DENSITY OF AN (r, R)-SYSTEM

8. S. Ryshkov UDC 513

In this paper we give a complete geometrical theory for the study of the exact lower bound
of the density of n-dimensional lattices. For arbitrary (r, R)-systems we prove an analog
of well known theorems due to Rogers from the theory of packings, and also from this same
theory, an analog of a theorem due to Coxeter, Few, and Rogers. Several special examples
are treated.

1°. There are two basic extremal problems of the geometry of positive quadratic forms that are
rathexTvidely known. The first of these is the classical problem of the densest lattice packing of n-dimen-
sional balls while the second of these is the problem, posed in the last ten years, concerning the least
dense lattice coverings of space by equal balls.

Considerable progress, achieved recently in the solution of these problems, * has made it possible to
arrive at a solution of still other extremal problems, for example, the problem concerning a many-dimen-
sional ¢-function (see [8, 7). The present paper is devoted to one of such problems, namely, the problem
concerning the density of an (r, R)-system, and is a detailed exposition of a portion of the results announced
by the author in [6]. We make substantial use here of the methods and constructions employed in [5-7]; we
assume, therefore, that the reader has knowledge of these papers.

2°. A set & E" is said to be a uniformly discrete system or an (r, R)-system [9] if numbers r and
R exist satisfying the following two conditions:

1. In.the open ball of radius r, circumscribing an arbitrary point of the set &, there are no other
points of this set. '

2. In an arbitrary (closed) ball of radius R there is necessarily a point of the set &.

An arbitrary n-dimensional lattice serves as an example of a uniformly discrete system. In particu-
lar, the lattice constructed on a cube of edge equal to two is an (r, R)-system for arbitrary positive r <1
and R =vn.

We consider an arbitrary uniformly discrete system & C £" and we find numbers r* and R*, which
are, respectively, upper and lower bounds of numbers r and R for which the system & is an (r, R)-system.
It is obvious that the system & is also an (r*, R*)-system. We remark that for a lattice the number R* is
the radius of the covering and the number r* is the length of the minimal vector (twice the radius of the
corresponding packing).

We denote the ratio R*/r* by x (§) and call it the density of the system.

We denote by w(n) the greatest lower bound of the ratio R*/r* over all uniformly discrete systems
of the space ET, and we denote by »wr(n) the greatest lower bound of the ratio R*/r* over all lattice (r, R)-
systems, i.e., over all lattices of the space E".

*See the book [1] and the survey [2], and also the papers [3-7] not included in the survey, in which, in par-
ticular, a more detailed bibliography is given of the most recent papers.
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The fundamental problem in the theory of the density of n-dimensional (r, R)-systems consists in
finding the number w(n) and determining the (r, R)-system (if it exists) which gives rise to this number.
The fundamental problem in the theory of the densest n-dimensional lattice (r, R)-systems congists in find-
ing the number %y (n) and determining a lattice realizing this number.

It is obvious that v (n) = #(n); however, examples of nonlattice (r, R)-systems denser than lattice
systems are notknown to the author. Closely related questions have been studied by A. N. Kolmogorov,
A. G. Vitushkin, and other authors (see A. G. Vitushkin's book [10]) in connection with a study of the con-
cept "to within e." :

To some extent the simple results of Sec. 3°, concerned with estimates of the number w(n), are left
"hanging in air." The trivial result concerning the fact that the densest two-dimensional lattice (r, R)-sys-
tem is the lattice T'} constructed on a right triangle (since it gives the maximum number r* and the mini-
mum number R* for a fixed discriminant) is well known. However there are no results even for three-
dimensional lattice (r, R)-systems. As will be clarified (Sec. 3°), this may be explained by the inherent
difficulty of the problem, which, to some extent, turns out to be solved only after the polyhedra u(m) (see
[6]) and the surface p(r) (see [5]) have been constructed.

3°. Bounds for the Number n(n).

THEOREM 1. The inequality «(n) < 1 is valid.

This inequality is proved by the following widely known (see, for example, [10]) reasoning showing the
existence of (1, 1)-systems. We choose an arbitrary point of the space E® and we construct a ball Uy, with
center at this point and with radius m > 0. In this ball we locate a number of points in order that the result-
ing system in the ball Uy, will satisfy the condition 1) in the definition of a (1, 1)-system. If the system
does not satisfy condition 2) in the definition of a (1, 1)-system, we can then find a point in the ball which is
at a distance of at least one from all the points of the system. Adjoining this point to the initial system, we
again obtain a system satisfying the condition 1). Repeating this construction a finite number of {imes, we
arrive at a system satisfying both of the (1, 1)-conditions in the ball considered. Going over now to a ball
with the same center but with a radius of m + 1, we repeat the foregoing reasoning. Since such balls ex-
haust the space E", we construct in this way a (1, 1)-system in the whole space.

LEMMA. The length of the smallest edge of an arbitrary n-dimensional simplex imbedded in the n-
dimensional ball Ug of radius R cannot be larger than V2(n+1)/nR. This latter value is attained only on a
regular simplex inscribed in this ball. '

Proof. We note, first of all, that for any simplex S, imbedded in the ball Up, we can find a simplex
inscribed in this ball and having an edge not less than the corresponding edge of the simplex S. In fact,
let A be one of those vertices of the simplex S which does not lie on the surface of the ball Ug, then, mov-
ing it along the extension of the altitude dropped onto the opposite face Sy, away from the face Sp, we in-
crease all the edges emanating from the vertex A. We can perform this operation with all simplexes ob-
tained in succession this way, continuing the process so long as we have not arrived at an inscribed simplex
possessing the properties we require.

We assume now that our lemma is true for n—1 and we prove it for n. Thus, let S be a simplex in-
scribed in the ball UR and having edges not less than v2(n+1)/nR. We take an arbitrary vertex A of the
simplex S and we circumscribe about it a ball of radius v2(n+ 1)/nR; all other vertices of the simplex S
lie in the smaller of the two spherical caps of the ball UR into which Up is divided by the new ball. But
this cap can be imbedded in a ball of radius v (n2—1)/n?R, and, by the same token, the face S,, opposite the
vertex A, is imbedded in an (n—1)-dimensional ball of radius v (n>~1)/n’R. Since, however, all the edges of
the simplex Sp are not less than v2(n+1)/nR, the simplex must be regular and inscribed in an (n—1)-dimen-
sional ball of radius v (n™—1)/n?R. Since the vertex A was arbitrary, all the faces of our simplex are regu-
lar; i.e., the simplex is itself regular. Thus our lemma is completely proved.

THEOREM 2. The number 1(n) cannot be less than the ratio of the radius of the ball, circumscribed
about a regular n-dimensional simplex, to the edge of the simplex, i.e.,

%) >VZw T D

Proof. We take an arbitrary (r, R)-system & C E" and we show that, of necessity, we can find a pair
of points in it separated by a distance not greater than vV2(n+ 1)/nR, i.e., such that r < V2(n+ 1)/nR. Actually,
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we select an arbitrary body L from the decomposition { L}, corresponding to the system & (see [9], 1-4).
This body L is, by definition, inscribed in an empty (devoid of points of the system &) ball of some radius
R'; however, according to the definition of an (r, R)-system, the empty ball cannot have a radius larger than
R, i.e., R'=< R. Thus our body L cah be imbedded in a ball of radius R. Since the body L is a convex finite
n-dimensional polyhedron, a simplex, imbedded in the body L, can be found whose vertices are among the
vertices of the body L. Thus we have found a simplex S, imbedded in a ball of radius R, whose vertices

are points of the system &. By virtue of the previous lemma the simplex S has at least one edge of length
not greater than Y2(n+ 1)/nR. Thus we have found the required pair of points and the proof of the theorem
is complete.

We remark that Theorem 2 is the analog of a theorem of Rogers (see [1], Chap. 7) in the theory of
packing ancfjl of a theorem of Coxeter, Few, and Rogers (see [1], Chap. 8) in the theory of coverings. Al-
though our theorem is easily derivable from these theorems, we prefer to give an independent proof of it
since it is the simplest of all three of these theorems.

COROLLARY. The lattice constructed on a right triangle is a unique two-dimensional (r, R)-system
for which the value n(2) = V1/3 is attained.

This follows from Theorem 2 and the uniqueness of the decomposition of the plane into right triangles
(to within s1m11ar1ty), and also from the biunique correspondence [9] between the decompositions { L} and
(r, R)—systems.

A Generally Exact Theory of the Density of Lattice (r, R)-Systems. The discussion to follow will

be conductéd not in the space of an (r, R)-system but in the space EN, where N = n(n+ 1)/2, the space of the
coeffmlents of quadratic forms in n variables [6, 8, 9]. To positive quadratic forms in this space there
correspond13 points of some convex conical set, the cone of positivity being denoted by K. We denote by &
the group o}f (affine) transformations of the cone K into itself, generated by all the integral unimodular
transformations of the variables in the quadratic forms considered. We also employ here the theory of
lattice types (parallelohedra) [11], the information needed from which is presented, for example, in [3] and

{51,

THEQREM 3. Let A denote some n-dimensional lattice-type domain, closed relative to the cone K.
Points, to Wh1ch there correspond lattices with the smallest possible value, for a given type, of the number
R*/r*, filliup a convex cone Q of the space EN (with vertex at the coordinate origin).

Prooﬁ. We consider the bounded body W(A) constructed in [9] and the polyhedron M(m) constructed
in [6] (see also [7]). Both of these bodies are convex. For some value of the parameter m these bodies do
not intersect, but since on each ray belonging to the domain A and issuing from the coordinate origin, points
can be found belonging to both the polyhedron M{m) for arbitrary m and the body W(A), it follows that there
exists a value of the parameter m for which the intersection W(A) N M(m) is not empty. Consequently, as
can be easily seen, we can, in fact, by virtue of the closure of these bodies, find a smallest such my Ac-
cording to the geometric meaning of the surfaces of our two bodies the intersection Q' = W(A) N M(m,) con-
sists of pomts corresponding to lattices of our type, having a covering radius equal to one and a minimal
vector (of l\ength vmy), the smallest possible for such lattices. We remark that the set Q' has no points on
the surface‘ of the cone K, since no such points exist in the polyhedron M(mg. Noting that, as the intersec-
tion of com%ex bodies, the set @' is convex and that the required set Q is a cone with vertex at the coordi-
nate origin, constructed on Q', we have proved our theorem completely since the absence of other (weakly)
extremal points is obvious by virtue of the convexity of the bodies W(A) and M(mg).

We rémark that in our theory Theorem 3 is the analog of a theorem of Barnes and Dickson [3].

THEQREM 4. We denote by ®a the subgroup of those transformations of the group &, which trans-
form the domain A into itself. Then among the points of the set Q we can find points invariant relative to
the group ®a.

Proof. We consider an arbitrary point f€Q and its images gf under all the transformations ¢ from
the group @.. We also consider the centroid f' of this system of points. Since the set Q is convex, the
point 7' beangs to the set Q. Since for each transformation ¢ = &, the points ¢f merely change places,
we have gf! = f’ for an arbitrary transformation g = ,. Thus the theorem is completely proved.

We ré;mark that this theorem also is an analog of a theorem of Barnes and Dickson [3] in the theory

of coverings.
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5°. Examples. Partial Results, Suppose now that the domain A is not an arbitrary type domain, but
a principal domain of the first type [11, 9]. The group &, for this domain is such [11, 3} that there is only
one absolutely fixed line Af relative to the transformations of this group, where by 7 we mean the principal
form of the first type

nxy -+ nxk .- nxh — 2840 — 22425 — .+« 0 — 2%y Tp-

It follows from this that the smallest value of the ratio R*/r* for lattices of the first type is attained on the
lattice 1‘1 with the metric form f; this ratio can be easily calculated and is equal to

Vi + 912

We can make various conclusions from this equation.

a) For an n-dimensional lattice we have

ur (n) <V (0 -+ 2)/12,
which for n > 10 is poorer than the available estimate for an arbitrary system.

b) For an arbitrary (r, R)-system, since wy (n) = w(n), we have

<VY@E212 for n<10.

¢) For n= 2, 3 we have np(n) = V(n+ 2)/12, and, since there is only one lattice type for these dimen-
sions, there are no locally extremal values of the number R*/r* in these dimensions.

6°. As may readily be seen, when n = 2 the cone Q degenerates to a point. If would be of interest to
clarify the form of the cones Q for n> 2. It would also be interesting to find all numbers w(n) and w1 (n),
which it is entirely possible to do for the number wyp(4). We note that when n = 4 a lattice of centered
cubes yields the same bound vi/2 for the number %y (4) as does the lattice T'}.

LITERATURE CITED

[

C. A. Rogers, Packing and Covering, Cambridge Univ. Press, New York (1964).
2. E. P. Baranovskii, "Packings, coverings, partitionings, and certain other arrangements in spaces
with constant curvature," in: Algebra. Topology. Geometry [in Russian], Moscow (1969), pp. 185~
225.
3.. E. S. Barnes and T. J. Dickson, "Extreme coverings of space by spheres,” J. Austr. Math. Soc., 7,
No. 1, 115-127 (1967).
4. T.J. Dickson, "A sufficient condition for an extreme covering on n-space by spheres," J. Austr. Math.
Soc., 8, No. 1, 56-62 (1968).
5. B. N. Delone, N. P. Dolbilin, S. S. Ryshkov, and M. I. Shtogrin, "A new construction in the theory of
lattice coverings of an n-dimensional space of equal balls," Izv. Akad. Nauk SSSR, Ser. Matem., 34,
No. 2, 289-298 (1970).
6. S.S. Ryshkov, "Polyhedra u(m) and some extremal problems of the geometry of numbers," Dokl.
Akad. Nauk SSSR, 194, No. 3, 514-517 (1970).
7. B. N. Delone and S. S. Ryshkov, "Extremal problems in the theory of positive quadratic forms,"
Trudy Matem. Inst. Akad. Nauk SSSR, 112, 203-223 (1971).
8. B. N. Delone and S. 8. Ryshkov, "On a theory of extrema of a many-dimensional ¢{-function," Dokl.
Akad. Nauk SSSR, 173, No. 5, 991-894 (1967).
9. B. N. Delone, "Geometry of positive quadratic forms," Uspekhi Matem. Nauk, No. 3, 482~484 (1937).
10. A. G. Vitushkin, An Estimate of the Complexity of the Problem of Tabulation [in Russian], Moscow
(1969). ,
11. G. F. Voronoi, Studies Concerning Primitive Parallelohedra [in Russian], Collected Works, Vol. 2
Kiev (1952).

858



