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In order to calculate how far a stiff high-speed mixer shaft is from resonance, at its operational angular veloc- 

ity co, it is necessary to calculate the first cr i t ical  velocity coo- 

For this purpose the authors of the present paper derived equations which take into account the design features 
of shafts and showed the effect of some properties of the substance being mixed on the calculated values of co o . 

These equations, which contain the mass of the shaft itself, are based on paper [1].* 

Owing to the complexity of the final equations for determining co 0, paper [1] suggests that this problem should 
be solved for each case separately. This is a lengthy process. However, in our case, the stirrer mass can be neglec- 
ted (with mixer sizes normally used the moment  of gyration increases coo by about 3% which improves the stability 
of a rigid shaft). With this assumption, we obtained final equations for determining coo for the main types of shaft 
supports (see table). These methods of supporting the shaft are used in the special standard issued by NIIkhimmash 

(Scientific Research Institute of Chemical  Engineering) [3] for the drives of mechanica l  mixing devices, and are 
scheduled for use in the general-engineering standard which is now being prepared for vertical mixer drives. 

Let us now consider the derivation of equations for determining COo; we use, as an example, a single-span con- 

stant-cross-section shaft which carries a concentrated stirrer mass and rests on hinged (top) and rigidly clamped 

(bottom) supports (Fig. 1). Since the concentrated mass M of the stirrer divides the shaft into two parts 0 ~ x ~ a 

and a -< x ~ 1, where x = xt/L; a = l l /L ,  we can, following [1], write the equation of equilibrium for the shaft in the 

following form 

E J  d4y m ~ y =  F (x~), (1) 

where F(xl) is the additional load due to the concentrated mass of the stirrer. This is given by the mass of the stirrer 
and the deflection of the shaft at the point where it is clamped; m is the mass of a unit length of shaft in kg/m; co 

is the angular velocity of the shaft in rad/sec; E is the modulus of elasticity of the shaft mater ial  in N/m2; and J is 

the moment  of inertia of the shaft cross section in m 4. 

After introducing the notation 

L4r o. 
~4 -~_ E J  ' ( 2 )  

we rewrite Eq. (1) and obtain: 

/ v  coy =/(x), (a) 

*The methods for calculat ing coo ,which are used in general engineering practice and do not contain the mass of the 

shaft [2],produce in our case a considerable error, since the mass of the shaft is ~sually several times greater than 
that of the stirrer. 
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Fig. 1. Shaft loading diagram. 

where 

/ ( x )  = - ~ -  t ~ . 

According to [1] the general solution of Eq. (3) for the first section 
can be written as follows: 

y~ = B T  (c~x~) + DV(c,x) ,  

and the equation for the second section is 

y2 --~ BT (~ x) -t- D V  (~ x) + ~? (~ x),  (4) 

where B and D are arbitrary constants: T (ctx), V(ax)  are Krylov's functions and r (ax) is the partial Krylov inte- 
gral [1, 4]. 

Accor, d ing to  reference [1], we have for the concentrated mass M of the stirrer 

(~ x ) - -  L~ 1/ ~3 ~ j  M ~' y~ (a) [~ (x - a)] 

and, using the notation 

k =  M 
mL 

we obtain, with Eq. (2), from Eq. (4) the following expression 

ya == BT(ax)  -}- DV(ax)-[-  c~k [BT(~ a ) +  DV(a  a)] X V [ a ( x -  a)] 

6 
Z 

Diagram Equation of the crit ical speed No. of the shaft 

k =  
1 D (~ b) B (~ a) + B (~ b) E (~ a) 
a B (a b) B (a a ) - - D  (a b) S l (a a) 

2' 
�9 ",  , a ,  

J 

1 
k =  

c( 

S, (a b) E (a a) - -  B (a b) B (a a) 

81 (a b) B (a a) @ B (~ b) S1 (a a) 

! / . . . .  ! 

1 E (~) 
B (~) 

- -  L - - - i  
1 U 2 (a) - -  V (a) T (a) 

k =  
U(ab)[V(~)U(aa)--U(~) V(~a)] 
+ v (~b) [ T (~) V (~a) - -  V (~) U (~ a)] 

�9 k = l .  , T2(~) - -V2(=)  _ 

T(~ b) IV(a) T(~ a) - -  T(~) V(= a)l 
+ V(a b) [V(~) V(,a)-- T(=) T(= a)] 

t l b  M �9 ~ 

i r (~) U (~) - -  V (~) 8 (~) k -  
a U(ab)[V(a) T(~a)--- T(a) V(~ a)] 

-+. V (~ b) IS (~) V (~ a) - -  e (~) T (~ a)] 
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Dependence  of roots a of the  et tuat ion of c r i t i c a l  m ixe r  shaft speeds on k = M / m L  for various l l / L  values; 

shaft a r rangements  of the t ab le :  a - f )  for shafts No. 1-6  r e spec t ive ly .  

or y~ = B { r (~ x) + ~ k T (a a) V [~ (x - -  a)]} + D { V (c~ x) + a k V (a a) V [c~ (x - -  a)l}. 

T h e  boundary condi t ions  for the  bo t tom support wi th  x = 1 are as fol lows:  h (1) : 0 and Yz (1) = 0 or, in an 

expanded  form* 

Y2 (1) = 0 = B [ T (~) + ~ k 7" (~ a) V (~z b)] + D [ V (~) -I-/z k V (ct a) V (~ b)] 

and 

where  

Y'2 (1) = 0 ~- B [S (c 0 + c~,k T (o~ a) U(a  b)] ,-{-D [U(cz)'+ a k V (a a) U(cz b)], 

Z2 
b = (1 --  a) : - - - .  

L 

* I t  should be r e m e m b e r e d  that  in paper  [1], Eq. (26) must  be  r e p l a c e d  by the  second equa t ion  of (22) wi th  x = 1 

(this was m e n t i o n e d  in paper [5]). 

(5) 

(6) 
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We now obtain from the coefficients of Eqs. (5) and (6) with arbitrary constants the determinant  and, after re -  
ducing it to zero, also the transcendent equation (shaft No. 6 in the table)  which provides the roots a determining 
the cr i t ica l  speeds of the shaft i l lustrated in Fig. 1 and in the table (No. 6). 

The same method can be used to obtain equations for the other methods of supporting the shaft in bearings 
given in the tab le .  The following notat ion has been used in these equations: S (a) ,  T (a), U (a) ,  V(a ) ,  T (aa) ,  
V (aa) ,  T (c~b), U (ab),  V (ab)  are Krylov's  functions of corresponding arguments a ,  c~a, a b  tabulated in paper [6] for 
arguments from 0 to 5 red: B(a) ,  E(ct), B(aa) ,  E (aa ) ,  S l ( aa ) ,  B(ab),  D(ab) ,  Sl(ctb) are the functions of arguments 
or, c~a, a b  (in Praeger -Hohenemser  notation) tabula ted  in paper [6] for arguments from 0 to 10 tad:  they are c o m -  
binations of circular  and hyperbolic  functions. 

In order to fac i l i t a te  their use, our equations have been solved for a wide range of k and a values ac tua l ly  used 
in the design of mixers.  These solutions are given in form of graphs in Fig.  2a-f .  

I t  should be pointed out that the transcendent equation for the No. 3 shaft is given in paper [6], for the No. 5 

shaft in paper [5], and for the No. 2 shaft in paper [7]. However, paper [7] gives the values of roots a only for a 
values for which the span 12 is longer than cant i lever  l 1,which case only seldom occurs with cant i lever  mixer  shafts. 
In paper [8], the equation for No. 2 shaft is given in a sl ightly different form, with the table  of roots for k= 0 (zero 
concent ra ted  mass),which is also unacceptable  for our case. 

The substitution of the value of root a from the corresponding curve (Figs. 2a-f)  into Eq. (2) produces, for 
given k and a values, the first cr i t ica l  speed* for any of the shafts shown in the table :  

~ V / EJ tO0--- 2 ~ m e (7) 

After ca lcula t ing coo from Eq. ( 7 ) and  with the condition 

r ...~ 0.7 % (8) 

satisfied we obtain for a given shaft the d iameter  of the rigid shaft which is stable with respect to the dangerous 
bending vibrations. 

Thus, the ca lcula t ion  equations for coo obtained in [1] and the corresponding graphs (Figs. 2a-f)  re l ieve  the 
designer from complex m a t h e m a t i c a l  calculat ions.  

Let us now consider the variat ion of the coo value obtained above during the mixing  of a ma te r i a l  with certain 

physical  properties (viscosity, density). 

The medium in which the shaft is vibrating has a considerable effect  on the vibration parameters  of the shaft 
as ca lcula ted  for a shaft vibrat ing in air.  In part icular ,  the cr i t ica l  speed of the shaft during its rotat ion in liquid 

coli' decreases compared with the cr i t ica l  speed of a shaft rotating in air co 0. The reason is that the vibration of a 
solid body in a l iquid produces an effect  ca l led  the effect  of the a t tached mass (as if the mass of the body were in-  
creased without affect ing its e las t ic  properties [9]). 

A theoret ical  determinat ion of the at tached mass of a solid body performing ~ nonuniform motion in a l imi ted  
volume of liquid is very compl ica ted  [10]. In the case of a shaft with a stirrer of a complex shape (a th ree -b lade  
propeller,  closed turbine) the size of the a t tached mass and, consequently, the cr i t ica l  speed of the shaft rotat ing in 

the liquid, can be obtained onty exper imenta l ly ,  

The authors of this paper used a special  apparatus to determine the cr i t ica l  speeds of shafts with turbine and 
propeller  stirrers rotat ing in air and in liquids with differenc viscosities. Glycer ine  was used as the working liquid, 
its viscosity being var ied by heat ing.  The temperature  had prac t ica l ly  no effect  on the density of g lycer ine .  

* The transcendent equations of c r i t ica l  speeds have a mult i tude of roots a 1, c~ 2, cta . . . .  ; c~ i.  There is a definite 
c r i t ica l  speed corresponding to each value of cti. However, in the case of stiff shafts considered in [ 11], only root a l  
is of interest.  
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cantilever shafts of closed turbine mixers: 

for dst = 250 ram; A) for dst = 200 mm; e) for 

dst = 150 ram. 

2 
Fig. 4. Relation 0 . : ~ i  =f(~_~0" ~ _ ) f o  r 

cantilever shafts of propeller stirrers: e)  for dst 

= 200 ram; O) for dst = 150 ram. 

The natural frequency of a shaft rotating in air was adopted as the crit ical  speed w0 of the shaft rotating in 
air, while the working angular velocity of the shaft running with maximum dynamic vibration amplitudes was 

adopted as the crit ical speed of a shaft rotating in the liquid COli. The investigations were carried out on a special 

experimental  apparatus described in paper [11]. 

The resutts of investigations of cantilever shafts with turbine and propeller mixers are given in Figs. 3 and 4, 

where dst is the diameter of the stirrer in m; D is the diameter of the vessel in m; #l i  is the viscosity of the liquid 
being stirred in N sec/m2; and g0 is the viscosity of water in N sec/m 2. 

We use the simplex co B_ coli/z .coZli suggested in papers [9, 12, and 13] since it provides information on the at-  
tached mass of the mixer and on the reduction of the crit ical  speed of the shaft in the liquid (compared with co o 

in air); the simplex # l i / / l  o is selected on the basis of experiments. These experiments showed that, when working 

in water, the cri t ical  speed Wli of shafts with propeller or turbine stirrers is only 3-5% lower than coo in air, i . e . .  for 
this case it may be assumed that coli ~ coo- This relationship has been noted by several investigators, e.g., in [14]; 

it follows from Eqs. (10) and (12) given below, for #l i  = g0. 

During the tests, the init ial  values varied as follows: # l i  = 0.016-1.4 N sec/ma; p a const ~ 1230 kg/ma; 
dst = 150-250 ram; D = 500 ram, 650 ram. All results were obtained with a cantilever stXinless steel shaft supported 
by the bearings of a column (No. 2 in the table); its dimensions were as follows: L = 2000 mm, L I = 1400-1800mm, 

din = 11.10 ram, and dex = 17.5 ram. 

After mathemat ica l  processing of the experimental  data, we obtain the following equations: 

a) for canti lever shafts of closed turbine mixers 

, l !  = 0 , 0 2 5  (9) 
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or 

or 

o~ o 

~li = - ; 
~  ,,o, 

b) for cantilever shafts of three-blade propeller mixers with a pitch ratio equal to unity, 

wo ~ -- ~li ( ~li .~0.43 ( dst .~I.3 
- -  = 0 . 1 1 5  \~ ~ . - -~ )  %T) (11) 

~li = 
tO 0 

|// +o..sP i W 
\ ~ o /  \ D / 

(12) 

The greatest reduction (about 30%) of the critical speed of a shaft working in a liquid compared with ~o 0 was 
observed at maximum values of viscosity and stirrer diameter.  Consequently, for a stable operation of a high-speed 
mixer shaft in a viscous liquid, expression (8) must be changed to 

-..< 0.7 ~oii. (13) 

These investigations showed that the deviation of experimental values of COli from the data calculated from 

Eqs. (I0) and (12) does not exceed I0%. The effect of the density of the liquid Pli and of the density of the solid 

Pso vibrating in this liquid, has been noted by the introduction of the additional simplex Pli/Ps o into the right-hand 
side of Eqs. (9) and (11). In our investigations for Pl i /Pso = const, the effect of this simplex is shown by the constant 
coefficient of Eqs. (9) and (11). 

Thus, after calculating w0 from Eq. (7) and the curves of Fig. 2, and determining CUll from Eqs. (10) and (12), 
we obtain (with Eq.(13)] that diameter of the cantilever shaft which is stable with respect to bending vibrations in a 
viscous iiquid. 
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