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In order 1o calculate how far a stiff high-speed mixer shaft is from resonance, at its operational angular veloc-
ity w, it is necessary to calculate the first critrical velocity wy.

For this purpose the authors of the present paper derived equations which take into account the design features
of shafts and showed the effect of some properties of the substance being mixed on the calculated values of wy,.
These equations, which contain the mass of the shaft itself, are based on paper [1].*

Owing to the complexity of the final equations for determining wy, paper [1] suggests that this problem should
be solved for each case separately. This is a lengthy process. However, in our case, the stirrer mass can be neglec-
ted (with mixer sizes normally used the moment of gyration increases wy by about 3% which improves the stability
of a rigid shaft). With this assumption, we obtained final equations for determining w, for the main types of shaft
supports (see table), These methods of supporting the shaft are used in the special standard issued by NIlkhimmash
(Scientific Research Institute of Chemical Engineering) [3] for the drives of mechanical mixing devices, and are
scheduled for use in the general-engineering standard which is now being prepared for vertical mixer drives,

Let us now comnsider the derivation of equations for determining wy; we use, as an example, a single-span con-
stant-cross-section shaft which carries a concentrated stirrer mass and rests on hinged (top) and rigidly clamped
(bottom) supports (Fig. 1). Since the concentrated mass M of the stirrer divides the shaft into two parts 0 =x = a
and a =x =1, where x = x¢/L; a = Ij/L, we can, following [1], write the equation of equilibrium for the shaft in the
following form

aty 2
Elif——mwy=JW%L ¢b
1

where F(x3) is the additional load due to the concentrated mass of the stirrer. This is given by the mass of the stirrer
and the deflection of the shaft at the point where it is clamped; m is the mass of a unit length of shaft in kg/m; w
is the angular velocity of the shaft in rad/sec; E is the modulus of elasticity of the shaft material in N/mz; and J is

the moment of inertia of the shaft cross section in m*,

After introducing the notation

Lim w?
at = , 2
IY; (%)

we rewrite Eq. (1) and obtain:

yW—ary = £ (), 3)

*The methods for calculating wy,which are used in general engineering practice and do not contain the mass of the
shaft [2],produce in our case a considerable error,since the mass of the shaft is usually several times greater than
that of the stirrer,
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Fig. 1. Shaft loading diagram,

and the equation for the second section

is

where

=L o)

According to [1] the general solution of Eq. (3) for the first section

can be written as follows:

y, =BT (a x) + DV (2 x),

V=BT (a x) -}- DV (e x) 4 ¢ (2 x),

where B and D are arbitrary constants: T (ox), V(ax) are Krylov's functions and ¢ (ox) is the partial Krylov inte-

gral [1, 4].

According to reference [1], we have for the concentrated mass M of the stirrer

¢ (ax)=

and, using the notation

3 4
= Moty (@) V [a(x— )]
pe M
mL

we obtain, with Eq. (2), from Eq. (4) the following expression

y, = BT(2x) + DV () -+ ak [BT (0) + DV (za)] X V[a(x— a)]
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Fig. 2. Dependence of roots o of the efjuation of critical mixer shaft speeds on k = M/ mL for various ; /L values;
shaft arrangements of the table: a-f) for shafts No. 1-6 respectively.

or Vo=B{T (ax)+akT(@a)V]a(x—a)} + D{V(ax) +akV(ra) V]a(x— a)]}.

The boundary conditions for the bottom support with x = 1 are as follows: y,(1) = 0 and y,(1) = 0 or, in an
expanded form=

Vo (1)=0=B[T (@) 4 «kT (xa) V(2b)] + D[V (a) - akV (xa) V (2 b)] (5)
and
Vo (1)=0=B[S (@) +ak T (@a) U@b)]+D[U@+akV(@a)U@b), (8
where
b=(1— a):—’L—”}-

+1t should be remembered that in paper [1], Eq. (26) must be replaced by the second equation of (22) with x = 1
(this was mentioned in paper [5]).
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We now obtain from the coefficients of Egs. (5) and (6) with arbitrary constants the determinant and, after re-
ducing it to zero, also the transcendent equation (shaft No. 6 in the table) which provides the roots a determining
the critical speeds of the shaft illustrated in Fig. 1 and in the table (No. 6).

The same method can be used to obtain equations for the other methods of supporting the shaft in bearings
given in the table. The following notation has been used in these equations: S{(a), T (&), U(a), V(a), T(ca),
V(aa), T(ab), U(ab), V(ab) are Krylov's functions of corresponding arguments o, aa, b tabulated in paper [ 6] for
arguments from 0 to 5 rad: B(a), E(e), B(aa), E(eea), S;(ca), B(ab), D(arb), Sy (ab) are the functions of arguments
o, ¢a, ab (in Praeger—~FHohenemser notation) tabulated in paper [6] for arguments from 0 to 10 rad: they are com -~
binations of circular and hyperbolic functions.

In order to facilitate their use, our equations have been solved for a wide range of k and a values actually used
in the design of mixers. These solutions are given in form of graphs in Fig, 2a-f.

It should be pointed out that the transcendent equation for the No. 3 shaft is given in paper [ 6], for the No, 5
shaft in paper [5], and for the No. 2 shaft in paper [7]. However, paper [7] gives the values of roots o only for a
values for which the span I, is longer than cantilever 7;,which case conly seldom occurs with cantilever mixer shafts.
In paper [8], the equation for No. 2 shaft is given in a stightly different form, with the table of roots for k=0 (zero
-concentrated mass), which is also unacceptable for our case,

The substitution of the value of root « from the corresponding curve (Figs. 2a-f) into Eq. (2) produces, for
given k and a values, the first critical speed* for any of the shafts shown in the table:

0=/ =. ©

After calculating wy from Eq, (7) and with the condition
0 0.7 o, (8)

satisfied we obtain for a given shaft the diameter of the rigid shaft which is stable with respect to the dangerous
bending vibrations.

Thus, the calculation equations for w, obtained in [1] and the corresponding graphs (Figs. 2a-f) relieve the
designer from complex mathematical calculations.

Let us now consider the variation of the wy value obtained above during the mixing of a material with certain
physical properties (viscosity, density).

The medium in which the shaft is vibrating has a considerable effect on the vibration parameters of the shaft
as calculated for a shaft vibrating in air, In particular, the critical speed of the shaft during its rotation in liquid
wijs decreases compared with the critical speed of a shaft rotating in air wy. The reason is that the vibration of a
solid body in a liquid produces an effect called the effect of the attached mass (as if the mass of the body were in-
creased without affecting its elastic properties [9]).

A theoretical determination of the attached mass of a solid body performing & nonuniform motion in a limited
volume of liquid is very complicated [10]. In the case of a shaft with a stirrer of a complex shape (a three-blade
propeller, closed turbine) the size of the attached mass and, consequently, the critical speed of the shaft rotating in
the liquid, can be obtained only experimentally,

The authors of this paper used a special apparatus to determine the critical speeds of shafts with turbine and
propeller stirrers rotating in air and in liquids with different viscosities. Glycerine was used as the working liquid,
its viscosity being varied by heating. The temperature had practically no effect on the density of glycerine.

* The transcendent equations of critical speeds have a multitude of roots oy, oy, 03, .., oj. There is a definite
critical speed corresponding to each value of aj. However, in the case of stiff shafts considered in[11], only root ey
is of interest.

154



2 2
“21‘1 & Yy 211 zu i
. o @y
/ 7
A o/
L 4 » A
95 ° a5 an
, A 04
o > ¥ 0 v/
2 x5 ? A
22 : a/l%¢ a2 . )
» ‘/. e
0 o
A o/(‘
05
Q04 e 905
003
L 3 45 (] 2 30«50 106 4 5 4 X N 4053” 7M”
1) (der) ¥ (25)* (59"
Mg ¥/ Mo D
I . B — o, 4
Fig. 3. Relation S f(ﬂlv,ﬂ"—)for Fig. 4. Relation a3 :f(ul;J‘—) for
w%l o D ; m%.l AN ] D
cantilever shafts of closed turbine mixers: cantilever shafts of propeller stirrers: @) for dgt
for dgy = 250 mm; A) for dgr = 200 mm; @) for =200 mm; O) for dgt = 150 mm.

dst = 150 mm.

The natural frequency of a shaft rotating in air was adopted as the critical speed wy of the shaft rotating in
air, while the working angular velocity of the shaft running with maximum dynamic vibration amplitudes was
adopted as the critical speed of a shaft rotating in the liquid wyj. The investigations were carried out on a special
experimental apparatus described in paper [11],

The results of investigations of cantilever shafts with turbine and propeller mixers are given in Figs. 3 and 4,
where dgt is the diameter of the stirrer in m; D is the diameter of the vessel in m; pji is the viscosity of the liquid
being stirred in N sec/m?  and p, is the viscosity of water in N sec/m?.

We use the simplex wg—- wii/wii suggested in papers [9, 12, and 13] since it provides information on the at-
tached mass of the mixer and on the reduction of the critical speed of the shaft in the liquid (compared with w,
in air); the simplex uli/“‘) is selected on the basis of experiments. These experiments showed that, when working
in water, the critical speed wii of shafts with propeller or turbine stirrers is only 3-5% lower than w, in air, i.e., for
this case it may be assumed that wij = wy. This relationship has been noted by several investigators, e.g., in [14];
it follows from Eqs. (10) and (12) given below, for pij = .

During the tests, the initial values varied as follows: pj; = 0.016-1.4 N sec/m?% p = const ~ 1230 kg/m%
dgy = 150-250 mm; D = 500 mm, 650 mm. Allresults were obtained with a cantilever stdinless steel shaft supported
by the bearings of a column (No. 2 in the table); its dimensions were as follows: L = 2000 mm, L; = 1400-1800 mm,
dip = 11.10 mm, and dex = 17.5 mm,

After mathematical processing of the experimental data, we obtain the following equations:

a) for cantilever shafts of closed turbine mixers

“6TOU 0095 (ﬂi—)” (l’-Si)O‘9 )
m?l o D

755



or

]

0= —

FLN\0T (dg 09 (10)
]/-1+0.025< uo) (D,)

b) for cantilever shafts of three-blade propeller mixers with a pitch ratio equal to unity,

2 2 .
2% 0115 (—-.“1,1 )0'43 (_.dSt )1'3 (11)
‘-O]i ) D
or
Wy 2o .

P = :
1/ 140.115 (*_*l_i)o"“” (1&;)‘*3 (12)
. o D

The greatest reduction (about 30%) of the critical speed of a shaft workiny in a liquid compared with w, was
observed at maximum values of viscosity and stirrer diameter. Consequently, for a stable operation of a high-speed
mixer shaft in a viscous liquid, expression (8) must be changed to

o << 0.7 w. (13)

These investigations showed that the deviation of experimental values of w; from the data calculated from
Egs. (10) and (12) does not exceed 10%. The effect of the density of the liquid pp; and of the density of the solid
Pgo vibrating in this liquid, has been noted by the introduction of the additional simplex py;/p, into the right-hand
side of Egs, (9) and (11). In owr investigations for p1;/pgo = const, the effect of this simplex is shown by the constant
coefficient of Egs. (9) and (11).

Thus, after calculating wy from Eq. (7) and the curves of Fig. 2, and determining wy; from Egs. (10) and (12),
we obtain {with Eq.(13)] that diameter of the cantilever shaft which is stable with respect to bending vibrations in a
viscous liquid.
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