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Abstract 

In this paper we study single server queues with independent and identically distributed 
service times and a general nonstationary input stream. We discuss several notions of "being 
in equilibrium". For queues with a doubly stochastic Poisson input we survey continuity and 
bounds of moments of some performance characteristics. We also discuss conjectures posed 
by Ross [34] to the effect that for a "more stationary,' input we have a better performance 
characteristics. Some results are reviewed to typify a problem and then it is followed by a 
discussion, questions and related bibfiography. 

Keywords: M r / G / l ,  D S P / G / 1 ,  G / G / l ,  stationary waiting time, stationary work-load, 
Ross' conjectures, equilibrium, a.m.s, sequence, tightness, continuity, uniform integrability. 

1. Introduction 

This study arose from considerations about a problem which can be for- 
mulated roughly as follows. Suppose we consider a class of queueing systems, say 
for example single server queues, with different inputs having the same asymp- 
totic arrival rate, the service process being the same for all systems. For a given 
performance characteristic we ask which input minimizes this characteristic or, 
more generally, we want to find some monotonicity properties of performance 
characteristics regarding inputs. In this paper we consider doubly stochastic 
Poisson inputs with generic random measures satisfying with probability 1, 
A([0, t])/t---> X for t---> ~ ,  where k is a given arrival rate. To answer such 
questions we must first decide what we understand by the stationary performance 
characteristic. Note  that in the classical theory of queues, where the input is a 
renewal process, it is quite obvious what we mean by stationary performance 
characteristics and the possible approaches are suggested by the theory of 
Markov chains, renewal theory and the theory of regenerative processes. 

In this paper we review a few conjectures concerning the problem regarding 
which input is better, and some technical problems useful in such considerations. 
Thus we discuss several notions of stability and among others conditions for 

�9 J.C. Baltzer A.G. Scientific Publishing Company 



114 T. Rolski / Queues with nonstationary inputs 

tightness of some performance processes. We also discuss some cont inui ty  results 
for moments  and condit ions for finiteness of moments  of per formance  character- 
istics. 

All r andom variables are defined on a c o m m o n  probabil i ty space (~2, ,~ ,  P) .  
We shall deal mostly with single server queues operat ing with the first come, first 
served discipline and unl imited capacity. The service t ime of the i th customer  is 
S i and unless otherwise stated, the sequence S = (S/ )  consists of independent  
and identically distr ibuted (i.i.d.) r andom variables (r.v.) independent  of the 
input.  In this case we assume E[S] < oo and let/~ = (E[S] )  -1. The  input  process 
of the system is represented by the point  process N on R + defined by 

N ( s , t ] =  ~_ , l ( s<~i<~t ) ( s< t ) ,  (1.1) 
i =1  

where 0 < r 1 < ~'2.-. are the arrival epochs and I (A)  is the indicator funct ion of 
the event A. The N(s, t] is the number  of arrivals in the interval (s, t]. The  
inter-arrival times are 

r l = q -  1 and Zi~-q'i-q'i_ 1 ( i = 2 ,  3 , . . . ) .  (1.2) 

We also write N(t) = N(0, t]. In the special case of interest N is a homogeneous  
or non-homogeneous  Poisson progess H a with intensity funct ion A (dt)  = )~(t) dr. 
The intensity A can be also random, and then H A is said to be a doubly  
stochastic Poisson (DSP) process directed by the r a n d o m  measure A (for details 
see Kallenberg [20], Serfozo [36]). If X(t)---X then H a is stat ionary and is 
denoted by/77,.  In the special case X(t) = 1, we w r i t e / 7  to denote  the s tandard 
stationary Poisson process. 

We are interested in the following performance processes: the waiting t ime 
sequence { W/, i = 1, 2 , . . .  } given recursively by 

l 'Vn+x=(J/gn+sn-rn+l) + (n = 1, 2 , . . . )  (1.3) 

with an arbitrary Wa, the work-load process { V(t), t >~ t} defined by 

V(t) = { (V(O) - t) +, 0 ~< t < r 1, (].4) 

(WN, t,-F SN(t,--(t--'rN, t))) +, t ) ' r  1, 

and the number  in system process { L( t ) ,  t >1 O} defined by 

L ( t ) =  E l ( r /  <... t < r, + W i + Si). (1.5) 
i 

We sometimes refer to these processes defined on the entire real line R, in which 
case the arrival times are subscripted such t ha t . . .  < r o ~< 0 < r~ < . . . .  

2. Long run behaviour and equilibrium 

The not ion of steady state or equil ibrium state has several interpretat ions for 
non t ime-homogeneous Markov or non-sta t ionary processes. We survey here 
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some results in this regard that  might  lead to the unders tanding  of more  general 
cases. 

(a) M t / G / 1  queue. Suppose that the arrival process N is non-homogeneous  
Poisson with intensity function (arrival rate function) X(t). A weaker requirement  
for a performance process is whether  the process is " k e p t  in some range" for all 
t >~ 0. A formal way of describing this is in terms of tightness. A real valued 
process (X( t ) ,  t >1 0} is tight if for each positive e we can f ind reals a and b for 
which P{ a <~ X(t) ~< b} >/1 - ~(t > 0). Tightness for discrete processes is similar. 

PROPOSITION 2.1 
If there are constants X > 0 and d>_- 0 such  that  XE(S)  < 1 and 

f fX(v)  d v < ~ X ( t - s ) + d ,  s<<.t, 

then { V(t), t >~ 0} and (W,,  n = 1, 2 , . . .  } are tight. 

(2.1) 

Proof 
For  simplicity we assume W 1 = 0 and V(0) = 0. We know that if 

X0- -0  , X n = S I + . . . + S n - T z - . . . - T n +  1 ( n =  1, 2 , . . . )  

then 

W,+ 1 = max{ Xn - Xi, i = 0 , . . . ,  n } 

and if 
N ( t )  

X ( t ) =  E S i - t  
i = 1  

then 

V(t) = m a x { X ( t )  - X(s) ,  0 ~ s <~ t} ;  

see e.g. Borovkov [6]. We can represent the input  process by N( t )=  H(A(t)) ,  
where H( t )=  H[0, t], A( t )=  f~X(s)ds. Let {Mi} consists of independen t  ran- 
d o m  variables with the c o m m o n  s tandard exponential  distribution. Define a 
sequence of s tandard Poisson processes indexed by n = 1, 2 , . . .  

/~n ( t )  = E l (Mi+.. .+Mn<<.t  ) (t>/O) 
--oo < i  <.Nn 

where the consecutive inter-point  distances are M, ,  M n_ a,- .- .  Set 

. = f t  X )t"(t)=)t(Tx + ' "  + T n - t )  and A"( t )  ,Io , ( v )  dv.  

Define a sequence of count ing processes indexed by n = 1, 2 , . . .  
H 

/~.  o A , ( t )  = E I(T/+ . . .  +T,<~t), (O~<t< Ta+ . . .  + T , )  
i = 1  



116 T. Rolski ,/Queues with nonstationary inputs 

(n = 1, 2 , . . . )  which counts points of N beginning at T 1 + . . .  + T, leftwards. 
Thus 

17 o A ( T  1 + . . .  + T n ) - l ~ o  A ( T  1 + . . .  + r , - t ) ) = F l ,  o A , ( t ) ,  

(O~ t  < TI + ... + T,). 

By (2.1) we have 

/Tn ~ Sn(t) ~</I~(Xt + d), (t >0). (2.2) 
Let { Ti ~, i = 1, 2, . . .  } be a sequence defined by 

v~ (i= 1, ,&(d)) 
and 

TT + F I , ( d ) =  Mj ,  ( j =  I, 2 , . . . ) ,  

where { Mr, j = 1,. . .  } is a sequence independent of /1, (d)  and { Sj }, consisting 
of independent and identically distributed random variables, each exponentially 
distributed with parameter ~. We have for each n = 1, 2 . . . .  

oo 

/7,(fftt + d )  = Y" I(T~ + ... + T/" ~< t) 
i=1  

and hence by (2.2) 

( r n + l , . . .  , T 2 + . . .  + T n + l )  >/d(r~,..., T? + . . .  + r2) .  

This yields 

W~ ~<d max(0, S 1 -  T ] , . . . ,  $1 + . . .  + S n -  T1 ~ - . . .  -T~ ~). (2.3) 

Now let {S[} d { S,.}, / 7 , ( d ) a r t ' ( d )  and { S,.}, {Si' }, Fin(d ), ( M / }  are inde- 
pendent and then the right hand side of (2.3) can be stochastically bounded above 
by 

31 + ... + S~In(d) + max(O, $1' - MI ' , . . . ,  $1 + ... + S~' - M 1' - ... - 3 / / ' )  

which does converge in distribution. This proves that { W~ } is tight. 
To prove that ( V(t)} is tight we write 

V ( t ) = m a x  E S i - ( t - s ) ,  O<~s<~t . 
i=1  

By (2.1) 
(H(X(t-s)+d) } 

V(t )<.dmax I Y'. S i - ( t - s ) ,  O<s<. t  
i=1  

n'(d) { rex,) } 
<d ~ S [ + m a x  Y'~ S i - s  , O<~s<t . 

i=1  i=1  
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Since the last expression is convergent in distr ibution we obtain that  (V(t)}  is 
tight. [] 

REMARKS 
(i) Condi t ion (2.1) is satisfied when 

t 4/ sup = 

Indeed 

(f' lotd  1 sup 
s 

(ii) If • is a periodic funct ion or the sum of a finite number  of periodic 
functions (with possibly different periods), then its mean  

= l im t - l (? t (v)  dv 
t ----~ OO a0 

exists and is finite. In this case (2.1) is satisfied. 
(iii) Finite sums of cont inuous periodic functions are Bohr 's  a lmost  periodic 

functions. Condi t ion (2.1) can also be satisfied by other Bohr 's  almost  periodic 
functions. More details and references can be found in Rolski [32]. 

There are few results in literature closely related to proposi t ion 2.1. For  
example Heyman  and Whit t  [18] proved tightness of the queue length process 
(L(t), t >i 0) in Mt/M/k  queues under  the following condit ion:  For  some t 0, 
and T > 0 

f to+(,+a)T (s) ds<~(k~- )T, (n 1 ,2 ,  .) .  
o +nT ~k s = .. 

Thorisson [41] considered more  general M y G / 1  queues with 

lim inf sup _fs+tX(v) dv < (2.5) 
l ---> O9 S " S  

and, in particular ment ioned  that  for the work-load Vs(t ) at t ime t when the 
system starts at s < t, 

V* ( t )  = l im V~ ( t ) ,  with probabil i ty 1. 
S---> - - 0 9  

Condi t ion similar to (2.1) or (2.5) appear  also in Masey [23]. 
For  the work-load process we have 

{ N(s, t] ) 
V ( t ) = m a x  Y'~ S i - ( t - s ) ,  O<~s<~t 

i = 1  
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(see e.g. Borovkov [6]). Applying Jensen's inequality we get 

1 
= v ( t )  (say). (2.6) 

For a formal proof we use lemma 1 from Rolski [30] and Wald's identity. Here 
v ( t )  is the solution of the following deterministic fluid flow problem in which 
v(t)  is the content of an initially empty container into which a fluid flows in a 
rate X ( t ) E ( S )  and flows out (if v ( t ) >  0) at rate 1. Heyman and Whirr [18] 
showed that even for a bounded intensity function X(t) on R+ satisfying 

t - l f t X ( s )  d s = X  and ~tE(S)  < 1, (2.7) 
t limoo .; o 

it is possible that 

lim t - l  f t v ( s )  d s =  ~ .  
t ~  " 0  

In this case (2.6) yields 

tim t - l f t E [ V ( s ) ]  d s =  co. (2.8) 
t ~ 0 

This raises the question whether it is also true that with probability 1 

s ( t l imt  -1 V s) d s = o o .  2.9) 

On the other hand we can ask, what conditions we have to impose on X(t) and 
the generic service time S, besides (2.7), to ensure that with probability 1 

lira sup t - l  f t V ( s )  ds < oo. 
a0 t--~ OO 

Clearly from the proof of proposition 2.1 it suffices to assume (2.1) (recall that 
X E ( S )  < 1) and E ( S  2) < m. It is not clear whether these conditions can be 
weakened. 

A second question that arises is whether in M , / G / k  queues the tightness of 
one of the processes { V(t)}, { W,(t)}, { L(t)}  implies this property for the other 
two. This question is also of interest for general G / G / 1  queues without our usual 
assumptions on the service sequence { S i } ; here we need some additional assump- 
tions to exclude trivial cases such as when Sg = T i = i ( i = 1, 2 , . . .  ). 

Frequently an asymptotic property for the input data is preserved for a 
performance process; see Rolski [27], Rolski and Szekli [28], Szczotka [39]. Thus 
we can ask whether the tightness of { Ot(E;Sil,, ), t >~ 0} implies the tightness of 
{ V(t) }, { L (t) } and { IV, }. We need tightness of { W, } to prove some stability 
results (see Szczotka [39] and the proof of our proposition 2.2). 

(b) Periodic and almost periodic Poisson queues. Suppose that 2t (t) is a periodic 
or almost periodic function. An almost periodic function on R+ is the uniform 



T. Rolski / Queues with nonstationary inputs 119 

closure of all continuous periodic functions and their linear combinations. It is 
known that the mean of such a function X 

= lim t - l f tX(s)  ds 
t ----~ O0 a0 

exists (see e.g. Corduneau [91). 

PROPOSITION 2.2 

Suppose ?fit) is an almost periodic function satisfying the hypothesis of 
proposition 2.1. Then there exists a stationary and ergodic sequence (T~ ~ } 
independent of ( S i } such that for j -~ ov 

(Tj, Tj+I,. . .  ) k (T ~ TO,. . . )  (2.10) 

(Wj,  W j + I , . . .  ) ~ ( W ? ,  W ? , . . . ) ,  (2.11) 

where 

W, ~ = max(S,-1 - T/~ S/-1 -~- & - 2  - T/0 - r/~ . .-  ) 

and & denote the convergence in distribution. If X(t) is a periodic function then 
(T,, T/+I,... ) and (Wi, Wi+ 1 . . . .  ) converge in total variation to (T ~ T ~ and 
(W ~ W~ ) respectively. 

Proof 
(2.10) was proved in Rolski [32]. By proposition 2.1 the sequence ( W i } is tight 

and so the assumptions of theorem 1 of Szczotka [39] are satisfied and we can 
deduce (2.11). The total variation convergence of (T~, T~+I,... ) was also proved in 
Rolski [32] from which we obtain immediately the same convergence for 

[] 

In Rolski [32] for the proof of (2.10) we required a weaker condition than (2.1). 
The question arises whether in this case we also have (2.10). 

The theory outlined in Rolski [32] provides a representation of { TO}. In the 
periodic case, {T~ ~ } is the inter-arrival sequence in a DSP process with the 
random intensity function ) t ~ 1 7 6  t), where 0 ~ has density function 
7,-iX(t)  on [0, p = period of X]. If 0* is uniformly distributed over [0, p] then 
X*(t) = X ( 0 * +  t) is a random intensity function of a stationary DSP process, 
whose Palm version has inter-arrival times { T~~ To see the structure of { T~ ~ } 
when )t is an almost periodic function, consider a simple case in which )t = Xl + 
X2, where Xl and X= are periodic with periods Pl and P2 respectively and Pl, P2 
are incommensurable. We can decompose the Poisson process with intensity 
function )'1 + X2 as the superposition of two independent  Poisson processes with 
intensities Xl, X2 respectively. If 01" and 02* are independent  and uniformly 
distributed over [0, Pl) and [0, P2) then Xl(O* + t) + X2(O* + t) is the intensity 
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function of a stationary DSP process. Its Palm version is a DSP process with 
additional point  at zero and having intensity funct ion )tl(0 ~ + t ) +  X2(02 ~ + t), 
where (0 ~ 02 ~ has the density function (?tl(tl) + X2(t2))/(X 1 + 4 2 )  over [0, Pl)  
• [0, Pa)- This latter fact can be also proved using probabilistic arguments  
applying theorem 1.3.11 f rom Franken  et al. [12] and theorem 2.4.2 f rom 
Grandell  [13]. For  an arbitrary almost periodic funct ion X(t), the Bohr com- 
pactification of R with respect X is used to define { T/~ for details see Rolski 
[32]. The other papers related to the discussion in (b) are: Grillingeber [15], 
B~Shme [5], Asmussen and Thorisson [1], Berbee [4], Karandikar  and Kulkarni  
[19], Harrison and Lemoine [16], Thorisson [42], Lemoine  [21]. 

(c) General case. Let X = ( X, } be a sequence of r andom variables that  takes 
values in the Polish space IF. For  x = (xa, x 2 , . . . )  ~ ~:~ define the family of shifts 
{o n} by O'X=(Xn+ 1, Xn+2,. . .) .  We now introduce a class of asymptotically 
mean  stationary (a.m.s.) sequences. It is said that  a sequence X is a.m.s, if there 
exists a stationary sequence X ~ = { X~ ~ } such that for each B Borel subset of Iv ~ 

n 

lim n -1 ~ P { o J X ~ B } = P ( X ~  
n ~ o v  j = l  

This not ion was independent ly  in t roduced by Rolski [26], [27] and Gray and 
Kieffer [14]. It is clear that X ~ must  be stationary. If moreover  X ~ is ergodic 
then the individual ergodic theorem is satisfied: that  is, for each measurable 
function f :  ~:o~ ~ R+ with probabili ty 1 

t l  

lim n -1 ~_,f(a-iX)=E(f(X~ 
n-+ov j = l  

If X is an a.m.s, sequence then we write o"X a'm's')x~ and we say that  X ~ is a 

stationary representation of X. In this paper  we tacitly assume that  stat ionary 
representation X ~ is always ergodic. The  usefulness of a.m.s, not ion  can be 
illustrated by the following proposit ion.  Note  that  the input  data  and the 
performance process are of the same type. 

PROPOSITION 2.3 (ROLSKI [27]) 
If T, S are general inter-arrival and service sequences respectively, such that  

for n ~ oo 

on(T, S) am's ' ) (T~ S 0) (2.12) 

and P = E(Sp)/E(T/~ < 1 then 

o'(W, T, S) a'm's'>(W~ T O , S O ) (2.13) 

where 

W~ ~  max(0,  S,~ - T,. ~ $l~ - T~ ~ + S~ - T~ ~ a , . . .  ). 
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Note  that there we do not  assume anything on the independence  of S. Szczotka 
[39] proves similar results for other types of convergence including weak conver- 
gence and total variation convergence. 

R E M A R K S  

(i) Note  that for an a.m.s, sequence T we have 
n 

lim n - 1 E  Tj= E ( T ~  =~t-1.  (2.14) 
n ---~ o~ j = l  

The constant  ~ is Called the asymptot ic  arrival rate. 
(ii) Assumpt ion  (2.12) holds if 

t in t  a 'm's" > T ~  ' 

where T O is a stationary and ergodic sequence, T o is independent  of S, and S 
consists of i.i .d.r.v.s. If T is the inter-arrival t ime sequence in a stat ionary and 
ergodic point  process, then T is a.m.s. (see Rolski [27], [29]). An  example of a 
stationary ergodic point  process is a DSP process with stat ionary and ergodic 
intensity process {)t*(t)}. It is not  known whether  in this case we have for 

d 0 d n ~ oo, W n ~ W , where ~ denote  the convergence in distribution. 
(iii) The following inter-arrival times are a.m.s, and have the same stationary 

representations: (T~ } is the periodic Poisson process with arrival rate )t(t) and 
{ T~* ) is the DSP process with arrival rate funct ion )t*(t) = )t(O + t), where 0 is a 
uniformly distributed over [0, p], where p is the period of )t. For  bo th  these 
sequences the stationary representat ion { Tf}  is a DSP process with arrival rate 
function ) t ~ 1 7 6  t), where 0 ~ has the density funct ion ~ - l ) t ( t )  over 
[0, p]. 

(iv) Rolsld and Szekli [28] proved that  under  the hypotheses of proposi t ion 2.3, 
the inter-departure times form an a.m.s, sequence. 

Proposit ion 2.3 justifies the use of known identities valid for queues with 
stationary and ergodic input  data, also for queues satisfying the hypotheses of 
proposi t ion 2.2. For  example the mean  stationary waiting t ime equals with 
probabili ty 1 to 

n 

E ( W  ~ = lim n -1 • W~, 
n---~ oo i = 1  

and the mean  sojourn t ime is given by 
n 

E ( W  ~ + S ~ = l im n -1 Y'~ (W~ + Si). 
n---~ o~ j = l  

If E ( W  ~ < ~ then we have with probabil i ty 1 

lim W~/n = lim W~ = O. 
n- - -~  o o  n ---~ o o  
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Hence from St idham [37] we obtain that there exists with probabil i ty 1 

s = lim t - l f tL(s)  ds 
t - - ~  -/0 

and the Little formula L=XE(W~ S ~ holds. Similarly we can prove the 
following version of Brumelle identi ty 

lim t - l f V ( s )  as  = X ( E ( S ) E ( W  ~ + 1 E ( S 2 ) ) ,  (2.15) 
t ----) ~ J0 

which is satisfied for T and S independent ,  T being a.m.s, and S consisting of 
independent  and identically distr ibuted r andom variables. For  further discussion 
of the points raised here, see Rolski [271, [29], Szczotka [39], Miyazawa [24], 
Rolski and Szekli [281, Grey and Kieffer [14], Borovkov [6], [7], Loynes [22], 
Asmussen and Thorisson [1], St idham [371, Brumelle [8]. 

3. The D S P / G / 1  queue 

As we saw in section 2, even for a queue with a non-stat ionary,  determinist ic 
arrival rate function, its stationary representat ion is built  on the interarrival times 
of a DSP process. There are also other examples such as queues with Markov 
modula ted  input  in which DSP arrivals are generated by the arrival rate X(t) = 
a(X(t)), which is a function of X(t), where X(t) is a finite, irreducible continu- 
ous time Markov process. Rolski [27] showed that  if T -- { T~ } are the interarrival 
times of such a Markov modula ted  input,  then T is an a.m.s, sequence with 
stationary representation { T~ ~ } being interarrival t imes of the Palm version of the 
DSP process with the arrival rate funct ion X*(t) = a(X*(t)). Here X*(t) is the 
stationary Markov process with the same generator as X(t). Note  that  finiteness 
of the state space of the process X(t) is not  essential. 

In this section we suppose that  the arrival intensity funct ion X*(t) is stationary 
and ergodic. In such a case T is an a.m.s, sequence. We also assume that  
0 = X E ( S )  < 1, where 

= lim t-lftX*(s) ds with probabili ty 1. 
t ----) ~ J0 

Continuity. We study here a rather technical, but  impor tan t  proper ty  of 
continuity of performance characteristics. We are also interested in the cont inui ty  
of the mean performance characteristics which seems to be less unders tood  for 
general G / G / 1  queues. Consider a sequence of D S P / G / 1  queues. Suppose that  
the arrivals at the k-th queue have the arrival rate X~(t), which is stat ionary and 
ergodic and such that with probabili ty 1 

l i m  t-lft)k~c(S) as  =X• < ~ .  
.I0 
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Consider  the r andom measure A*~(B) = fBX](t) d t  and suppose that  

A* X E(A*[0, 1]), A~ ~ and Xk ~ = 

where A*(B) = fBX*(s) ds. Here s denote  the convergence in distr ibution of 
r andom measures. Then  by Kallenberg [20, exercise 4.5] or Serfozo [35], it follows 
that  for arrival processes 

d 
//A~ ~/TA*- 

Thus the condit ions of theorem 3.2.1 f rom Franken  et al. [12] (see also Borovkov 
[7]) are satisfied and if V k is the stationary work-load in the k-th queue and V* 
in the queue with arrivals generated by HA. then 

d 
v~-~ v*. (3.1) 

Recall that  in all queues the service process is the same. For  the convergence of 
means in (3.1) we need to prove the uni form integrability of { V~ }. For  this we 
define 

Dk=SUp{A~[O, t ] - y t ,  t>~O}, 

where limk_~o~X k < ~, < (E(S))  -1, which by the ergodic theorem is a finite r.v.. 

PROPOSITION 321 
E ( S  3) < o0 If and 

s u p E ( D 2 )  < oe, 
k 

then for k ~ •, E(Vk) ~ E(V*). 

(3.2) 

Proof 
Since (3.1) is fulfilled, we have to prove the uni form integrability of { V k }, for 

which it suffices to show 

s u p E ( V : )  < oe. (3.3) 
k 

Following the proof  of proposi t ion 1 of Rolski [31] we can prove that  

le(v:)  < e (v~ / (e ( s2 / -  e2(s)) + e(v~ ) ~ ( S /  

re(s 3) r2e2(s2) + + 
3(1 - 3,E(S) 2(1 - y E ( S ) )  

which yields (3.3) in view of (3.2). [] 
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The essence of Dk is transparent when we write down the following inequality 
given in Rolski [31, lemma 2] 

Vk=aSUp ~ S i -  t, t >~ O 
i=1 

/TAk(Dk) {/-/( "/t ) 

~st E Si t + s u p {  E S i - t ,  t>~0,1 (3.4) 
i = l  k i =1 

where H'Ak(Dk), (/-/(rt)},  (Si}, (Si'} are independent,  (Si'} =a (Si} and 
HAk(Dk) =d HA~(Dk)" This inequality is also useful for proving the finiteness of 
moments of V k. Thus for example, we can prove as in Rolski [33, proposition 3] 
that E(Vk) < oe provided E(S2)  < oc and E(Dk) < oe. Unfortunately we are 
able to find bounds for moments of D k in a few cases only, namely for queues 
with a periodic intensity function and almost periodic intensity fulfilling (2.4). 
Rolski [31] found bounds for E(Dk) and E(D~) in some particular cases of the 
Markov modulated input. These bounds were needed to approximate a periodic 
Poisson queue by a sequence of Markov modulated queues. However for a 
general stationary and ergodic intensity process ()t(t)} or even for the Markov 
modulated case we do not know bounds or finiteness conditions for moments  of 

D k �9 

Ross [34] posed several conjectures about the following phenomena in queues 
with DSP arrivals: roughly speaking, it can be said that for )t being "closer" to 
stationarity we have smaller performance characteristics. The following is an 
example. 

PROPOSITION 3.2 (ROLSKI [27], [29]) 

In a D S P / G / 1  queue, if )t(t) is either periodic or Markov modulated or 
stationary and ergodic, then for the mean stationary waiting time W ~ and each 
nondecreasing and convex function f:  R+ ~ R+, we have E(f(W~ >~ E(f(I,V)), 
where I~ is the stationary waiting time in the standard M / G / 1  queue having the 
arrival rate ~ and the generic service time S. In particular 

 ,E(s 
= (3.5) 2(1-7,E(8)) 

Unfortunately, in general we are unable to say what is meant  by "less 
stationary arrival rate". What we can say is that the constant arrival rate is the 
most stationary among all arrivals with the same asymptotic rate X. We now give 
a few plausible conjectures which, if true, would throw some light on this 
problem. 



T. Rolski / Queues with nonstationary inputs 125 

Conjectures 
(i) Ross [34]). Let X*(t) be a two s ta te  (Xl, ~k2) Markov process with intensity 

matrix 

( -c0/1 Co/l) (3.6) 
C0/2 - -  COL 2 

and w(c) denote the mean waiting time in the queue with arrival rate X*c(t). 
Clearly, for each c > 0 

) t - -  7t10/2 + 2t20/1 = lim t - l [ tX*(s)  ds with probability 1. 
0/1 "+" 0/2 t-+ ee J0 

The conjecture is that w(c) is a decreasing function as c --+ m. Notice that XT(ct) 
is a Markov process with intensity matrix (3.6). 

(ii) Let X*(t) be a stationary and ergodic arrival rate function and let 
X*(t) = X*(ct). We denote by w(c) the mean stationary waiting time with arrival 
rate X*c(t). When does w(c) decrease? Observe that w(c) is not always strictly 
decreasing. Consider a periodic Poisson/D/1  queue with a periodic arrival rate 
function X*(t) having period 1 a n d  the service times equal to 1. Following 
Heyman [17] we can prove that w(1) = w(2) = . . . .  However we conjecture that in 
a periodic Poisson/M/1,  function w(c) is strictly decreasing. 

(iii) Under the hypotheses of proposition 3.2 we conjecture that the similar 
property holds for the variance as for the mean that is 

D Z ( w  ~ >/D2(I~) = XE(S3) + 2~02(fft) (3.7) 
3(1 -T tE(S) )  

provided E(S  3) < oe. We can prove (3.7) if X*(t) assumes two values Xl = 0 and 
X 2 > 0 with intensity matrix (3.6), using arguments similar to Ross [34] and 
Stoyan [38, theorem 5.22]. 

P R O P O S I T I O N  3.3 

Suppose that X(t) is a stationary and ergodic random process and for some 
< ,/< (E(S)) -1 

[ IJo tX(s) ds "yt, t>/0 < o e  E ( D  2) = E sup 

and E(S  2) < ae. Let w (c) be the mean stationary waiting time in the system with 
the arrival rate function Xc(t ) = X(ct). Then w(c) is a continuous function on 
(0, oc] and 

w(c) w(O)= E [,o(x(o))]. (3.8) 
If moreover 

P ( X ( t ) ~ 7 }  = 1  (3.9) 

then w(c) is continuous on [0, ~] .  
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Proof 
By Brumelle's formula (2.15) it suffices to consider the mean stationary 

work-load. We have ~c = E()~c(0)) = ~ .  Note that if 

D~=sup Xc(S ) d s - T t ,  t>~0 

then D c ~ D /c .  Thus by (3.8), for each c o > 0 

sup E(D2)  < ~ ,  
C ~ C  0 

which coupled with proposition 3.1 and proposition A of the Appendix shows the 
continuity of w(c) on (0, ~] .  The stationary waiting time W(c) has the represen- 
tation 

I 1 W(c)--dsup E s i - t ,  t>~0,  
i=1  

where HA, ' and {S~} are independent. If (3.9) is satisfied then W(c) is stochasti- 
cally bounded above by 

{ 17~(t) 

W = s u p  ~ S i - t ,  
i=1  

Since E(W) < ~ and 
17x~o~(t) 

, 01 
W ( c ) - ~ s u p  Y'~ S ~ - t ,  t>~O,  c ~ 0  

i=1  

we obtain w(c)--* E(~()~(0))). Inequalities in (3.9) follows from (3.5) and the 
result of Rolski [30]. [] 

For further discussion of points raised here see Fond and Ross [11], Niu [25], 
Rolski [30], Chang and Pinedo [10], Svoronos and Green [40], Baccelli and 
Makowski [2] 

Appendix 

P O I N T  PROCESSES A N D  R A N D O M  M E A S U R E S  

We denote by ./K(E) (.A/'(rg)) the space of locally finite nonnegative (integer 
valued) measures on IF = R or •+ endowed with the vague topology (for details 
see Kallenberg [20]). A random measure (point process) is a random element 

M: (ca, 5 ,  P) -+ ( ~ ,  b (~ ) ) ,  
N: (S2, Y ,  P)--+(aV', b(.A/')), 
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where b( . )  denote  the o-field of Borel subsets. For  E = R, the family of shifts 
{ 0 t ) is defined by 

= , ( .  + t). 

A point  process H A on R or R+ is said to be a non-homogeneous  Poisson 
process with intensity function A (d t) = X (t) d t if for each disjoint bounded  B orel 
se t s  B 1 , . . .  , B k r andom variables IIA(Ba) .... , HA(Bk) are independent  and 

P ( H A ( B ) = k } =  Ak(B) k! e-A(B)" 

The intensity measure A can be generalized to be random,  and then H A is said to 
be a doubly stochastic Poisson process. If X(t) = X(0), where X(0) is a r andom 
variable then H A is called a mixed Poisson process and is denoted  by Hx(0). 

P R O P O S I T I O N  A 

Let )t(t) be a stationary and ergodic r andom intensity funct ion and define 
X~(t) = X(ct). If A~ is the r andom measure with intensity funct ion Xc(t ) and 

= E[X(O)] < m then the family (HA: 0 < c ~ ~}  is cont inuous in distr ibution 
and for c--* oo 

d 
/-/A c ----) /-IX. 

If the trajectories of X(t) are right cont inuous then for c ~ 0 
d 

HAc ~ Ha (0 ) .  

Proof 
In view of Kallenberg [20, exercise 4.5] or Serfozo [35], it suffices to prove the 

continui ty in distr ibution of the family {Ac, 0 < c ~ m}.  By Kallenberg [20, 
theorem 4.2] it suffices to prove that  for each c o ~ (0, m] 

(Ac[al, bl] .... ,ac[ak, bk]) 

d (Aco[al, b l ] , . . . ,  Aco[ak, bgl), Co 

However 

Ac ( [ a ,  b ] ) = l c f a b f  x ( s )  d s =  b~-~fobCx(s) a s - a f o a ~ X ( s ) a s  

(A.1) 

and (A.1) follows for 0 < c o < oo. For  c o = m we have to apply the individual 
ergodic theorem to obtain (A.1). For  c o = 0 define Ao(d t  ) = X(0)dt and (A.1) 
follows because for right cont inuous X(t) with probabil i ty 1 

limt+0 t-lfotX(s) d s = X ( O ) .  
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For further references on point processes see Rolski [26], Franken et al. [12], 
Baccelli and Bremaud [3], Serfozo [36]. 
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Note added in proof" 
Conjecture (i) from section 3 has been recently proved by C.S. Chang, X.L. 

Chao and M. Pinedo: Monotonicity results for queues with doubly stochastic 
Poisson arrivals: Ross's conjecture. 
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