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Abstract 

This paper provides an overview of the literature on statistical analysis of queue- 
ing systems. Topics discussed include: model identification, estimation, hypothesis 
testing and other related aspects. Not all of these statistical problems are covered 
in books on queueing theory or stochastic processes. The bibliography is not 
exhaustive, but comprehensive enough to provide sources from the literature. 
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O. Introduction 

Statistical analysis is an integral part  o f  formulat ing a mathemat ical  model  for 

a real system. A model  is not  o f  much  use unless it is related with the system through 
empirical data analyses, parameter  est imation and tests of  relevant hypotheses.  How- 
ever, in queueing theory  statistical analyses have taken a backseat  due to two major 
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reasons. Unlike time series, the input process of queues is fully described and sta- 
tistical analyses of various elements of the input process can be carried out through 
established procedures, thus making the inference studies of the underlying process 
less urgent. From a global view, stochastic processes underlying queueing systems are 
special cases of more general stochastic processes, and the general theory of inference 
on stochastic processes has made major strides over the last two decades (see Basawa 
and Prakasa Rao [4], and Jacobsen [33] ). 

Despite these considerations, queueing systems present special problems not 
usually confronted in general statistical investigations and provide much more specific 
structure so as to be able to go beyond the general theory on stochastic processes. In 
this survey, we provide an overview of this subject area, with particular emphasis on 
topics not covered by books and earlier survey articles. 

The paper is in six sections. Section 1 deals with statistical problems arising 
from model identification. In sects. 2 , 3 , 4  we survey estimation problems egcountered 
in queueing systems and in sect. 5, hypothesis testing and sequential analysis. The final 
section 6 identifies some related topics and prospects for further work. We use the 
well-known Kendall [35] notation GI/G/s in representing different systems. Any 
departure from the usual description will be specified whenever necessary. 

Earlier articles giving overviews of statistical analysis in queueing theory 
emphasizing various aspects are the following: Cox [19], Harris [32], Reynolds [48] 
and Gross and Harris [30], sect. 6.6. Some of the techniques discussed in Cox and 
Lewis [20] and Lewis [38] are very pertinent to the statistical analysis of queueing 
systems. 

1. I d e n t i f i c a t i o n  o f  m o d e l s  

In the formulation of a queueing model, one starts with the identification 
of its elements and their properties. The system structure is easily determined. What 
remains is the determination of the form and properties of the input and service 
processes. Four major steps are essential in this analysis: (i) collection of data, (ii) tests 
for stationarity in time, (iii) tests for independence, and (iv) distribution selection. 

(i) COLLECTION OF DATA 

The required data form depends largely on the proposed model and the nature 
of results sought. For instance, in an M/M/1 queue (Poisson arrivals, exponential 
service and single server), traffic intensity can be estimated as the ratio of the esti- 
mates of arrival and service rates. Alternatively, noting that the traffic intensity 
provides the utilization factor for the system, we may use the empirical utilization 
factor as its estimate. Some of the pitfalls of this approach are indicated by Cox [19], 
who notes that if p is the traffic intensity of the system, the efficiency of this approach 
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is given by 1 - p. Also see the discussion by Burke on Cox's article regarding the bias 
resulting from estimating the load factor in an M/M/s loss system as (average number 
of customers in the system)/(1 - probability of loss) and Descloux [24]. 

An additional problem relates to the sampling plan of  the investigation. How 
long should the system be observed - for a specified length of time or until a specified 
number of  events has occurred? If the arrival process is Poisson, Birnbaum [11] has 
shown that the second alternative is better in determining the sample size than the 
first one. But when nothing is known regarding the processes, no such statements can 
be made and the efficiency of different schemes should be considered in individual 
cases. Another aspect of  the sampling plan is the mode of observation; for discussions 
of  what is known as the snap reading method and systematic sampling, the reader is 
referred to Cox [19] and Cox [18], p. 86, respectively. 

( i i )  TESTS FOR STATIONARITY 

A comprehensive treatment of tests for stationarity has beeen given by Cox 
and Lewis [20]. In addition to the treatment of data on the occurrence of events as 
a time series and the determination of second-order properties of the counting process, 
they consider statistical problems related to renewal processes and provide tests of 
significance in some general as well as special cases. Lewis [38] updates this study and 
considers topics such as trend analysis of  non-homogeneous Poisson processes. 

In many queueing systems (such as airport traffic and telephone traffic), the 
non-stationarity of the arrival process leads to a periodic behavior. Furthermore, even 
though the process is non-stationary when the entire period is considered, it might be 
possible to consider it as a piecewise stationary process in which stationary periods can 
be identified (e.g. a rush hour). Under such circumstances, a procedure that can be 
used to test the stationarity of  the process as well as to identify stationary periods is 
the Mann-Whitney-Wilcoxon test (see, for example, Bradley [15], Conover [17], 
Randles and Wolfe [45] ), appropriately modified to handle ties in ranks (Putter [44], 
Mielke [41] ). The data for the test can be obtained by considering two adjacent time 
intervals (0, tx ] and ( t l ,  t2 ] and observing the number of  arrivals during such intervals 
for several time periods. Let X1,  X2 . . . .  , X n be the number of arrivals during the 
first interval for n periods, and Y1, Y2, �9 �9 �9 Ym be the number of arrivals during the 
second interval for m periods (usually n = m). If F and G represent the distribution of 
X's and Y's, respectively, then the hypothesis to be tested is F = G against the alter- 
native F 4 = G for which the Mann-Whitney-Wilcoxon statistic can be used. Using 
this test, successive stationary periods can be delineated and the system can be studied 
in detail within such periods (see Moore [42], who gives an algorithm for the pro- 
cedure). 

To analyze cyclic trends of the type discussed above, we may also use the 
periodogram method described by Lewis [38] for the specific case of  a non-homogene- 
ous Poisson process. 
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(iii) TESTS FOR INDEPENDENCE 

While formulating queueing models, several assumptions of independence are 
made regarding its elements. Thus, most of the models assume that inter-arrival times 
and service times are independent sequences of independent and identically distri- 
buted random variables. If there are reasons to suspect such assumptions, statistical 
tests can be used for verification. Some of the tests that can be used to verify inde- 
pendence of a sequence of observations are: tests for serial independence in point 
processes, described by Lewis [38], and various tests for trend analysis and renewal 
processes given by Cox and Lewis [20]. To verify the assumption of independence 
between inter-arrival times and service times, non-parametric tests seem appropriate. 
Tests such as Spearman's rho and Kendall's tau (Bradley [15], Conover [17], and 
Randles and Wolfe [45]) test for the correlation between two sequences of random 
variables, whereas Cram6r-von Mises type statistics (see Koziol and Nemec [37] and 
other references cited therein) test for bivariate independence directly using the 
definition of independence of random variables. 

Tests for the dependence structure can also be carried out on the process 
output such as the number of customers in the system. Then a check for Markovian 
dependence can be made using well-known tests for Markov chains (see Bhat [7], 
ch. V and references cited therein). 

(iv) DISTRIBUTION SELECTION 

The next step in the model identification process is the determination of the 
best model for arrival and service processes. The distribution selection problem is a 
standard one, and based on the nature of data and the availability of analytical models 
approximate distributions can be chosen. For a comprehensive discussion of this 
problem, readers are referred to Gross and Harris [30], pp. 389 -397 .  It should be 
noted however, that it is advisable to start with simple distributions such as the Poisson, 
since analysis under such assumptions is considerably simpler. After all, a mathematical 
model is essentially an approximation to the real process. The simpler the model, the 
easier it is to analyze it and extract information from it. Thus, the selection of the 
distribution should be made with due regard to the tradeoff between the advantages 
of the sophistication of the model and our ability to derive information from it. 

2. Parameter estimation: the maximum likelihood method 

Estimation problems in queueing theory are of three types: (i) parameter 
estimation based on the maximum likelihood method, (ii) the method of moments 
and non-parametric methods, and (iii) process mean value estimation based on auto- 
correlation and second-order properties of an underlying stationary process. Clarke 
[16], Beneg [5], Wolff [53] and Cox [19] have explored the parameter estimation 
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problem via the maximum likelihood method for the M/M/s type queues. Harris [32] 
has extended this method to M/E2/1 queues. More recently, this method has been 
used by Harishchandra and Rao [31] for parameter estimation in M/Ek/1 queues. 
Basawa and Prabhu [3] derive moment estimates as well as maximum likelihood 
estimates for general queues over random time horizon. A good review of auto-correla- 
tion functions in queues is made by Reynolds [48]. Notable papers using this approach 
for process mean value estimation are by Daley [22,23], Blomqvist [ 12,13], Gafarian 
and Ancker [26], Reynolds [47] and Aigner [1]. In the remainder of this section we 
review maximum likelihood estimates (m.l.e.). In the following two sections we 
describe the methods 0i) and (iii) mentioned above. 

(a) PARAMETER ESTIMATION IN MARKOVIAN SYSTEMS 

A landmark paper in parameter estimation is by Clarke [ 16], who assumes that 
the queue M/M/1 is fully observed over a period of time and complete information is 
available in the form of arrival epochs, and the points of  beginning and end of service 
on each customer. Let na, ns, re, t b represent the number of arrivals, number of 
service completions, the time spent in the empty state, and the time spent in the busy 
states, respectively, in the observation interval [0, t ] .  Further, let no be the initial 
number in the queue. Denote by X and/~ the arrival and service rates of the system, 
which we assume to be in equilibrium. The likelihood function can be written as 

the m.l.e.'s of  X and/1 are found to be 

~)tb e -xte, (1) 

= (/5 - ) , ) ( n  a+ n o - i t )  and X = ( X - / 3 ) ( n  s - n o - / i t b ) .  (2) 

Estimating /5 from the second equation gives a quadratic in X. Of the two solutions, 
any negative solution is rejected and for the remaining values of X, corresponding/~ is 
"obtained. Further, any pair (~t, /~) would be rejected for which/~ ~< 0 or ~//~ ~> 1. If 
both solutions are valid, then the solution which maximizes the likelihood function is 
chosen. 

If n s - no is large, Clarke gives a simple approximation for X and/~ as 

= (n a+  no)/t, /3 = (n s - n o ) / t  b .  (3) 

If we ignore the initial queue size, the estimates of X and ~ are, respectively, na/t and 
ns/t b. Whether this can be done depends upon whether we have observations from a 
very long realization or we observe a number of independent, fairly short realizations 
making up the sample. In the latter case, as Cox [19] points out using the Fisher 
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information measure, the information provided by the initial state could be remarkably 
high. A practical consequence is that in a given situation, it may often be advantageous 
to split the observations into a number of independent periods while observing the 
initial state in each section. 

The above analysis can be extended to most Markovian queueing systems. In 
particular, for those queues satisfying the generalized birth-death process, the condi- 
tional likelihood is of  the form 

e- z(xi+ ui)ti [7 X~ ai I Jnsi , (4) 

where Xi, #i are the rates of arrival and service completions in state i, nai and nsi are  

the numbers of arrivals and serive completions in state i, and t i is the total time spent 
in state i during the observation interval (0, t] .  For the finite state birth-death queue, 
ignoring the contribution of the initial queue size, the m.l.e.'s of X i and /~i are given 
by 

X i = nai/t i (0 <. i < , M - l ) ,  ~i = nsi/ti (1 ~< i ~<M). (5) 

The above results and similar estimates for parameters in M/M/s, M/M/~' and machine 
interference problems given below are due to Wolff [53]. 

If we assume X i = ah(i) and/a i = bg(i), where a and b are the parameters to 
be estimated and h(i)  and g(i) are known functions of i, the log-likelihood function 

becomes 

o o  o o  

logah(i) + ~, logbg(i) - ~ ti{ah(i) + bg(i)} (6) X na i ns i 
i = 0  i = I  i = 0  

This yields the estimates 

[l = X na i ~  X tih(i), ~ = X ns i ~  Z rig(i). 
i = 0  i = 0  i = i  i = i  

(7) 

For ergodic queues, note that 

o o  o o  

z / z  : lim nai nsi 1 
t - - * ~  i = 0  i = 1  

with probability one. Therefore, for large samples, Z nai and ~ nsi can be replaced 
with n/2, n being the total number of transitions (total of all arrivals and service 
completions) in (0, t ] .  For large samples this yields the estimates 
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/l /l t? ~ n 2 (i , /) ~ n 2 (i . 
i = 0  i 

(8) 

The estimates for M/M/m, M/M/s and machine-interference models are obtained from 
the above as follows: 

M/M/oo �9 a = X, h (i) = 1, b = I J, g( i)  = i. 

M/M/s a = X ,  h ( i ) =  1, b = u ,  g ( i ) = i ,  i < . s - l , g ( i ) = s ,  i>~s .  

Machine- 
interference 

a= X, h ( i ) = i ,  i <~M, b = u ,  g ( i ) =  1, i <~M-: l ,  
g(i)  = O, i >~ M. 

The effect of  neglecting the initial queue length on the estimates is seen by 
comparing (5) and (3). Estimates can also be different i f  the observational procedures 
are different. For example, for the M/M/~ model let us assume that during an interval 
[0, t ] ,  the following are observed: 

no : number of  calls at the start of the period, 

n a : number of  calls arriving during the period, 

n d : number of  calls terminating during the period, 

h- : average number of  calls during the period. 

Beneg [5] has shown that no, n a, n d and B are sufficient statistics to estimate the 
arrival rate X and service rate/a. The estimates are 

1 
= 7 (na + nd) - /5 ~ 

/5 = n---71 {n  d -- no - n + [ (n  d - no - ~ ) 2  + 4B (n  a + n d )  ] 1/2} . (9)  

For the same model, Wolff gives the estimates as in (7) with h(i )  = 1 and g(i )  = i. The 
differences are due to the fact that the estimates are based on different sets of  observa- 
tions and statistics. While Wolff uses the counts up and down out of  a state, Bene~ uses 
the number of  arrivals and services in the observation period. 

The means, variances and correlation coefficients of  these estimators, namely 
~.and/5 are also given by Beneg [5]. 

As pointed out by Cox [19], confidence intervals for X,/a and 0 in an M/M/1 
system can be obtained by observing that 2X (t e + tb) can be treated as a chi-square 
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variate with 2n a degrees of  freedom and 2/5 t b as a chi-square variate with 2n s degrees 
of  freedom and noting that the ratio of two chi-square variates leads to an F-distribution. 
For details, readers are referred to Lilliefors [39] and Gross and Harris [30], p. 383. 

(b) ESTIMATION IN NON-MARKOVIAN SYSTEMS 

Regarding the general problem in nonoMarkovian systems, Cox [19] observes 
that the maximum likelihood estimates of  the arrival and service distributions can be 
determined for the following more general class of  queueing systems: (i) arrivals occur 
as a point process with a specified probabilistic structure except for unknown para- 
meters; (ii) with each customer is associated a service time which is a random variable 
independent of the arrival pattern; (iii) given the arrival epochs and service times, the 
entire process is either uniquely determined or has a distribution independent of  the 
unknown parameters. 

Under these conditions, the likelihood function will be the product of those 
for arrival patterns and for the service times, the time spent in service, say xQ, by the 
very last customer, and the probability for the initial number of customers. The para- 
meters can be estimated, at least numerically, by maximizing the likelihood function 
once a plausible functional form has been chosen for the inter-arrival time and service 
time densities. For an illustration of  this approach, see Gross and Harris [30], p. 386, 
where m.l.e.'s for parameters in the M / E z / 1  queue are considered. 

(c) THE GI/G/1 SYSTEM - ESTIMATION OF ARRIVAL AND SERVICE TIME 
PARAMETERS 

Basawa and Prabhu [3] obtain the m.l.e.'s of parameters of the arrival and 
service time distributions with continuous densities f ( u ;  O) and g(v;  r respectively. 
The sampling scheme is to observe the queue until the first n customers have departed 
from the system and note the service times of  these n customers, say (v a , v 2 , . . . ,  Vn). 

Let the nth departure epoch be D n and observe the inter-arrival times of all customers 
who arrive during (0, Dn],  obtaining the inter-arrival sequence (u l ,  u2 . . . . .  UNA), 

where N A = NA(Dn)  = max k: ul  + � 9  + u k ~ D n �9 Under this sampling scheme, the 
likelihood function is 

where 

L ( f , g )  = = f ( u j ; O )  i= 

NA 

1 

�9 [1 - F ( x n ; O ) ] ,  (10) 
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Since the factor [1 - F ( x n ;  0)] causes difficulty in obtaining simple estimates, con- 
sider the alternative approximate likelihood function 

n 

I--I1 g(vj; ~) (11) 

If  ^a ha On, ~n are the m.l.e, s of 0 and ~ based on La(f ,  g), they are the solutions of equa- 
tions 

n 

~ l o g f ( u ] ; O )  = O, Z ' ~  log g ( ~ ; ~ )  

1 1 

= O. (12) 

They prove that ~a and ~a n are consistent estimators of 0 and ~b and 

l 0,1 0>r 
V~(~a ~) \ O, o~ 

(13) 

where N2 represents a bivariate normal density, 

;1-1 (; o~ = E log f , crr E log g (14) 

and r/= max( l ,  p), p being the traffic intensity. 
Let On and ~n be the estimators based on the full likelihood function (10). It 

A a 

is seen that q~n = ~n, and On differs from da, but it can be shown that On and ~a have 
the same limit distributions whenever 

1 3 

~ 0  - - - -  l o g ( 1 - F ( x  n;O)) -~ 0 (15) 

in probability. This condition is satisfied for Erlangian arrivals. For large samples, 
estimates of 0 and 4) can be determined from (12) at least numerically, if not in a 
closed form. Using (13), confidence intervals for 0 and q~ can also be constructed. 
From a practical point of view, it is significant to note that the limit properties of 
statistics are obtained without the imposition of steady state assumptions on the 
system. Further, in their paper Basawa and Prabhu also consider m.l.e.'s for arrival 
and service rates in the M/M/1 queue based on a sample function observed over a fixed 
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interval (0, t ] ,  as done by Wolff [53], and obtain limit distributions of the m.l.e.'s 
without any restrictions on p. 

(d) ESTIMATION USING IMBEDDED MARKOV CHAINS 

By observing a process only at the imbedded Markov points, a certain amount 
of  information is lost. However, the gain is the analytical tractability when inter- 
arrival or times are not exponential. Suppose we are interested only in the estimation 
of  the traffic intensity instead of the individual rates of  arrival and service. Then we 
may use observations on the imbedded Markov chain in some queueing systems of  
the class M/G/1 or GI/M/1. In particular, when the arrivals are Poisson and the service 
times are Erlangian (Ek) the number of arrivals during service intervals form a sequence 
of  i.i.d, random variables with a probability distribution consisting of only two para- 
meters, the shape parameter k and the traffic intensity p. Thus, if X n denotes the 
number of  arrivals during the service of  the (n + 1)st customer in the queue M/Ek/1, 
then X n has the negative binomial distribution given by 

(x+k-1) ( P )x ( k ) k 
e r  ( X  = = f ( x ,  p) = x 7 7 7  ' 

(x = 0, 1 , 2 , . . . )  (16) 

Suppose the system is observed only at departure epochs, and let xl, x2 . . . . .  x n 
be the number of  arrivals during the first n service times, respectively. The likelihood 
function for this sample is then 

L(x , ,x2  . . . . .  Xn;P) = [-I ( x i + k - 1 )  ( O---~xi ( k ) k. 
i=1 x i \ p +  k /  7 " ~  

(17) 

The m.l.e, of  p is found to be/5 = Exi/n. This estimator is unbiased and consistent, 
since E(/3) = p and Var(/5) = p(p + k)/(kn). Further, it turns out that ~ is also the 
minimum variance bound (MVB) estimator and therefore the uniformly minimum 
variance unbiased estimator (UMVUE) of p. It can be shown that the probability 
distribution of X belongs to the one-parameter exponential family and hence T = Ex i 
is a sufficient statistic for p. Finally, for large values of  n, 

1 X/-n-(/3 - p) ---* N ( 0 ,  1), (18) 
o 

where 
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cr ~ = E logf(x,  p) k 

Using this result, large sample confidence intervals for p can be computed. These 
results are due to Harishchandra and Rao [31]. 

Unfortunately, a similar approach for the Ek/M/1 system does not work since, 
to obtain an imbedded Markov chain, the random variables { X n } are defined as poten- 
tial services during an inter-arrival period and they are not observable during idle 
periods. 

3. Parameter estimation; method of moments 

When it is not possible to observe the system completely, several interesting 
estimation problems arise. One such situation occurs when we observe the output 
process of  the M/G/1 queue and we wish to estimate the mean inter-arrival and mean 
service times. If the process is in equilibrium then, as pointed out by Cox [19], the 
arrival rate can be estimated with full asymptotic efficiency since it should nearly 
equal the departure rate over a long time period. If the service time is also exponential, 
no inference is possible about the mean service time since in that case the limiting 
distribution of the output is the same as that of the input, i.e. Poisson (Burke [55] 
and Reich [56] ). On the other hand, if the service times are other than exponentially 
distributed, estimation of the mean service time is feasible. This is facilitated by the 
relation (Gross and Harris [30], p. 387), 

t 

B(t- 
o 

x) X e-Xx dx , (20) 

where C(t) and B(t) are the distributions of inter-departure and service times, re- 
spectively. In particular, if the service time is a constant (-- ~-1),  it can be shown 
that its estimate is given by the minimum observed inter-departure time. 

When the service time distribution is other than exponential or deterministic, 
the method of moments can be used. From (20) the Laplace-Stieltjes transforms 
(LST) are found to be 

C*(s) = 11 + (S/la)}B*(s) ( 2 1 )  
(1 + s/X) ' 

where C*(s) and B*(s) are, respectively, the LST of the inter-departure and service 
times. If /3 r and 7r are the cumulants of service and inter-departure times, expand- 
ing (21) in powers of s and taking logs, we obtain 
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1 1 2 
71 =-~- ,  72 = t32-/312 + - ~ ,  73 = /3a-2/31 a + --xT'etc" (22) 

If we assume a particular form for B(x),  we can have as many equations (22) as there 
are parameters in B(x)  and estimate these parameters by equating them to the ob- 
served moments of  the inter-departure times. However, there are some problems in 
using this method. This has to do with the fact that the dependence of  successive inter- 
departure times and auto-correlation need to be taken into consideration while calcula- 
ting moments of  the inter-departure times from observed data. We may either test for 
the absence of  correlation by computing the auto-correlation coefficient or see that 
data are spread sufficiently far apart to ensure an approximate random sample (see 
Harris [32] ,p .  355, and Cox [19], p. 301). 

When observations on the waiting time are available, the estimation of  the 
arrival rate and the service time parameters for the M/G/1 queue can be made by 
using the Pollaczek- Khintchine formula. For further details, see Cox [ 19] and Gross 
and Harris [30],  p. 388. 

For the GI/G/1 queue, Basawa and Prabhu [3] propose the following moment 
estimates for the means a and b of the arrival and service time distributions: 

N A  /'i 

= _ _  1 ~ v..  (23) 1 ~ u ] ,  [~n = n l 
[In NA 1 1 

The sampling scheme and the quantities u], v], N A and n are the same as 
described earlier in connection with the maximum likelihood method. It should be 
observed that while /)n is the usual sample mean, fin is based on a random number of 
observations. They show that [in and b n are consistent estimators for a and b and 
further that 

[ I /(~ 1/ x/n (fin - a) o l / 'q ,  0 
N 2 

2 

(24) 

where N~ is the bivariate normal density, a] and e~ are, respectively, variances of 
arrival and service times, and r~ = max{p, 1 }. As observed earlier, these properties of 
the estimates do not require the imposition of  steady-state conditions. Further, the 
estimates are "natural" estimates and simple. However, if it is required to find esti- 
mates of other parameters of either the arrival or service times, it is not clear whether 
this simplicity can still be maintained. 
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. C o v a r i a n c e  s t r u c t u r e ,  a u t o - c o r r e l a t i o n  a n d  p rocess  m e a n  va lue  

e s t i m a t i o n  

In the previous sections, we have identified procedures to estimate various 
parameters of  the arrival and service processes based on random samples of  observa- 
tions on a queueing system. These estimates in turn provide estimates of  the queue 
characteristics such as the mean queue length E [X(t)] and mean waiting time E(Wn). 
However, it is also possible to estimate these quantities directly from sample observa- 
tions. Thus, let us consider the X(t) process, which we assume to be stationary in the 
wide sense. To estimate the process mean value/ l  = E [X(t ) ] ,  we observe X(t) over 
some interval (0, T] and construct a suitable sample mean. Two obvious candidates 
for estimating/a are (Reynolds [48] ): 

T 

n 1 / X ( t )  dt, (25) ~1 = ~ X(rh)/n, and /]2 - T 
r = l  0 

where nh = T. 
It can be seen that/]2 is the limiting form of/~1 as n -+ oo and h ~ 0. Both 

/Jl and/J2 are unbiased estimators for #. To assess their precision as well as to compare 
them with other estimators for/1,  we need to evaluate their standard errors. These are 
given by: 

[ ,] 2 2 
Var(/Sx) = o____ 1 + -  ( n - / ) p ( / h  (26) 

n n 
j = l  

T 

2o ] (1 dx Var (ti 2 ) - T 

0 

where cr 2 = Var { X(t) }, p (x) is the auto-correlation function of  the X(t) process de- 
fined by O(x) = c o v  [X(t),  X(t + h ) ] / a  2 , and p(/h) are similarly defined for the 
discrete process X(rh) sampled from the X(t) process. From (26) and (27) it is obvious 
that the sampling errors of  131 and/12 (and other such estimators) can not  be evaluated 
without  the knowledge of  the covariance structure of  X(t). Further, it may be noted 
that  for large n 

Var(/~,)------- o 1 + 2 ~ p(/h) . (28) 
n 

/ = 1  
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These results have motivated the study of  the covariance structure in queues and of 
the asymptotic behavior of E~~ 1 p(jh).  For a good review of the work in the area, see 
Reynolds [48]. 

To obtain confidence intervals for the process mean in the system M/M/l, 
Gebhard [28] uses (28) along with the result 

2 

a (29) Var (/51) m A(/51) -n--' 

where A(/51) = 1 + 2p(1 + p)/(1 - p)2. By applying the central limit theorem for 
dependent variables, Gebhard shows that the distribution of/51 is asymptotically 
normal with mean E[X( t ) ]  and variance given by (29). These results enable the con- 
struction of  confidence intervals. 

We proceed to discuss some ramifications of  the above results. 

(a) SAMPLE SIZE DETERMINATION 

An obvious use of the above results is in determining the minimum sample 
size in simulation runs consistent with some required precision. It is clear that a larger 
sample will be required to estimate the process mean when the observations are 
dependent. In particular, when the observations are independent, the required sample 
size n I is proportional to o 2 , while when the observations are serially correlated, the 
required sample size n c is proportional to cr 2 (1 + 2 Ep(jh))  so that 

nc/n I = 1 + 2 Z p ( f h  ). (30) 

The key to sample size determination is the evaluation of Z,p (jh). For simple queues 
this may not be too much of a problem. If we consider the GI/M/1 queue, the equili- 
brium distribution is geometric. Using this fact and the property of  stochastic mono- 
tonicity in Markov chains, for this system Daley [22] shows that as p -* 1, (1 - p ) 2  
~,p(]h) -~ 1 + a2/2a  ] , where a 1 and a 2 are the first and second moments of the 
arrival time distribution. Combining this result with (28), it can be concluded that 
the coefficient of variation of/51 is constant for p near 1 when n --- k(1 - p)-2,  for 
some constant k. A similar result should hold for the GI/M/s queue as well. 

(b) TIME SLICING AND EVENT SEQUENCING 

Up to this point we have considered the estimator/Jl when the X(t)  process is 
observed only at times rh (r = 1 , 2 , . . .  ,n; nh = T). This sampling scheme is referred 
to as "time-slicing" by Gafarian and Ancker [26]. In order to use /52 , we have to 
observe the process continuously during (0, T] and the sampling is then called "event 
sequencing". In this latter case,/52 can be approximated by 



U.N. Bhat  and S.S. Rao, Statistical analysis o f  queueing systems 231 

N 
1 Z Si = - f  

i = 1  

where N is the number of customers arriving in (0, T] and S i is the service time of 
the ith customer. For small values of p in the M/M/1 case, it can be shown that for 
large T, 

Var (rfi2) ~ 2 p 2 / ( X T ) ,  (31) 

a result due to Bene~ [6]. 
Comparisons of the efficiencies of/]1 and /]2 require a little more detailed 

investigation, which has been done by Gafarian and Ancker and later by Reynolds 
[47] for the M/M/s type of queues. Recall that the efficiency of/]1 relative to/]2 is 
defined as 

E h = Var (/]2)/Var (/]1)" (32) 

For a class of  processes for which p(h)  = e -eh (c > 0), E h is obtained as 

2(1 - e - e h )  2 ( n c h -  1 + e -neh) 

Eh = (eh) 2 [n(1 - e -2eh) - 2e-eh(1 - e-rich)] 
(33) 

The constant c is a measure of how rapidly the correlation between two samples, 
h units of  time apart, decreases as h increases. By graphing E h against ch and n, 
Gafarian and Ancker conclude that for any reasonable efficiency E h > 0.90, the 
sampling interval h must be less than the constant 1/e, preferably by a substantial 
margin. The M/M/1, M/M/~ and the loss system M/M/s satisfy the condition p (h) = e-Oh. 
Qualitatively similar results have been obtained by Reynolds [47] for finite Markov 
queues, wherein the eigenvalue structure is exploited in exhibiting p(h) and E h. He 
concludes that E h < 1 for all h > 0 and therefore event sequencing is always asymp- 
totically more efficient than time slicing. However, from a practical point of  view it is 
easier to handle time slicing than event sequencing. Since E h ~ 1 as h -+ 0, a value of  
h can be determined to ensure that E h is as close to 1 as required, in which case time 
slicing can be used with only this acceptable loss of  efficiency. 

(c) REPLICATION VERSUS EXTENSION 

A final question in a simulation experiment to estimate the process mean is 
whether one should extend the observation interval from [0, T] to [0, roT] or carry 
out m independent simulations of  the system on [0, T] ,  the objective being the 
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reduction o f  the standard error of the estimate (say) ~2. Gafarian and Ancker [26] 
show that replication is preferable to extension. In this connection, we should also 
note the observation made by Cox [19] based on Fisher's information measure for 
the two estimates. 

(d) ESTIMATION OF WAITING TIME 

We now consider the sequence { W r }, where W r is the waiting time of the r th 
customer. We shall assume the queue discipline to be first-come, first-served. The mean 
waiting time I.t w = El W r } is estimated by/]w (Blomqvist [12] ), where 

n 
. _ 1 ~ Wr " ( 3 4 )  
gw n 

r = l  

We have 

where 

E ( ~ w )  = Uw, 

t/-1 ] 
Var(/~w) - cr~v 1 + 2 ~ ( n - j )  pj (35) 

n n " ' 
1 

= Cov(W r, w , j ) ,  - -  and a w 

In the M/G/1 case, Blomqvist has shown that for large n, 

) Var(/~w) ~ -n'- 7 r - 7 0  �9 
r = 0  

(36) 

The sum ETr is evaluated in terms of the derivatives of the LST of the waiting time 
distribution. Blomqvist has demonstrated numerically the effect of  auto-correlation 
in the case of the M/Ek/1 queue by tabulating n Var (/~w)/Var (Wn), i.e. the factor by 
which the variance of the sample mean of uncorrelated observations should be multi- 
plied to allow for the effect of  auto-correlation. 

A later paper by Blomqvist [14] gives heavy traffic results for the covariance 
functions in the GI/G/1 queue and considers the problem of estimating P(W > w) 
under steady-state conditions. Further details of the behavior of the correlation 
structures for the waiting time process can be found in Daley [23] and Craven [21]. 

(e) DIRECT ESTIMATOR VERSUS MLE 

Let Wn s = W n + S n be the time spent by the customer in the system. A direct 
estimator for #s w = E(W), based on the X( t )  process, was proposed by Jenkins [34] as 
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T 

I X(t) dt 

A s  _ 0 I 

aN A(T)  A ' (37) 

where A(T) is the number of arrivals in (0, T] .  An approximation to Var (/]Sw) is 
given by Jenkins in the form 

[ 1 E(1) l Var (I) + . (38) 
Var -~ E ( A ) I  E 2 (I) E 2 (a) E(I) E(A) 

Evaluation of these relevant quantities in the M/M/1 case leads, for large T, to 

Var (t~xw) ~ pZ (1 + p)Z/{xa (1 _p)4 T} .  (39) 

^ * S  ^ , On the other hand, the m.l.e, of a S is aw = (/~ - X)- 1 where a, X are the m.l.e, s of a 
and X. This has the variance 

^*S p2 p; Var (a  w ) ---- (1 + ) / { X 3 ( 1 - p ) 4 r } .  (40) 

Comparing (39) and (40), we find that the efficiency of the direct estimator/fiw rela- 
tive to/i~, s is E = (1 + p2)/(1 + p ) 2  which varies between 1 and 1/2 as O varies be- 
tween 0 and 1. This points to the fact that except for cases of low traffic intensity, 
there is a marked loss of efficiency in estimation using only the waiting time of indi- 
vidual customers. 

(f) E S T I M A T I O N  U S I N G  C R O S S - S E C T I O N A L  D A T A  

The previous sections examined parameter estimation from single sample 
realizations or time series data. Sometimes it may be possible to obtain cross-sectional 
data from a number of  identical queueing systems. Because there exist proportionality 
relations such as L = X W, one can use ratio and least-squares estimation methods with 
cross-sectional data that may provide statistics with useful properties. An interesting 
paper on parameter estimation using this approach in an M/M/1 queue is by Aigner 
[1 ]. Suppose the following observations are made: 

u = time between successive arrivals (inter-arrival times), 

v = service times, 

n = number of units (customers) in the system, 

q = number of units (customers) in the queue, 
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z = waiting time in the system, and 

x = waiting time in the queue. 

Then for the queue M/M/1, the following relations hold" 

E(n)  = XE(z), E(x)  = DE(z), E(q) = XE(x), E(q) = oE(n) ,  E(n)  = uE(x) .  

A "direct" ratio (R) estimator for X based on a sample of size N is given by 

~R = B/2,  (41) 
n z  

where K and 2 are, respectively, the sample means of observations on n and z. We find 
^ R  that Xnz is asymptotically unbiased under random sampling assumptions and its 

asymptotic variance is 

3, 2 1 - O ( 4 2 )  
v ( x R ~ ) -  N P 

^ R  ^ M L  Moreover, in this case Xnz is also the maximum likelihood estimator Xnz . 
The least-squares (LS) estimator for 3  ̀ proposed by Aigner is generated by a 

homogeneous regression of n on z. This estimator is then given by 

N N 

~LS = n z  i~=lnizi/i=lZ z~ , (43) 

where (ni, zi), i = 1,2 . . . . .  N denote the paired observations on n and z. In general, 
even though the LS estimator could be biased and inconsistent, for the M/M/1 queue it 

AL S is found that LS estimators are consistent. The large sample variance of 3`nz is obtained 
as  

V(3`nz ) = 2 3- 
P 

Another estimate of 3  ̀with the same asymptotic variance as xR z is xR x =~/Y.  
Comparing the estimators xRz, ~LS, ~R x for 3  ̀with the MLE ~ L  = 1/u, aigner 
observes that when the traffic intensity is low, ~tu ML is the most efficient, if P > 0.5, 
^ M L , R  ^ R  - ML X n z and 3`qx are generally more efficient than Xu , and the least-squares estimator 
3`LS is always less efficient than the alternatives. 

~z  
Similar arguments on estimators of g lead to the following observation: The 

best estimator (with the least asymptotic variance for all values of p) of/2 is given by: 
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^ML _ 1 + n ( 4 5 )  
[dnz Z 

with asymptotic variance (la2/N) (1 - p). The major drawback of this estimator is 
that it requires observations on waiting times which are generally expensive to collect. 

Finally, based on asymptotic variance, except where p is small ( <  0.4), the 
best estimator of  p is the ML and the LS estimator 

(46) /~ML,LS _ 1 + t 7 '  

which uses only the number of  customers in the system. This estimator has the asymp- 
totic variance p (1 - p)2/N. When p is small, the estimator 

1+~ ~ML ~ (47) 
2+~ 

has a smaller asymptotic variance given by 

1 N 1 + (1 - p ) 2  
(48) 

(g) OPTIMAL PREDICTION 

A natural extension of the analysis of the covariance structure of the output 
process is the use of their properties in their prediction. For the queue GI/M/1, 
Stanford et at. [50] provide an algorithm to obtain the optimal mean square predictor 
E [YnIQk], where Yn can be Qn (the imbedded queue length at the nth arrival epoch), 
W n (the waiting time of  the nth customer) or S n (the system time for the nth 
customer), and ~Qk = (Qo, Q1 . . . . .  Qn). The mean squared errors of  the predictors 
are obtained through a bounding approach. These results have been extended to the 
Gl/M/s system by Woodside et al. [54]. 

5. Hypothesis testing 

Hypothesis testing in queueing systems still remains a vast unexplored area. A 
hypothesis testing problem arises when we are required to make inferences about 
parameters of arrival and service time distributions or measures such as traffic intensity, 
as well as the form of distributions, based upon sampled data from the system. 
Inferences may lead to control procedures. The sampled data, as we have seen in the 
previous section, can be from queueing processes such as queue length, waiting time or 
the output. In this section, these aspects of  parameter testing will be discussed in some 
detail. 
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(a) SIGNIFICANCE TESTS FOR ARRIVAL AND SERVICE PARAMETERS IN M/M/1 
SYSTEMS 

For an M/M/1 queue, significance tests for X and ~ can be based on a chi- 
square distribution. As noted in subsect. 2(a), 2Xt = 2X(t e + tb) and 2/ i t  b are chi- 
square variates with 2n a and 2n s degrees of  freedom, respectively, and therefore a 
test for p = X//~ can be based on the F-distribution. This procedure assumes that the 
state of  the system (empty or busy) is under observation throughout the interval (0, t). 

As proposed by Cox [19], a simple test for the proportion of  idle times in an 
M/M/1 system, which is also the probability that the waiting time is zero, is obtained 
by observing that under the null hypothesis that the system is M/M/l ,  the number 
nae of  arrivals to the empty queue has a binomial distribution with index n a and 

parameter te/t.  

(b) A TEST FOR EXPONENTIAL SERVICE USING WAITING TIME DATA 

At times, full observation of  a system may not  be possible. Suppose we are able 
to observe only W 1, W 2 , . . . ,  W n, the waiting times of  the first n successive customers. 
We assume that the inter-arrival times have an exponential density, and we wish to 
test the hypothesis that the service times are exponential which can be stated as 
H 0 : G = M in an M/G/1 queue (Thiagarajan and Harris [52] ). 

The main difficulty arises from the fact that { W n } are serially correlated. Let 
us assume that none of  the W n are zero. Then we have the well-known relationship 

W n  + t = Wn + Y n  , where Yn = On --  Un' with u n = inter-arrival time and o n = service 
time. Here, {v n } and {u n} are assumed to be i.i.d, random variables, and therefore 
{ Yn } are i.i.d, as well. Under H o : G = M, the conditional densities of  Y, given Y > 0 
and Y < 0 are, respectively, 

g ( y l Y >  0) = /le-UY (y  > 0), and g ( y l Y  < 0) = Xe xy. (49) 

Equation (49) suggests that the test for G = M can be stated as follows: Split the data 
Yn into two groups, one consisting of  positive numbers and another consisting of  
negative numbers. Test for exponentiality separately, using the test proposed by 
Gnedenko (see Gnedenko et al. [29]). For details and tests for cases when there are 
zero waiting times, see Thiagarajan and Harris [52]. 

(c) A UMP TEST FOR p IN AN M/Ek/1 SYSTEM 

Using the property (16), namely that the number of  customers ( X  a , X 2 . . . . .  X n) 

arriving during service periods in an M/Ek/1 queue are i.i.d, random variables with a 
negative binomial distribution, Harishchandra and Rao [31] have developed a likeli- 
hood ratio test for p based on a sample x = (x 1, x 2 . . . . .  Xn). By the Neyman-Pearson  
lemma, a uniformly most powerful test of  size a for H o : p = Po against H a : p > Po is 

given by 
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~(x)  = 

1 i f  ~ x i 2> c 

3'(x) if ~ , x  i = c , 

0 if  ~ , x  i < c 

(5o) 

where c and 3' are determined such that 

= e [ Z x ,  > Ct,o]  + [ : i : x ,  : 

and q~(x) is the probabili ty of  rejecting H o . 
The procedure is to reject H o with probability 1 whenever Nx i 2> c, 

reject H o with probability 7 whenever 2 x  i = c, and accept H o otherwise. Note 
that this is a randomized test. The power function of  the test is given by 
t3(0) = P(Nx i 2> c lp) + 3"P(Nx i = e l p). An example is provided by the following: 

EXAMPLE 

Consider the M/M/1 queue and let H 0 �9 p = 0.8 against H 1 �9 p 2> 0.8, and set 
a = 0.05, n = 10. In this case 

f ( x ' P )  = ( 1 + ~ )  x l + p ' l  ( x = O ,  1 , 2 , . . . ) ,  

so Y = Zx  i has the distribution 

( Y + n - 1 )  ( P )Y ( 1 ) n 
f ( y , p )  = ~ ~ " 

Y 

The quantities c and 3' for the test are determined from the relation 

0.05 = 

o o  

Z 
y = c + l  

y +  1 0 - 1 )  ( 0 . 8 ~ y  , 1 ~10 

Y 

(1 1o 
+ 3  ̀ \ 1 . 8 1  \ 1 . 8 /  " 

C 

which yields c = 15 and 7 = 0.56995. 
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The test procedure is then: 

reject H o with probability 1 whenever 2;x i > 15 ; 

reject H 0 with probability 0.56995 whenever s  i 

accept H 0 otherwise. 

= 15; 

(d) SEQUENTIAL PARAMETER CONTROL 

In operating a queueing system, monitoring and control of the parameters of 
the system are essential to ensure that the system performance is up to design standards, 
or exigencies of the environment call for changing parameters to keep the system 
under stable conditions. The parameter control problem in effect involves a problem 
of testing hypothesis H o : 0 = 0 ~ , where 0 ~ is the desired vector of parameters, against 
a suitable alternative. If the hypothesis is not rejected at a suitably chosen level of 
significance, we conclude that the system parameters have not changed, while rejection 
of the hypothesis is indicative of the fact that the system has changed from the desired 
state. Once detection of change is achieved, appropriate control action can be taken. 

Bhat and Rao [9] considered the problem of controlling the traffic intensity 
paramter O in M/G/1 and GI/M/1 queues. In an analogy with statistical quality control, 
the technique used is such that the queueing system is left undisturbed as long as it 
satisfies certain conditions, but when the conditions are violated, it is readjusted so as 
to make it consistent with the original objectives. For an ideal control technique, the 
type I and type II errors should be under control. 

Let t o, t l ,  t 2 ,  . . . be a discrete set of epochs at which the system is observed 
and Qn the number of customers observed at epoch tn, (n = 0, 1 , 2 , . . .  ). The tech- 
nique is based on the sample function {Qn}" In general, the parameter control tech- 
nique consists of  two phases and two sets of control limits for { Qn }. The first phase (a 
warning phase) indicates the time at which the sample function gets out of the region 
covered by upper and lower control limits, Say c u and c~; the second phase (the test- 
ing phase) is intended to see whether the process returns to the control region within a 
specified amount of time and involves two limits, say d u and dQ. For M/G/1 and 
GI/M/1 queues, if we select { t n } to be the points of regeneration so that {Qn } is the 
imbedded Markov chain, the first set of  limits are approximately determined using the 
equilibrium distribution of {Qn}.  Let Q* = Qoo and a u and % two specified proba- 
bilities. Then c u and c~ are integers such that 

c u = m i n { k l P ( Q *  > k)  <~ au}, c~ = m a x { k i P ( Q *  < k) ~< % } .  (52) 

It is somewhat harder to determine the second set of limits (d u and d~) as this 
involves first passage distributions. Bhat and Rao have shown that in the M/G/1 case, 
if flu and/3Q are two specified probabilities and cQ = 0, then 



U.N. Bhat and S.S. Rao, Statistical analysis o f  queueing systems 239 

d u = r a i n { n i P ( T 1  >n)~< ~u}' d~ = min{n]k~ ~< t3Q}, (53) 

where 7"1 is the length of a busy period initiated by a single customer and k o is the 
probability that no customers arrive during a service period. Note that Cu, cQ, d u, dQ 
are determined under H o : p = Po. 

Once these limits are obtained, the control technique may be described for 
given values of au, a;, flu, i39. as follows. 

(i) Starting with an initial queue length i and traffic intensity P0, leave the 
system alone as long as Qn lies between c u and cQ, or when it goes out of 
these limits if it returns within bounds before d u and d~ transitions, re- 
spectively. 

(ii) If the system does not return within bounds before d u or d~ consecutive 
transitions as the case may be, conclude that the traffic intensity has 
changed from Po and reset the system to bring traffic intensity back to 
the level Po. 

(iii) Repeat the procedure in (i) and (ii) above using the last state of the 
system as the initial state. 

Tables for %, cQ, d u and dQ are provided by Bhat and Rao [9] for the M/Ek/1 queue 
for some selected values of  k. The second phase (testing phase) of the sequential 
parameter control technique requires the knowledge of the first passage distributions 
and a great amount of  numerical work. An attempt to alleviate this problem in the 
system M/G/1 has been made by Bhat [8] using a modified distribution free procedure 
based on a censored sample of  number of  customers arriving during consecutive 
service periods. 

(e) SEQUENTIAL PROBABILITY RATIO TESTS 

When the difference between parameter values under null and alternative 
hypotheses is large, a sequential test has the advantage of using a considerably smaller 
sample size. With this objective, Rao et al. [46] have developed a procedure for test- 
ing the hypothesis H o : p = Po against an alternative H 1 : p r Pl using Wald's 
Sequential Probability Ratio Test (SPRT) for the systems M/G/1 and GI/M/s, in which 
queue length processes have imbeded Markov chains { Qn} �9 Let the transition proba- 
bility of  the chain be Pij (P) and let nij be the number of transitions i ~ j in { Qn} up 
to and including the nth transition. Then the likelihood ratio for the SPRT is 

L = v-I[ l p n i j  J l 

n . . - - i j  (pl)/[-Ip~ff(Do)... (54) 
t,l t,l 



240 U.N. Bhat  and S.S. Rao, Statistical analysis o f  queueing systems 

Let A = (1 - [3)/a, and B =/3/(1 - a ) ,  where ot and/3 are the probabilities of the errors 
of  the first and second type. The SPRT procedure is as follows: 

(a) if  L n ~ A ,  accept H 1; 

(b) i f L  n <. B ,  accept Ho, and 

(c) if B < L n < A ,  observe the next queue length Qn + 1, compute L n § 1 and 

repeat steps (a), (b) and (c). 

The mechanics of applying the test are easier if logarithms are used. For the case 
of systems M/M/I, M/Ek/1, Ek/M/s,  M/M/s/s and the machine-interference problem, 
the logarithm of (54) takes the form 

(55)  log L n = an + L n..c. .  
�9 . q q ' 1,1 

where a and c o are constants depending upon Po, Pl ,  and the transition probabilities 
of  the imbedded Markov chain. 

When the state space of  { Qn } is finite, the operating characteristic (OC) func- 
tion for the SPRT can be obtained as 

A to (p) _ 1 
L ( p )  ~- if to(P) --/= 0 

A to(;) - B t~176 

(56) 

_ logA if to (p)  = O, 
log A - log B 

where to(P) is the non-zero real root of the equation Xo(t ) = 1. Here, Xo(t ) is the 
largest real positive latent root of the matrix 

[ [Pij(Pl)] t (57) 
P ( t )  = Pi j (P)  �9 

Note that )%(0 is a function of p. The average sample number (ASN) can then be ob- 

tained as 

L(p) logB + 11 - L ( p ) } l o g A  X' 
E ( n ; p )  ~ X'(0) , if (0) 4: 0, 

L ( p )  (logB) 2 + {1 - L ( p ) }  (logA) 2 
if X"(0) = 0. 

- x " ( 0 )  ' 

( 5 a )  
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The ASN and OC functions have been numerically evaluated for the M/M/l/10 case, as 
shown in table 1. 

Table 1 

ASN and OC functions: M / M / l / 1 0  queue H o : p = 0.8, H~ : p = 2.0; 
= 0.05, t3 = 0.10 

ASN OC 
p E ( n ; o )  L(O) 

0.8 10.950 0.95000 
1.0 14.449 0.83138 
1.2 17.929 0.63049 
1.4 18s  0.41720 
1.6 17.862 0.26374 
1.8 16.991 0.16065 
2.0 15.840 0.10000 

A limitation of  the procedure adopted in the determination of OC and ASN 
functions is that the state space must be restricted to a finite number for the associ- 
ated imbedded Markov chain. Further, the computation of ASN and OC functions 
for the SPRT is quite tedious. Simplifications, expecially by way of making use of 
the i.i.d, sequence { X n } of  the number of customers arriving during successive service 
periods in the system M/G/1 as in Bhat [8], seem desirable. 

(f) LARGE SAMPLE TESTS 

Drawing upon the asymptotic tests for Markov processes developed by 
Billingsley [10],  Wolff [53] gives a number of  tests for the parameters in the M/M/l, 
M/M/~, M/M/s loss and M/M/s systems, where the arrival and service rates are X n and 
/a n when the number of  customers in the system is n. For the M/M/s loss system, his 
approach is illustrated as follows. Suppose the queue is fully observed and let u l be 
the number of upward transitions and dj the number of downward transitions from 
state ], 7] the total time spent in state j ,  and n the total number of observed transitions 
during (0, T] .  The null hypothesis is stated as 

H o ' 0  = 0 ~ where 0 ~ = (X~ ~ xo ,/a~ o 
' ' ' ' ' '  s - 1  ' ' ' ' ' / a s  )" (59) 

Then the likefihood ratio statistics can be obtained as 

S - 1  S 

x 2 -- Z ujlog%/x  Z a, log(a.//a  
j = O  j = l  

S 

+ Z :j(x? + (60) 
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Under the null hypothesis, (60) is asymptotically distributed as X 2 with 2s degrees of 
freedom. The power of  the test can be determined using the non-central X 2 distribution. 

When the system is not  Markovian but if  Markov chains can be identified in 
them, large sample tests can also be constructed using i.i.d, sequences of  random 
variables responsible for the Markovian structure. Thus, in the imbedded Markov chain 
characterization of  an M/G/1 queue, if  X n is the number of  customers arriving during 
the n th  service period, then {X n} is an i.i.d, sequence with E(Xn) = p, the traffic 
intensity. For large n, therefore, we may consider 

Z - ~ - Po (61) 
n s/X/-~ 

as being approximately standard normal for testing the hypothesis p = Po. Note that 
s is the standard deviation of  the sample. In general, this is a distribution free test. 
When the form of  the service time distribution is known, better tests can be con- 
structed. In particular, for the M/Ek/1 queue, Harishchandra and Rao [31] use the 
statistic 

zY - Po 
Z = (62) n / po (Po+k )  

V kn 

and compare the power of  this test with the power of  the exact UMP test given by 
eq. (50) for n = 30. An illustration is provided by table 2. Even for moderate sample 
sizes, the approximation by the large sample test appears to be good. 

Table 2 

Power of the UMP test and the large sample test for P. Queue M/M/l, H o : p = 0.8, c~ = 0.05, n = 30 

P 0.80 0.85 0.90 1.00 1.20 1.40 1.60 1.80 2.00 

UMP 
0.05 0.08076 0.12122 0.22880 0.49735 0.72998 0.87402 0.94605 0.97859 test 

Large 
sample 0.05 0.08693 0.13795 0.26764 0.55332 0.76296 0.88104 0.94065 0.96993 

test 

For testing p = Po in an M/G/1 queue using the i.i.d, sequence {Xn}, additional 
large sample tests have been suggested by Basawa [2]. 
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In GI/G/1 queues, Basawa and Prabhu [3] have shown that the m.l.e.'s of the 
arrival and service time parameters given by eq. (12) have an asymptotic normal distribu- 
tion [eq. (13)]. This property can be used to construct large same tests for appropriate 
parameters. Further work comparing these tests with other exact tests may also throw 
some light on where and when to use approximate tests. 

6. O t h e r  r e la ted  topics  and  f u t u r e  p rospec t s  

In this section we briefly mention some related topics which in our opinion 
indicate the type of problems that are significant in the future development of the 
subject area. 

(1) In the use of queueing models, convenience of observation plays a major 
role. For example, as observed by Neal and Kuczura [43], traffic parameters in the 
Bell System are generally determined by obtaining the following three measurements 
during a time period (0, t): (i) A(t), the number of calls, (ii) O(t), the number of un- 
successful calls (overflow), and (iii) Ld(t), an estimate of usage based on discrete 
samples (n = 36). Using these functions, one can determine: 

call congestion = O(t)/A(t); load & = 
Ld(t)/n 

1 - O ( t ) / A  ( t )  " 

Intuitively, we may identify call congestion as representing the probability of loss and 
load ~ as representing the effective traffic intensity. These measures can be obtained 
from analytical models by determining arrival and service rates. However, it is con- 
venient to get these quantities directly as shown above, instead of using the detailed 
information on the arrival and service processes. When such measurements are made, 
accuracy of the result as measured by the standard error of the sample function is of 
interest. This aspect has received considerable attention from several investigators; 
see Kosten et al. [36], Syski [51], p. 654, Beneg [6], Riordan [49], Descloux [24], 
and Neal and Kuczura [43]. In particular, Descloux considers the joint distribution 
of three processes in an M/M/s loss system: N(t) = number of busy channels at time t 
and A(t) and O(t) as defined above, and derives cov[A(t), O(t)] and the variance of 
the call congestion O(t)/A(t). Comparing call congestion with the proportion of time 
when all servers are busy (time congestion), Descloux concludes that the standard 
deviation of call congestion is larger than that of the time congestion when the offered 
load is approximately less than the number of channels and the inequality is reversed 
otherwise. 

(2) A problem closely related to measurements is that of sampling. Extensive 
results on sampling as applicable to simulation of stochastic systems are available; 
see Fishman [25] and comments made earlier in sect. 1. 
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(3) There are times when only the output process of the queue can be ob- 
served. A question that naturally arises is to what extent the output process provides 
information on the input process. This characterization problem is also important in 
the study of queueing networks where departures from one queueing node form 
arrivals into another. One approach to output analysis is provided by time series 
analysis techniques, but the input-output transfer functions used in time series are 
purely theoretical models and they may not have any resemblence to the actual 
process. In queueing theory, much more information is available on the input-output 
transfer structure and therefore, for the best use of time series analysis techniques, 
considerable work needs to be done in their adaption to queueing systems analysis. 

(4) Applied queueing theory relies heavily on results from Markovian systems. 
The robustness of such results is therefore a significant factor. Queueing theorists have 
tackled this problem in an indirect manner by using approximating systems. When 
simpler systems are used to approximate more complex ones, validation is essential. 
At the present time, simulation and checking through some simple cases seems to be 
the more prevalent methods available for this purpose. In this case of experimentation, 
more sensitive analysis is needed. Wider use needs to be made of statistical techniques 
related to point and interval estimation. A study of system robustness using approxi- 
mation systems does not tackle the problem at its roots. What is needed is the informa- 
tion on the impact of  changing distribution assumptions for system elements. 

(5) One of the major problems in gathering necessary data from queueing 
systems for statistical analysis is the inability to obtain complete information, either 
due to system structure or due to prohibitive costs. An example is the test for the 
exponentiality of the service time in the M/G/1 queue using waiting time data, as 
given by Thiagarajan and Harris [52]. The sequential parameter control technique 
discussed in subsect. 5(d) is aimed at using observations only on the queue length 
process. It is our belief that if analysis techniques are to be useful for the practitioner, 
they should make use of only observations that are easy to collect. 

(6) In queueing theory, most of  the resulting random variables are non-normal, 
while most of  the standard tests are based on normal variates. Therefore, an area that 
needs exploration is the use of non-parametric tests. We may use simple tests such as 
the Kolmogorov-Smirnov test to see whether a queueing situation can in fact be 
represented by a specific queueing model with known properties. When steady-state 
distrbutions are characterized, this procedure can be easily applied. However, for more 
complex systems and hypotheses, we need to develop simple tests. 

As queueing theory finds new application areas, new problems emerge. For 
example, during recent years queueing problems in computer communication systems 
have been a major area of queueing theory research. These are mainly network-related 
systems and consequently statistical analyses of queueing networks have become 
necessary (see Gaver and Lehoczky [27] ). 

Finally, we may also mention that new perspectives on statistical inference 
are also influencing research on inference on queueing systems. The subjective Bayesian 
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approach to the theory of queues initiated by McGrath and Singpurwalla [40] is in 
this spirit. In any case, statistical analysis of queueing systems is an area that brings 
together the practitioner and the theoretician with a common purpose. 
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