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Abstract. This paper presents a theoretical and numerical investigation of the natural convection 
boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface 
heat flux varies as ( 1 + x 2) ~, where # is a constant and x is the distance along the surface. It is shown 
that for/z > - �89 the solution develops from a similarity solution which is valid for small values of x 

1 to one which is valid for large values of x. However, when # ~ - ~ no similarity solutions exist for 
- -  1 large values of x and it is found that there are two cases to consider, namely # < - �89 and # -- - ~. 

The wall temperature and the velocity at large distances along the plate are determined for a range of 
values of/z. 
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O. N o t a t i o n  

g Gravitational acceleration 
k Thermal conductivity of the saturated porous medium 
I (  Permeability of the porous medium 
I Typical streamwise length 
q~ Uniform heat flux on the wall 
Ra Rayleighnumber, = gf l I ( (q~/k) l / (av)  
T Temperature 
T~o Temperature far from the plate 
u, v Components of seepage velocity in the x and y directions 
x, y Cartesian coordinates 

Greek Symbols 

Thermal diffusivity of the fluid saturated porous medium 
/3 The coefficient of thermal expansion 
7 An undetermined constant 
r Porosity of the porous medium 
r/ Similarity variable, = y(1 + x2)~'/3/x 1/3 
/z A preassigned constant 
u Kinematic viscosity 
0 Nondimensional temperature, = (T - T~)Ral/3k/q~o 
7- Similarity variable, = y(logex)l/3/x 2/3 
( Similarity variable, = y / z  2/3 
~b Stream function 
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1. Introduction 

The subject of natural convection in porous media is of considerable practical and 
fundamental interest in geophysics, oil recovery, thermal insulation engineering, 
heat exchangers, ceramic processing and catalytic reactors to name a few. It has 
been a subject of active research over the past thirty years, and with an ever 
increasing scope of application it will continue to attract a good deal of attention. 
An excellent review of the extensive literature in this field, published prior to 1992, 
has been provided by Nield and Bejan [1] and these papers disclose the prominent 
characteristics of heat transfer in porous media. 

The problem of natural convection flow from a heated vertical surface which 
is embedded in a porous medium provides probably one of the most fundamental 
studies in the area of convective flow in porous media. Cheng and Minkowycz [2] 
were the first to report the existence of similarity solutions for this problem when 
the surface temperature is proportional to x ~ (where x measures the distance along 
the plate from the leading edge and A is a constant). They presented numerical 
results for values of A between 0 and 1. The case A = 0 corresponds to a uniform 
surface temperature and A = - �89 to a uniform surface heat flux. These similarity 
solutions are the leading-order terms in a series expansion for problems where 
other effects are present, for example in mixed convection [3-6] and higher-order 
boundary-layer theory [7, 8]. It was shown by Ingham and Brown [9] that the 
equations governing this flow configuration has a solution which satisfies all of the 
imposed boundary conditions only if A > - �89 with the solution becoming singular 

as A ~ - �89 However, the question arises as to how does the boundary-layer 
solution develop if for small values of x the solution was given by a similarity 
form for which a solution is possible (i.e. A > - �89 but attempts to reach the 
asymptotic condition at large values of x for which a similarity solution were not 
possible (i.e. A ~< -�89 It is the answer to this problem that motivated the present 
investigation. 

The purpose of this paper is to examine both theoretically and numerically 
the natural convection flow from a vertical surface which is embedded in a fluid- 
saturated porous medium, the surface being subject to a nondimensional heat flux 
of the form, see Merkin and Mahmood [10], 

where 0 and y are the nondimensional temperature and the coordinate normal to the 
plate, respectively, and # is a preassigned constant. It is seen from expression (1) 
that, forx (< 1, (~O/Oy)u=o ~_ -1 ,  while for x >> 1 wehave (00/Oy)y=o ~- - x  2~. 
Thus, although it is possible to obtain similarity equations for both small and large 
values of x, in the latter case the equation possesses a solution only if we take 
# > - �89 For # ~< - 1 it is impossible to find similarity solutions for large values of 
x and by numerically solving the full governing partial differential equations, the 
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behaviour of the solution for large values of x is discussed. It is found that there 
are two cases to consider, namely, # < - 1  and # = - 1 .  The details of the wall 
temperature and the velocity at large distances along the plate are presented for 
various values of the parameter #. It is found that the computational results are in 
good agreement with the analytical predictions. 

2. Basic Equations 

Consider the steady, free convection flow from a vertical surface embedded in a 
fluid-saturated porous medium with a prescribed wall heat flux. We assume that the 
porous medium is isotropic and homogeneous and that the fluid is incompressible. 
Invoking the Boussinesq-Darcy approximation and assuming that the boundary- 
layer approximations hold, the free convection flow is described by the following 
nondimensional equation, see [5, 6], 

0~3 02~3 0~3 021/9 03@ 
Oy OxOy Ox Oy 2 Oy 3 ' 

(2) 

since 0 = Or Here, ~ is the stream function, which is defined in the usual 
way, namely u = O~/Oy and v = -O~/Ox,  with u and v being the velocity 
components along the x and y axes, respectively. The nondimensional variables in 
Equation (2) are defined as 

x = 2 / I , y =  R a l / 3 y / l , ~ =  ~ / ( ~ R a l / 3 ) ,  

T = Too + Ra-1/3(q~/k)O, 
(3) 

where I is a typical streamwise length, q~ is the uniform heat flux at the wall, T is 
the fluid temperature, a is the thermal diffusivity, k is the thermal conductivity, T~ 
is the ambient temperature and Ra = gf lK(q~/k) l / (au)  is the Rayleigh number. 
Here 9 is the acceleration due to gravity, K is the permeability of the porous 
medium,/3 is the coefficient of thermal expansion and u is the kinematic viscosity. 
Equation (2) must be solved subject to the following boundary conditions 

= O, 02~) -- - ( 1  + x2)" on y = O, 
coy 2 

- -  - - ~  0 

Oy 
as y ~ e c .  

(4) 

The continuous transformation algorithm of Hunt and Wilks [11], or Kuiken [12], is 
applied to solve numerically Equation (2) along with the boundary conditions (4). 
This algorithm creates a single equation which effects a smooth transition between 
both the similarity equations which are valid for small and large values of x. In this 
case, the intermediate transformation is given by 

= x2/3( l q- x2)~/3f( z, ~7), (5a) 
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where 

rl = y(1 + X2)'u/3/X 1/3 

and then Equation (2) becomes 

, 2~ , ,02 f  03f + ~ 1  2 + 2-(1 + #)x ]]-~2 

1 [1 �89 (Of'~ 2 
1 + X 2 3 q" + 4#)  x2] \Orl,] 

S. D. WRIGHT ET AL. 

(5b) 

Of 02f Of 02f~ 
= x -~-~ Oz Or I -~z -~2 ] , (6) 

which has to be solved subject to the boundary conditions 

0 2 f  
f = 0 ,  = - 1  on r / = 0 ,  

0r/2 

of 
- - - - - > 0  as r / ~ .  

For f = f(r/), we obtain from Equation (6), when x = 0, 

f,,, + 2 f f , , _  �89 = 0, 

(7) 

(8) 

where primes denote differentiation with respect to 71. Equation (8) describes the 
flee convection flow from a vertical surface which is immersed in a porous medi- 
um [2] and subject to a uniform heat flux. On the other hand, if we assume f = f (r/) 
and let z -+ o~, Equation (6) becomes 

f "  + 3(1 + # ) f f "  - �89 + 4#) ( f ' )  2 = 0, (9) 

which corresponds to a prescribed heat flux (0%b/Oy)y=o = - x  2~. 
It should be noted that when integrating Equation (9), subject to boundary 

conditions (7), it can be deduced that 

fo~176 (df 2 drl= 1 
\d~J  i + 2#' 

where the left-hand side is always positive but the right-hand side is positive 
or negative depending on whether # ) - 1  or # < - �89 and, hence, a different 
mathematical approach is required for # < - 1, # = _ 1 and # > - 1. A complete 

numerical solution, accurate to O(h 2) with h being the mesh spacing, is effected 
by using the method as described in [13] to integrate Equation (6). As a check of 
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Fig. la. Nondimensional  stream function as a function of the distance along the plate for 
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Fig. lb.  Nondimensional plate temperature as a function of the distance along the plate for 
/z = -0 .125 .  

the numerical  procedure we start with the value of/z > - �89 and found, as expected, 
that the solution attained the asymptotic condition as given by Equation (9). This 
can be seen in Figure 1 where we present the variation of  (Of/Orl)~=o, which is 
proportional  to the temperature, and f(z, ee), which measures the amount  of  fluid 
entering the boundary-layer,  for the case # = - 1. 
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i 3. A s y m p t o t i c  So lu t ion  for  # < - 2 

In this case, we introduce the variables 

~) = Z1/3F(Z, if), ff = ff/Z 2/3, (10) 

which gives Equation (9) for the critical case # = �89 Substituting expressions (10) 
into Equation (2), we obtain 

03F  , 02F  1 ( 0 F )  2 ( 0 F  02F  0 F 0 2 F ~  
0r + ~r-g-j  + i -W( : x 5-( oxor o= 0r ] (11) 

and boundary conditions (4) become 

02F  xl+2"(1 -t- zl /2) t~ on ~ = 0, F = 0, O( 2 - 

OF (12) 
- - - ~ 0  as r  
0C 

Boundary conditions (12) suggest looking for a solution of Equation (11) by 
expanding 

F(y:, •) = F0(r -t- zl't-2/~FI(r -t- �9 " " (13) 

At leading order, we obtain 

1 7;~ 17q! 1 ! 2 F ; " +  i~,0r0 + 5(F;)  = 0 (14a) 

which has to be solved subject to the homogeneous boundary conditions 

F0(0) = 0, F~)'(O) = 0, F~(oo) = 0, (14b) 

where primes are now used to denote differentiation with respect to C. Performing 
one integration of Equation (14a) and using boundary conditions (14b) results in 
the equation 

1 ! F;' + ~FoF; = 0. (15) 

A particular solution is given by 

F0(~) = x/6tanh(( /x /6) ,  (16) 

and the general solution (F0, ~) which will have dF0/d~ = k (say) on ~ = 0 can 
then be found from Equation (15) by using the transformation 

F0 = kl/2f;'O, ~ = kl/2~, (17a) 
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where 

Fo = v/-6tanh(ff/vr6). 
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(17b) 

To fix the leading order solution completely, we need to determine the value of the 
constant k. This is obtained by integrating Equation (2) and using the boundary 
conditions (4), which gives 

d [~0~ (0~b)2 d Y l d x  \ Oy J = (1 + x2)U (18) 

or  

~ y  dy : 82)" d~ (19) 

because, from the transformation (4), it follows that the integral (18) is zero at 
x = 0. Using expressions (10), (16) and (17), we obtain, for x large, 

(8 )1 /2k3 /2  = [oo,  (20)  

where Io~ can be expressed in terms of the gamma function as 

/F I ~  = (1 -t- 52)" ds = ~ P ( - #  - �89 (21) 

Expressions (20) and (21) give 

and, thus, the leading order solution F0 can be found using expression (17). 
We are now able to consider the next term in expansion (13), which is given by 

the equation 

F~ t' _3f_ g r0rll~'~ r~tt (1 + 2#)F~F~ + (4 + 2#)F~'F1 = 0, (23a) 

which has to be solved subject to the boundary conditions 

FI(0) = 0, F('(0) = -1 ,  F~(~)  = 0. (23b) 

Due to the arbitrary location of the leading edge of the expansion (13), there exists 
an eigensolution 

F~ = 7(F0 - 2CF~) (24) 
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at O(x-1) .  This is effectively a solution to Equation (23) with # = - 1  and in 
general 3' is an undetermined constant. However, for # = - 1,3' can be determined 
as the eigensolution and the perturbation to the leading-order due to the application 
of the wall heat flux boundary condition are both O(x-1)  and, hence, this requires 
the expansion of F(x, C) to take the form suggested by Merkin and Mahmood [10], 
namely 

F(x, r = F0(C) + logr x F~(r + 1 F t ( r  + . . .  (25) 
x 

We then obtain for the equation at O(x-1),  namely, 

r l t t t  1 ~ ~ t t  5 1771 17' t 2 ~ t l ~  
--~ g . r0- r  1 -~- g •  - g r 0 L 1  

= - 7 ( r o r g  + Fo2). (26) 

However, expression (25) is not unique as arbitrary multiples of the eigensolution, 
F~ can be added. 

Results for the nondimensional plate temperature, 0~, = (Or and ~b~ = 
~b(x, oe), as calculated from the numerical solution of Equation (6) are compared 
with those obtained from the asymptotic series for the case # = - 1 ,  see Figure 2. 
From expression (10), using the solution for F0 and the value of k given by (21) 
(for # = - 1, I ~  = 17r), we obtain 

Ow e,o ~ / ~ ' ( 0 ) X  - 1 / 3 ,  @oo(X ,  0 0 )  e,a [ r  , (27a) 
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i.e. 

Ow "~ lgX -1/3,  ~ @oo(X, 00) ~ [r (27b) 

for x >> 1. The asymptotic expressions given by (27) are also shown in Figure 2 
(by the broken lines) and they can be seen to be in good agreement with the 
results obtained from the full numerical solution. The x -1/3 dependence of the 
plate temperature for large values of x also arises in wall plumes on adiabatic walls 
embedded in porous media [8] and this can be thought of as the limiting form of 
our solution since (OT/Oy)y=o -+ 0 as x -+ oo for all # < 0. However, we find 
that this power-law variation of the plate temperature for large values of x arises 
only for the case when # < - �89 We shall further consider the case # = - 1. 

1 4. A s y m p t o t i c  E x p a n s i o n  for  # = - 

Since the expansion (13) in powers of x 1+2~ breaks down when # = - 1  then an 
alternative approach is required, see Ingham and Brown [9]. Thus, following [10], 
we define the new variables 

r = x l / 3 ( l o g e x ) l / 3 ~ ( X ,  7-), 7" = yx-2 /3( lOgex) l /3 .  (28) 

and then Equation (2) becomes 

03(I ) ( 1  1 ) _ 0 2 ( I  ) (31 - 2 ) (O(I)) 

3 3 log~x -~r 
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= x ~T OxOT OX ~ r  2]  ' (29a) 

which has to be solved subject to the boundary conditions 

• -1/2 
,Ii = 0, ~162 1 1 + on r = 0, 

0~_2 -- logex x 2 J (29b) 

0 - 7 - - + 0  as r - - + o o .  

Equation (29a) suggests looking for a solution of the form 

(I)(x, 7.) = (I)0(7.) + ( l o g x ) - l ( I ) l ( 7 . )  + " "  (30)  

To leading order, we have 

l m  mtt 1/mr "~2 ~g' + ~ '0w0 + ~ ' 0 ~  = 0, (31a) 

which has to be solved subject to the homogeneous boundary conditions 

�9 0(0) = O, ~g(O) = O, ~ ( c ~ )  = O, (31b) 

where the primes now denote differentiation with respect to r.  Equation (31a) 
can now be integrated twice and a third integration gives rise to the particular 
solution 

~o = v/6tanh(T/V/-6) �9 (32) 

This problem is very similar to that described in[ 10] and the general solution (~0, r )  
can be obtained from the particular solution (F0, () by the transformation 

(I) 0 = C1/2/~0, 7 -- C-1/2~, (33) 

where C is a constant which has to be determined. 
To find C, we use the transformation (28) in the integral condition (19), which 

for # = - �89 becomes 

, 
07" - - - l o g e ( x  + , / . 2  + 1) 

1OgeZ 

loge2 /' '~ x -2 
= 1 +  log~x + O ~ l o - - ~ x ) "  

(34) 

Thus, for the leading-order terms in the expansion (30), we require 

j/0 ~176 12 ~0 dr  = 1, (35) 
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which gives 

(/5 C = /~2 d = 1(3)1 /3  

on using the result (17b). 
The equation for ~1, from the expansion (30), is given by 

l a. a~tt 2_r d~t l a~tt a~ 2&t2 1.v, a~tt 
~ , t  1_ 3' t '0 ' t ' I  _~ 3 :':0:*:1 -]- 3"i'0U'l = 3:~0 -- 3 ' t '0w0 

which has to be solved subject to the boundary conditions 

�9 1(0) : 0, ~]~(0) = - 1 ,  

~0 ~176 ! ! 
�9 0iI,1 dr  = �89 log~2. 
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(36) 

(37) 

As a check on the above theory, we solved Equation (16) numerically for the case 
# = - �89 allowing the solution to proceed to very large values of x. From this 
solution we calculated that 

0* = x l / 3 ( I  ) - 2 / 3 ~  @* 1/3(1 )-1/3ff3 w o g e x  w~ oo = X ogex  oo~ (40) 

with the results presented in Table I. In this case, we found that the numerical 
solutions do appear to be approaching their respective asymptotic limits, albeit 
slowly. This is to be expected as the perturbation to the leading-order solution is of 
O ( logex)- l ) ,  which at the final value of x given in Table I the value of (logCx) -1 
is 0.0564 and this is comparable with the difference between the values of 0* and 
~b* given at this value of x and their corresponding asymptotic limit. 

5. Conclusions 

In this paper, it has been shown that near the leading edge of the plate the boundary- 
layer develops from a similarity solution, given by solving equation (8) subject to 
the boundary conditions (7), and it is valid for all values of #. At large distances 
from the leading edge of the plate, i.e. at large values of x, three specific cases 

The nondimensional quantities 0~ and ~b~ defined in the previous section can be 
calculated by using transformation (28) and we have 

Ow ~ C x l / 3 ( l o g e x )  2/3,  ~ ~ C 1 / 2 F ( c ~ ) x l / 3 ( l o g e x )  1/3, (39) 

as x ~ ~ ,  where F ( ~ )  = x/~. Again, the solution is not unique beyond leading- 
order due to the existence of the eigensolution 

Ce = + 

(38b) 

�9 = 0 (38a) 
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TABLE I. Variation of 0* and ~b* as a function of the distance 
along the plate for/~ ---- - 1. 

Plate temperature Stream function 

121 mesh 241 mesh 121 mesh 241 mesh 
points points points points 

0* 05 r r  

1.0100E+01 1.20055 1.19964 1.87962 1.87983 
1.0030E+02 0.98868 0.98868 1.93770 1.93778 
1.9950E+02 0.95872 0.95745 1.95079 1.95083 
5.0030E+02 0.92691 0.92533 1.96523 1.96521 
9.9950E+02 0.90804 0.90656 1.97408 1.97401 
2.0235E+03 0.89208 0.89052 1.98585 1.98173 
4.9931E+03 0.87525 0.87357 1.99027 1.99007 
1.0113E+04 0.86424 0.86246 1.99585 1.99560 
2.0148E+04 0.85494 0.85307 2.00007 2.00040 
4.0628E+04 0.84664 0.84462 2.00506 2.00467 
1.0125E§ 0.83731 0.83521 2.01010 2.00962 
2.0119E+05 0.83116 0.82895 2.01342 2.01286 
5.0266E+05 0.82395 0.82160 2.01741 2.01674 
9.8762E+05 0.81920 0.81675 2.02002 2.01927 
2.8226E+06 0.81270 0.81001 2.02373 2.02284 
1.0163E+07 0.80558 0.80305 2.02762 2.02564 
1.8761E+06 0.80301 - -  2.02935 - -  
2.0858E§ 0.80253 0.79955 2.02963 2.02842 
4.8960E+07 - -  0.79580 - -  2.03171 
4.9379E+07 0.799084 - -  2.03171 - -  
oo 0.72112 0.72112 2.08008 2.08008 

have to be considered, namely, # < - 0 . 5 , / z  = - 0 . 5  and / z  > - 0 . 5 .  In order 
to illustrate the nature of  the solution in these ranges of  values of  # three typical 

values of  # in these ranges have been investigated, namely, # = - 0 . 1 2 5 ,  - 0 . 5  
and - 1 .  For # = - 0 . 1 2 5  a similarity solution which is valid for large values of  

x was obtained by  solving equation (9) subject to boundary conditions (7). For  
/z ~< - 0 . 5  the boundary- layer  solution, at large distances f rom the leading edge 
of  the plate, had an asymptot ic  structure with the perturbation to the leading-order 
being 0(x  1+2~) when /z  < - 0 . 5  and 0({log~x} -1 )  when/z  = - 0 . 5 .  The physical  

explanation why no similarity solutions exist for large values of  x when # ~< - �89 
is probably  related to the presence of  a negative temperature gradient along the 
plate, i.e. (OT/Ox)y=O < O, which implies a heating f rom below mechanism.  This 
constrasts with the situation when / z  > - 1  and there is a posit ive temperature  
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gradient along the plate. The transition of the boundary-layer solution between the 
two regions was obtained by numerically solving Equation (6) subject to boundary 
conditions (7). The agreement between the numerical solutions and the asymptotic 
solutions, for large values of x, when # = - 0 . 1 2 5  and - 1  can be clearly seen in 
Figures 1 and 2, whereas Table I shows that the numerical solution is approaching 
the asymptotic limit, for # = -0 .5 ,  albeit slowly. This gives confidence in both 
the numerical solution obtained and the theory presented in this paper. 
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