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We consider an M/G/1 priority retrial queueing system with two types of calls 
which models a telephone switching system and a cellular mobile communication 
system. In the case that arriving calls are blocked due to the server being busy, type 
I calls are queued in a priority queue of finite capacity K whereas type II calls enter 
the retrial group in order to try service again after a random amount of time. In this 
paper we find the joint generating function of the numbers of calls in the priority 
queue and the retrial group in closed form. When )q = 0, it is shown that our results 
are consistent with the known results for a classical retrial queueing system. 
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1. Introduction 

Retrial queueing systems are characterized by the feature that arriving calls 
who find the server busy join the retrial group to try again for their requests in 
random order and at random intervals. Retrial queues have been widely used to 
model  many problems in telephone switching systems, computer  and communi- 
cation systems. For  comprehensive surveys of  retrial queues, see Yang and 
Templeton [9] and Falin [5]. 

Mos t  retrial queues deal with one type of  calls. But there are some practical 
models which deal with several types of  calls as follows. One example is a telephone 
switching system (Falin et al. [6]). In modern telephone exchanges, subscriber lines 
are usually connected to the so-called subscriber line modules. These modules serve 
both  incoming and outgoing calls. An important  difference between these two types 
of  calls lies in the fact that in the case of  blocking due to all channels busy in the 
module,  outgoing calls can be queued, whereas incoming calls get busy signal and 
must  be retried in order to establish the connection. As soon as the channel is 
free, an outgoing call, if present, occupies the channel immediately. Therefore 
incoming calls may  not  establish the connection as long as there are outgoing calls 
waiting. This fact implies that outgoing calls have non-preemptive priority over 
incoming calls. 

Another  example is a mobile cellular radio communicat ion system (Yoon and 
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Un [2]). For an efficient use of frequency channels, the service area is divided into a 
certain number of cells so that the base station in each cell can reuse the channels 
used in the other cells at the same time. The base station in a cell handles two types 
of calls. One type is the call initiated in its cell (originating cell). A subscriber with a 
blocked cell usually reinitiates his attempt after random time. The other type arises 
when a subscriber holding the line enters the cell from adjacent cells (handoff call). If 
the base station fails to assign an idle channel until the subscriber gets out of the 
overlap region of the cells, he suffers from a breakdown during the conversation. 
The degradation of the quality of the telephone service caused by such a break- 
down is more serious than that caused by a blocking of an originating call. Thus 
the base station may give priority to a handoff call by assigning a queue. In the 
mobile cellular radio communication, the loss of handoff call and the time needed 
for an originating call to get a channel are the important factors for the quality 
of service. 

Choi and Park [1] modeled the above systems as M/G/1 priority retrial queue 
where service times for both type of calls are independent and identically distributed 
and priority queue has infinity capacity. Khalil et al. [4] investigated above model at 
Makovian level in detail. Later Falin et al. [6] extended Choi and Park's model to 
the case where two types of calls may have different service time distributions. 

In this paper, we consider Choi and Park's model in which priority queue has 
finite capacity. Because of finite capacity of priority queue, we need different method 
from one used in Choi and Park [1]. We obtain in closed form the joint distribution 
of the numbers of calls in priority queue and in retrial group. From these, we 
explicitly present some performance measures including the loss probability for 
type I calls. Moreover, in order to show the feasibility of the computat ion of these 
measures, we offer some numerical examples in the last section. 

This paper is organized as follows. In section 2, we describe the mathematical 
queueing model and consider the stability condition of the system. In section 3, we 
obtain the joint distribution of the numbers of calls in priority queue and in retrial 
group. In section 4, we compute some performance measures. Finally we give some 
numerical examples in section 5. 

2. Mathematical model 

As a mathematical model of a telephone switching system and a base station 
in a mobile cellular radio communication, we consider an M/G/1 priority retrial 
queueing system in which type I and type II calls arrive according to Poisson 
process with rate A1 and A2, respectively. Type I calls (type II calls, respectively) 
can be identified as outgoing calls (incoming calls, respectively) in the telephone 
switching system and as handoff calls (originating calls, respectively) in the mobile 
cellular radio communication system. 

If a type II call upon arrival finds the server free, he immediately occupies the 
server and leaves the system after service. If a type  II call finds the server busy on his 



B.D. Choi et al./ Retrial queue with finite capacity 217 

arrival, the call enters the retrial group in order to seek service again after a random 
amount of time (see fig. 1). The call persists this way until he succeeds the 
connection. The retrial time (the time interval between two consecutive attempts 
made by a call in the retrial group) is exponentially distributed with mean 1/a  
and is independent of all previous retrial times and all other stochastic processes 
in the system. 

Type I calls are queued in a priority queue of capacity K after blocking if 
there is any empty waiting position in priority queue, otherwise the call is lost. As 
soon as the server is free, one of the cells, if any, in the priority queue is served, 
so the calls in the retrial group will be served only when there are no calls in the 
priority queue. According to the above rule, type I calls have non-preemptive 
priority over type II calls. The calls in priority queue consist of type I calls and 
the cells in the retrial group consist of type II calls. We sometimes refer to the 
type I calls in the priority queue as the calls in the priority queue and refer to the 
type II calls in the retrial group as the calls in the retrial group. 

Service times are independent and identically distributed and have the same 
distribution for both calls. We denote the service time by S. In order to use the 
supplementary variable method, we assume that the service time distribution has 
a probability density function (p.d.f.) b(x). Let 

(x)  

b*(O) =- I e-~ 
0 

By following the usual argument using mean drift (Falin [7]), we can show 
that the system is stable if 

mK + P2 < 1, (2.1) 

Loss 
Priority queue 
(K Waiting positions) / "  "~ 

Type I call ~.~ 

- f P 

Fig. 1. Mathematical model of the queueing system. 
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where 

K (e-AIS( /~IS)k)  
K - E ( K - k ) E  

= \ ' 

Pl, 

K < cr 

K -= cx~, 

Pi = AiE(S) ,  i, 2. 

Note  that  (2.1) is also a necessary condi t ion on the stable system when K = 0 (Falin 
[5]) or K = cc (Choi and Park [1]). 

In the remainder  of  this paper,  we always assume that  the system is stable. 

3. The joint distributions of queue sizes 

We derive the joint  distr ibution of  the numbers  of  calls in the priority queue 
and the retrial group at an arbitrary time by using the supplementary variable 
me thod  (Choi and Park [1], Hoks tad  [8]). To do so, let us define r a n d o m  variables 
on the system in steady state. 

Np ~ the number  of  calls in the priority queue, 
Art _= the number  of  calls in the retrial group,  

S =- the residual service time of  the call in service, 
0 when the server is idle, 

- 1 when the server is busy. 

We define the related probabilities for x _> O, 

qj=-P(N~=j,~=O), j>O, 

e(Up = i,U  = j , g  (x ,x  + = 1), 

i = 0, 1 , 2 , . . . , K ,  j > 0 ,  

and define their Laplace t ransforms 

p~.,j(O) -- J e-~ , 
0 

i = 0, 1 , 2 , . . . , K ,  j > 0 .  

We treat the case K _ 1, for the system with K = 0 was investigated by Falin [5] 
as a model  with impatient  subscribers; however, our  results are consistent with 
K = 0 (see Remark  3.2b)). 

The usual arguments  lead to the following differential difference equations 
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(Choi and Park [1]): 

Po, j ( O ) = ( A + J a ) q j ,  j>_O, 

- / o , j  (x) = -APo, j (x) + Azpo, j-1 (x) + b(X)pl,j (0) 

+ ( j +  1)ab(x)qj+l + Ab(x)qj,  j >_ O, 

--pti, j (X) = --Api, j (x) + A2Pi, j_ 1 (x) -k- AlPi_l, j (x) -'k b(x)pi+l,j (0), 

i =  1 , 2 , . . . , K -  1, j_>0, 

-p~ , j ( x )  = -.,k2pK, j (x)  + A2PK, j-I(X) + AlPK-I, j(x),  j >-- 0 

(3.1a) 

(3.1b) 

(3.1c) 
(3.1d) 

and the normalization condition 

where 

oo 

Pi, j (x) dx + qj : 1, 
j=0 i=0 0 j=0 

)~ • )~1 q" /~2 and pi,_l(X) =- 0, i = 0, 1 , . . . ,K .  

(3.1e) 

By taking the Laplace transform of eqs. (3. lb)-(3.1d) and then multiplying 
by z j respectively and summing over j (Choi and Park [1]), we have the following 
basic system of equations: 

P0(0, z) = AQ(z) + azQ' ( z ) ,  (3.2a) 

( O - A + A z z ) P T ~ ( O , z ) = P o ( O , z ) - b * ( O ) { P l ( O , z ) + a Q ' ( z ) + A Q ( z ) } ,  (3.2b) 

(0 - :, + : ,2z )e;  (0, z) = e ,  (o, z) - b*(o)Pi+~ (o, z) - ~P,t, (0, z), 

i =  1 , 2 , . . . , K -  1, (3.2c) 

( 0 -  A2 + A2z)P~(O,z) = PK(O,z) - A1P~._I(O,z), (3.2d) 

where for [z[ _< 1 

(x) 

Q(z) - ~ q / ,  
j=O 

* * j J,, (O,z) - F_,p , , j (o )~  , 
j=0 

OC 

e,(0, z) - Z p,,j(0/d, 
j=O 

i =  0, 1 ,2 , . . . ,K ,  

i = 0, 1 ,2 , . . . ,K .  
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Furthermore,  we get the normalization condition from (3. le), 

K 

Z P;(0,  1 ) + Q ( 1 )  = 1. (3.2e) 
i=0 

We note that Q(z) and P[(O,z) are the probability generating functions of  the 
number of calls in the retrial group in steady state when the server is idle and 
when the server is busy with i calls in the priority queue, respectively. 

The rest of  this section is devoted to obtain the solution Q(z) and P~(O,z) 
from the above system equations in closed form. The first thing to do is to 
formulate the differential equation of order one for Q(z) (see (3.11)) and then solve 
it. By substituting 0 = A2 - A2z in (3,2a)-(3.2d) and summing them, we obtain 

K 

0 = (1 - b * ( A z -  A z z ) ) ~ P i ( 0 , z )  
i=1 

+ A ( 1 -  b*(A2 - A2z))Q(z)-  a(b*(A2 - AzZ)-  z)Q'(z). (3.3) 

Moreover,  the left hand sides of (3.2b) and (3.2c) vanish at 0 = A - A2z, thus we 
have 

e0(0,z) = b*(A - A2z)(Pl(O,z) + aQ'(z) + AQ(z)), (3.4a) 

Pi(O,z) = b*(A - A2z)ei+l(O,z ) --k , ~ I P i * _ I ( / ~  - , ~ 2 z ,  z ) ,  i = 1 ,2 , . . .  , K  - 1. (3.4b) 

Next we have another expression of  P/* (), - / ~ 2  Z, z)  in terms of Pi (0, z), Q'(z) 
and Q(z) (see (3.6)). For  convenience, we employ the following notations, 

dmb*(O) o:s b*(m)(s) = dO m , 

omP~" (O'z) O=s P ; ( " )  z )  - , 

Re (s) > 0, 

Re(s)>0, i=0,1,...,K,m_>0. 

Differentiating by (m + 1) times both sides of  eqs. (3.2b)-(3.2c) with respect 
to 0 and evaluating at 0 = A - A2z yields for m = 0, 1 , 2 , . . . ,  

(m + 1)P0(m)(A - A2z, z) = - b * ( m + l ) ( / ~  - ~2z)(el(O,z) + aQ'(z) + AQ(z)), (3.5a) 

(m + 1)p*(m)(), -- A2Z, Z) = -b*(m+l)(A - A2z)Pi+I(O,z) - A1P~.(_'~+I)(A - A2z, z), 

i = 1 , 2 , . . . , K -  1. (3.5b) 

By starting with m = 0 in (3.5b) and successive substitution of (3.5b) with 
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m = 1 , . . . , i ,  we get 

e ; ( a -   2z, z) - - ;,2z, z)  

~. -- ~ (-)~l) i+l-Jb*(i+2-J)()~ _ )~2 2) 
j=l ( i + 2  - j ) !  Pj(O,z) 

(--)~1) ib*(i+l) (~ - -  A2 Z) 
(i + 1)! (aQ'(z) + ),Q(z)). (3.6) 

Note from (3.5a) that (3.6) also holds for i = 0. 
By substituting (3.6) into (3.4b), we have the following recursive form about 

the boundary function Pi (0, z): 

P,(O,z)  = 

1 
b*(A- A2z) Po(O,z) - (aQ'(z) + AQ(z)), i =  1, 

A1 b*(1) (A -- A2Z ) 
cl(z)Pl(O,z) + b-~-_--s (aQ'(z) + AQ(z)), i =  2, 

i-1 
Z ci_j(z)Pj(O,z)+ci_,(zl(aQ'(z)+ AQ(zl), i =  3 ,4 , . . . ,K ,  
j=l 

(3.7) 

where 

1.+_Alb*O)(A- A2z), i =  1, 

ci(z) = (-A1)ib (i)(A - AzZ) 
- ~ b - ~ - - ~ - - ~  , i _ >  2 .  

(3.8) 

LEMMA 
Let xi (z) be the coefficient of 7/i in Taylor series expansion of 

b*(/~ - /~2  Z - )~lg]) 
b * ( ) ,  - ; ~ 2 z  - A i r 1 )  - r j  

, I z l ~ l ,  i = 0 , 1 ,  . . . .  

Then we have that for i = 1 ,2 , . . . ,  K, 

Pi(O,z) = a(zxi(z) - Xi_l(Z))Q'(z) +/~(xi(z ) -- Xi_l(Z))Q(z ). (3.9) 
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eroof 
It is known (Choi and Park [1])  that for each z, Izl<_l, 

b * ( ~ - ~ 2 z - ~ 1 ~ )  = r/ has no solution in a neighborhood of ~ = O. So xi(z ), 
i = O, 1, . . . ,  are well defined for I zl _< 1. 

xi (z)'s satisfy the following recurrence relation: 

1 
xo(z)  = 1, x l ( z )  = b*(~ - ~ : : )  

i-1 
Xi(Z) = ~ Ci_j(Z)Xj(Z), 

j=l  
i = 2, 3, 

(3.10) 

Using this relation, we readily verify by induction that for i = 0, 1, . . . ,  K, 

Pi(O,z) = xi(z)Po(O,z) - Xi_l(Z)(o~Q'(z) + )~Q(z)). 

Then (3.9) easily follows from (3.2a). [] 

Substituting (3.9) into (3.3) yields the following differential equation for 
O(z): 

Q'(z) =-xA XK(Z)(1-b*(Az-  AzZ)) Q(z), (3.11) 
a DK(Z) 

where 

DK(Z ) = (1 -- z ) -  (1 -- b*(A2- A2z)) XK(Z)- (1 -- z) ~. ,  xt(z) . 
l=1 

The general solution of the differential equation (3.11) is given by 

Q(z) = C e x p  A X K ( S ) ( 1  - -  b*('~2 - / ~ 2 s ) )  d s  
- a ' 

z 

where C is a constant. 
To find C which is the probability that the server is idle, we evaluate 

(3.2b)-(3.2d) at 0 = 0 and sum over i, then we have from (3.2a) that 

K 
)~2 Z P*(O,z)= aQ'(z). (3.12) 

i=0 
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Using (3.12) and the normal izat ion condi t ion (3.2e), we find 

C -  1 - pzxK(1) (3.13) 
1 + p l x K ( 1 ) "  

Thus  we have obtained the following results. 

THEOREM 3.1 
In steady state, when the server is idle, the probabil i ty generating funct ion 

Q(z) of  the number  of  calls in the retrial group is given by 

Q(z) = E ( z N r ; ~  = O) 

1 -  p~xK(1) A x/~(~)(1 - b*(A~ - A~))  
- 1 ; ~ e x p  - ~  ~ D - ~  ds . (3.14) 

z 

[] 

Remark  3.1 
As we expected, the probabil i ty C that  the server is idle converges to 1 - p, 

P = Pl + P2 as K + ~ .  Note  that  the probabili ty C that  the server is idle is equal 
to 1 - p  when K = c x ~  (Choi and Park [1]). The funct ion ~ = o X i ( 1 ) r / i =  
b*(A1-Alr/)/(b*(A1-Alr/)-r/) is analytic in Ir/I < 1, because the equat ion 
b*(A1 - Air/) = r /has  no solut ion in [r/[ < 1 provided that  Pl < 1 (Choi and Park 
[1]). Thus  by the Abelian theorem (Cohen [3]), we have 

lim x / ~ ( 1 ) = l i m ( 1 - r / )  b*(A1-Alr / )  _ 1 
K---*o~ ~TI b * ~ l  ~ AI~-)--- r/ 1 - Pl" 

Therefore we conclude that  

C 1 -- p2XK(1) 
- -  ~ l - - p ,  as K -~ oo. 

1 + plXK(1) 
[] 

By substi tuting (3.14) into (3.2a) for i = 0 and (3.9) for i = 1 ,2 , . . .  ,K,  we 
obtain explicit expression for the boundary  funct ion Pi (0, z). 

P0(0, z) = A(1 - z)BK(z)Q(z)  
DK(z) ' (3.15a) 

and for i =  1 , 2 , . . . , K ,  

Pi (0, z) = A(1 - z)Q(z)  
D~(z) { (X i (Z) -- Xi_ 1 ( z ) ) B K ( Z )  -- Xi_ 1 (Z)XK(Z) (1 - b* (A 2 - A2z))}, 

(3.15b) 
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where  

BK(z) = 1 + ( 1 -  b*(A2-~2z))( ~-'~xl(Z)/=l --XK(Z)) " 
Finally, by substi tut ing (3.14) and  (3.15) into (3.2b)-(3.2d),  we obtain P*(O, z). 

THEOREM 3.2 
The probabi l i ty  genera t ing  funct ion  P* (0, z) o f  the n u m b e r  o f  calls in the retrial 

g roup  when  the server is busy  and  there are i calls in the pr ior i ty  queue is given by 
(i) 

P~(O,z) = E(zN~;~ = 1) = A(1 -- z)(1 -- b * ( A -  Azz))BK(z)Q(z) 
( A -  A2z)b*(A - A2z)DK(z) ' (3.16a) 

(ii) for  i =  1 , 2 , . . . , K -  1, 

(iii) 

, A(1 - z)Q(z) 
ei (O,z) =_ E(zUr;Np = i,~ = 1) = b * ( A -  AzZ)DK(Z ) 

{ x ( A -  ~2z) i+1 (1 - b * ( A -  Azz))BK(z ) + b*(A - A2 z) 

• ~ (A - AzZ) i+l-j (BK(z)(xj+I(z) - 2xj(z) + xj_l(z)) 
j=l 

- (1 - b*(A 2 - A2z))xK(z)(xj(z) - xj_l(z)) ) "~, 
J 

(3.16b) 

, AQ(z) 
e~(O,z) _ E(zUr;Up = K , r  1) = ~2b* (~ -  ~2z)D~(z) 

• ~, ---~2z/ - b*(~,- ~,2z))BK(z) + b*(~,-- ~ 2 z ) ~  ~,_ ~,~z/ 
j=l 

x (BK(z)(xj+I(Z) -- 2Xj(Z) + Xj_I(Z)) 

-- (1 -- b*(A2 - AzZ))XK(Z)(Xj(Z) - Xj_l(z))) 

- b*(A - A2z)((xx+l(z) - xK(z))BK(z) -- (1 - b*(A2 - A2z))xZ(z)) } .  
/ 

(3.16c) 
[ ]  
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Remark 3.2 
Special cases of  our model: 

(a) When /~1 = 0, our model is reduced to the classical retrial queueing system 
(Falin [5]). In this case, we have that xi (z) = (b*(A2 - ),2z)) -i, i = 0, 1, . . . .  
Thus (3.14) and (3.16a) lead to 

A 1 - b*(A 2 - -  A2S ) as 
Q(z) = E(zN~; ~ = 0 )  = (1 - P2 )  exp - g b * ( A  2 - A 2 s  ) - s ' 

z 

P~(O,z) = E(zNr;g = 1) = (1 -b* (A  - A2z))Q(z ) 
b*(A - A z Z  ) - z 

(b) 
These agree with eqs. (10) and (11) in Falin [5]. 
When K = 0, our model is identical to the M/G/1 retrial queueing system 
with impatient subscribers (Falin [5]). In this case, with convention that 

0 ~- '~j=l  Xj(Z) ~ O, we have Do(z ) = b * ( A  2 - -  )~2 Z)  - -  Z and Bo(z = b*(A2 - A2z). 
Equa t ions  (3.14) and (3.16c) become 

- A 1 - b* (A 2 - -  A2S ) 
1 P2exp - - b ~ - A ~ ) - s  aS E(zNr;~  = O) -- 1 + Pl c~ 

Z 

E(zNr; g = 1) = A(1  - b * ( A 2  - A2z))Q(z)  
A2(b*(A2 - A2z) - z) 

which agree with eqs (66) and (67) in Falin [5]. [] 

4. Performance measures 

We first evaluate Q'(1) frequently appearing in the computat ion of  the 
performance measures. 

Q'(1) AXK(1 ) 1--p2xK(1)lim 
=-~ l +plxK(1) zT1 

1 - -  b*( )~  2 - )~2 Z) ,,~ XK(1)p 2 

DK(Z) o~ 1 + XK(1)pI' 
(4.1) 

where we use L'Hospital 's  rule in the last equality. 

(1) The loss probability PI of type I calls." 
PASTA property implies that 

PI=PK(O, 1 ) = ~  1 
XK(1) 

1 + plXK(1)J" 
(4.2) 
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Remark 4.1 
Another way to obtain PI is to use the relation A 2 + ( 1 - P / ) A  1 = 

}--~0Pi(0, 1), which means that the effective arrival rate must be equal to the 
effective departure rate in steady state. From (3.2a) and (3.3) we can calculate 
}--2~LO Pi (0, 1) and obtain the same result as (4.2). [] 

(2) Blocking probability 1 - C of type H calls." 
When the server is busy, type II calls are blocked and return to retrial group 

in order to get service again. The probability C that the server is idle was given by 
(3.13). 

(3) Mean number ENp of calls in priority queue. 
From Theorem 2(ii), we have 

K-1 A 1 - p 2 x K ( 1 ) ( l i m  l - z )  K-1 
iP/*(O, 1 )=  ~11 1 + ~ )  k~'[1 ~ ~ i (x i+l(1)-  x i (1 ) )  

i=1 i=1 

= E L l x ; ( i )  
A1 1 + Pl xx(1) 

Therefore, we get 

K K-1 
ENp = ZiP/*(O,  1 ) =  Z iP;(O, 1)+ KP, 

i=0 i=1 

=-A1 1 + plXK(1)J" 
(4.3) 

(4) Mean number ENr of calls in retrial group: 
Since ENr = Y2~_o(d/dz)P;(O,z)lz=l + Q'(1), we may use Theorem 2 for 

P/* (0, z). However there is an easy way to get the first term in the above equation 
by using (3.12) and (3.2a): 

a 1 ( d  po(O,Z) z = l _ ( A l + a ) Q , ( 1 ) )  E Nr = ~22 Q" (1) + Q' (1) = ~22 -~z 

Applying L'Hospital's rule twice in (3.15a) yields 

E N  r = 
A{b(x~(1) -t- pZXK(1) }-2~K1Xi(1)) + A2XK(1)E(S2)/2) 

(1 + plXK(1))(1 -- p2XK(1)) 

/Xp2XK(1) 
4 

a(1 - pZXK(1) ) " 
(4.4) 
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Remark 4.2 
The calculation of x[(1) and xi(1) can be easily carried out by a computer 

from the following recursive properties derived from (3.10) for i = 2, 3 , . . . ,  

i-1 
x/(1) = ~ ci_j(1)xj(1), (4.5a) 

j=l 

ci_j(1) 

A2 
+ - -  ( ic i (1)-  x~(1)). (4.5b) 

Alb*(A1) 
[] 

(5) Mean waiting time Wp(Wr) of  type I (type H) calls." 
By applying Little's formula, we get 

ENp and Wr - ENr (4.6) 
Wp - AI(1 _ PI) A2 

5. Numerical examples 

In this section, we present some numerical examples on the performance 
measures derived in section 4. Throughout this section, we let the mean service 
time be a unit time and retrial rate a be 0.3. We consider the following service 
time distributions: 

Hyper-exponential distribution (H2): 

Exponential distribution (E): 

Deterministic distribution (D): 

1 1/2 2 2 
b*(O) - 3 1/2 +-------~ + 3 2 + O, 

1 
b * ( O ) - l +  O, 

b* (0) = e -0. 

In fig. 2 the loss probability PI of type I calls is plotted on logarithmic scale as 
the arrival rate ),2 of type II calls varies with A1 = 0.3A2 as in Yoon and Un [2] which 
reflects the fact that the handoff call rate is proportional to the originating call rate 
in the mobile cellular radio communication system. As we expect, the larger the 
variance of a service time is the larger the loss probability Pt of type I calls is. 

In the following numerical examples we let A2 = 0.1 and take the service time 
distribution as H2. 

Figure 3 plots the loss probability PI of type I calls with K and A1 varying. In 
fig. 3, capacity of priority queue greater than 5 does not improve the loss probability 
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Fig. 2. Loss probability PI of  type I calls: K = 5, A 1 = 0.3A2, a = 0.3. 
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Fig. 3. Loss probability Pl of  type I cal ls : / /2  service time, a = 0.3, A 2 = 0.1. 
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Fig. 4. Mean number Nr of  calls in retrial group: H 2 service time, a = 0.3, A 2 = 0.1. O indicates mean 
number of  calls in retrial group when K = oc. 
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Pt of  type I calls significantly. Thus K = 5 is a sufficient capacity of  the priority 
queue with a reasonably low loss probabil i ty Pz of  type I calls. 

As a final numerical example, fig. 4 displays the mean number  Nr of  calls in 
retrial group with K and )`1 varying. To check how good approximations of  a 
system with infinite buffer to a system with finite buffer are, we also plot the 
mean number  Nr of  calls in the retrial group of  the system with infinite buffer 
(Choi and Park [1]) by the symbol ~ .  We see that  for ),1 < 0.7, there is a little 
difference in the mean number  of  calls in the retrial group between the system 
with infinite buffer and the system with K = 10, but  for )`1 >- 0.7, there is rather a 
big difference as we expected. 
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