITION 1 

Let F(n 10) the distribution function at n, of  a discrete random variable N, be 
indexed by 0, and let lr(0) be the distribution function at 0 of a continuous random 
variable O, | E [a, b]. Then fabF(n 10) drr(0) is said to be a continuous mixture of  
F(n).  

LEMMA 1 

A continuous mixture of discrete DFR distributions is DFR. 

Proof o f  lernma I 

Let a x o < x 1 < . . .  x r = b be a partition of  [a, b] by points of  subdivision 
x o < x 1 < . . . < x r, and let ~r be an arbitrary point in [x k_  1, xk), k = 1, . . . ,  r. 
Consider the convex combination of distribution functions 

r 

G(n)  = Z F ( n l ~ k ) [ r r ( x k ) -  r r (xk- ' ) ]"  andlet  
k - - 1  

-- max xl ,, 
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For any r and A, Gr(n ) is a convex combination o f  the members of  ~'D and hence 
Gr(n ) E ~'D" By definition o f  the Lebesque-Stieltjes integral 

zxlimo Gr(n ) = G(n) = 

b 

f F(nlO) dTr(0). 
a 

Since ~'D is a closed convex set G(n) E ~D" 

DEFINITION 2 (Langberg et al. [13] ) 

A discrete distribution function F is DFR if F2(n  + 1) < F(n)  F(n  + 2), for 
a l l n ; F  = 1 - F .  

DEFINITION 3 (Marlow [19], p. 363) 

A sequence f ( k )  is a convex sequence i f / ( k  + 1) < (f(k) +f(k + 2))/2. 

LEMMA 2 

IfF is a discrete DFR distribution, then log F(n) is a convex sequence. 

Proof of lemma 2 

Follows from definitions 2 and 3. 

Proof of theorem 1 

a) By definition F ( m  [w) = 1 - F(m - 1 Iw) = 

and so F(1 Iw) = 1 - 

1 

(1 - p) lr*(plw), 
o 

m - 1  

n = O  

= p *  = G(llp*). 
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b) Suppress w and let if(n) = e -R(n) so that  R(n) = - log F ( n ) ,  

which by  lemma A5 is concave in n. The p roof  follows. 

The implication of  theorem 1 is that  the steady-state result of  the classical 

M/M/1 oo queue underest imates the expected system size, in the face o f  uncer ta inty  in 

the parameters;  this matches our intuition. 

For  a discussion on possible extensions of  the work  presented here and some 

concluding comments ,  we refer the reader to sect. 7 of  Part II. 
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