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It is shown that finite size effects stabilize a variety of phases in superfluid 3He 
which do not occur in the bulk liquid. These phases are formed at temperatures 
at which the coherence length is comparable with the smallest linear dimension 
of the system. Right circular cylindrical geometries are considered explicitly. 

1. INTRODUCTION 

The chief purpose of this paper is to point out the variety of phases 
which should be induced in superfluid aHe by confining it in certain restricted 
geometries. Specifically we have examined the free energy and order param- 
eter of a p-wave paired superfiuid in a long cylindrical tube or pore. The 
phases produced by finite size effects are found when the temperature of the 
superfluid is sufficiently close to the bulk transition temperature T~ so that 
the coherence length ~(T) is of the same order of magnitude as the pore 
radius R, that is, when 

R ~ ~(T) ~ (0/(1 - T/T~) ~/2 (1) 

The zero-temperature coherence length ~0 is of order 124 A. ~ In 1-#m-radius 
pores, Eq. (1) implies that the phases will be observable within a few micro- 
degrees of the bulk transition temperature. Of course, the smaller the pores, 
the wider the temperature range over which the new phases will exist. More 
precise estimates are given in Sections 2 and 3. 

On cooling from the normal Fermi liquid, we believe the sequence of 

phase transitions is : normal 2ha, polar 2nd, mixed axial ~ transverse 

l s l  
axial , BW. The order of each transition is shown above the arrow. The 
names attached to the various phases are indicative of their properties. Thus 
the polar phase is a phase with an order parameter very similar to that of the 
bulk polar phase. 2 Other workers have also realized that the polar phase 
should be stabilized by narrow pores? 

489 
�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication 
may be reproduced, stored in a retrieval system,  or transmitted,  in any form or by any means, electronic, mechanical, 
photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



490 G. Barton and M. A. Moore 

The axial (or ABM) phases 4- 6 exist in two forms, mixed axial and trans- 
verse axial. The mixed axial phase is stable over a small temperature region 
and changes at a first order transition to the transverse axial state. The chief 
difference between the two axial phases lies in the fact that only the trans- 
verse axial phase has a disgyration 7 at the pore center. A disgyration is a 
region in which the order parameter is reduced rather like in a vortex core 
in superfluid 4He. 

On further cooling, the BW s or B phase will be produced from the 
transverse axial phase at a first order transition. The BW state in a pore differs 
from the bulk BW state mainly in having a disgyration at the pore center. 
[Note that if the pressure is much greater than the polycritical point pressure, 
the temperature will have to be much reduced before the BW state appears. 
There the coherence length ~(T) << R and finite size effects can be safely 
neglected. The transition which takes place in these circumstances is best 
regarded as just the usual A to B bulk liquid transition.] 

The mechanism which produces the variety of phases is the competition 
among terms in the free energy corresponding to bulk energies, surface 
energies, and strain energies (which arise from spatial variations of the order 
parameter). A surface free energy arises through the suppression of certain 
of the components of the order parameters at a surface. Ambegaokar, de 
Gennes, and Rainer 7 (to be referred to as AGR) have shown that the boundary 
conditions on the order parameter depend crucially on how 3He quasi- 
particles are scattered at a solid surface. It seems most likely that diffuse 
scattering will prevail for ordinary glass surfaces, 9 and so we have concen- 
trated mainly on this case. The sequence of transitions outlined above was 
for diffuse scattering boundary conditions. AGR suggested that at mica 
surfaces, specular reflection of 3He quasiparticles might be realized. The 
sequence of transitions for specular reflection boundary conditions is given 
in Section 5. 

All the calculations in this paper are of mean-field character. Fluctua- 
tions about the mean-field (or Ginzburg-Landau) solution are enhanced in 
a pore since its geometry is essentially that of a one-dimensional system. 
Fluctuations will round off the sharp transitions found by minimizing the 
Ginzburg-Landau free-energy functional. Fortunately, this rounding-off 
effect has been much studied in connection with superconductivity in thin 
wires and so we shall just quote the result for the range of validity of mean- 
field theory. For a one-dimensional system, mean-field theory fails only 
within a temperature interval Ec given by10 

~ = (1 - T / T ~ )  ~ ( k ~ R )  - 4 / ~  (2) 
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where the Fermi wave number kv is of order 0.87 ~,- i for liquid 3He. Since 
the intervals over which the phases exist are of order (~o/R) 2, the fluctuation 
rounding effects are small in comparison. Variations in pore diameter will 
also be a source of rounding. 

Another complication which we shall neglect throughout is the effect of 
the dipole-dipole interactions between the 3He nuclei. These will play a 
crucial role in determining the NMR properties of the phases in the pores, ~1 
but their thermodynamic effects will only be appreciable in a reduced tem- 
perature interval c o of 

co = (1 - T/T~) ~ N(O)(yh)2[ln (1.13hcoo/kBT~)] 2 ~ 2 x 10 .6  (3) 

Since the reduced temperature intervals we are concerned with are of order 
10-3 or greater, it is clear that the dipole energy terms can be safely neg- 
lected in discussions of the stability of the phases in the pores. (A reduced 
temperature interval of 10-3 corresponds to a temperature difference from 
T~ of about 1 #K.) 

An experiment such as a flow or NMR experiment on superfluid 3He 
in narrow pores at temperatures close to the bulk transition temperature 
should therefore reveal a number of "kinks" in any measured quantity as 
the temperature is reduced, corresponding to the various phase transitions. 
(Actually, we can only be sure of sharp "kinks"  in thermodynamic quantities ; 
fluctuation effects and hence rounding may be larger for transport coeffici- 
ents.) 1~ The nature of these kinks and the temperatures at which they occur 
will provide much information on coherence lengths, boundary conditions, 
and the behavior of quasiparticle scattering off the surface of the pores. In 
addition we expect a similar variety of phases in any restricted geometry 
except that of slab geometry. 12 

The mathematical formalism is outlined in Section 2. We have concen- 
trated mainly on the procedure to be used, for to solve the equations com- 
pletely would involve a huge numerical effort. This is probably sufficient 
until the shape of the pores used in any particular experiment is known. 
For  example, if the pore diameters are less than 1 #m, the pores are unlikely 
to be fabricated with accurately circular cross sections. It is possible to make 
much progress by using simple Ans~itze tbr the order parameter, together with 
a few numerical estimates. Such are given for the two axial states in Section 
3 and for the BW state in Section 4. In Section 5, specular scattering boundary 
conditions are considered and the sequence of transitions appropriate to 
them is worked out. We conclude in Section 6 with discussions of the effects 
of magnetic fields and of metastability of the phases. 
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2. F OR MALISM AND CALCULATIONAL TECHNIQUES 

2.1. Formalism 

The order parameter for the triplet-paired superfluid, A,~, is most 
conveniently expressed for p-wave pairing in the form 

( a u ( k ) G ( - k ) )  ~ A,v = i((r-d(k)ay)~v (4) 

dp(k) = Apiki (5) 

where/ci is a Cartesian component of the unit wave vector k ; and Ap~ is a 
complex 3 x 3 matrix whose elements transform under a space rotation 
like a vector with respect to the column index i, and under a spin rotation 
like a vector with respect to the row index p. For  discussions of the thermo- 
dynamics of superfluid 3He in the vicinity of the phase transition, the Landau 
expansion of the free energy F in powers of the order parameter is most 
useful. Neglecting dipolar forces, the (bulk) free-energy density difference 
between the normal and superfluid phases to fourth order in the order 
parameter can be written as 

fB = - �89  Tr AA + + �88 AA[ 2 + fl2[Tr AA+] 2 + f13 Tr[A+A(A+A) *] 

+ f14 Tr(AA+) 2 + f15 Tr[AA+(AA+)*]} 

= - �89  Tr AA + + �88 Z fl,R, (6) 
i 

The coefficient a is of the form 2(1 - T/T~), while the fi~ are "strong coupling" 
coefficients whose values are not fully determined by the present experimental 
data. 

When the order parameter varies spatially, there are extra terms in the 
free energy density, quadratic in the gradients, v which we shall refer to as the 
"strain energy"" 

f s  = �89 ~ {KL[ div A,I 2 + KTI curl Ap[ 2} (7) 
P 

where KL and K r are two positive constants and Ap is the vector with 
components A.i. There are two coherence lengths associated with the con- 
stants KL and KT, 

~ KL/Ia[ = 9 2 = ~o / t  (longitudinal) (8) 

~2 Kr/lal = 3 2 = ~ o / t  (transverse) (9) 

where t = (1 - T/T~) and ~o is the zero-temperature coherence length. 7 
The total free energy F of the system is just the volume integral 

F = ~ dV (fB + fs) (10) J 
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The boundary conditions on the superfluid order parameter are com- 
plicated. AGR demonstrated that whatever the temperature and the nature 
of the surface, the component of the order parameter normal to the surface 
(av)• vanishes: 

(Av)• = 0 (1 I) 

The boundary conditions on the tangential components of the order param- 
eter (A;)li are, however, temperature and surface dependent. We shall treat 
separately in Section 5 surfaces that scatter 3He quasiparticles specularly. 
For surfaces that scatter 3He quasiparticles diffusely, AGR showed that the 
tangential components at a surface are reduced relative to their bulk values 
by a factor ~o/~r(T). Since we are interested only in the temperature region 
for which {(T) >> 4o, i.e., near T~, we can adopt the simpler boundary con- 
dition (for diffuse reflection) 

(Av) ll (surface) = 0 (12) 

In this paper we study in detail the case of 3He confined in a long 
cylindrical pore of circular cross section. Its axis is taken to be the z axis. 
We shall assume throughout that the order parameter A which makes F 
a minimum and satisfies the boundary conditions does not depend on z. 
This is because variation in z is never enjoined by the boundary conditions, 
and if present would produce an increase in the strain energy fs without 
any reduction in the bulk energy. The A; will therefore be taken to be 
functions of two variables only, r and 0, namely the usual cylindrical polar 
coordinates. The pore radius is denoted by R, so that the boundary conditions 
(11) and (12) specialize to 

Ap(R, O) = 0 for all 0 (13) 

2.2. The Linearized Equations 

The Euler-Lagrange procedure yields partial differential equations in 
the Ap which, when solved subject to the boundary conditions, give a 
stationary expression for the free energy. Among these stationary solutions 
will be the true absolute minimum, which gives the equilibrium state of the 
superfluid. The Euler-Lagrange equations are 

Kr V2Ap -~ (KL -- Kr)graddiv  Ap + aAp - �88 Zfi,(ORi/OAp) = 0 (14) 
i 

where, in our curvilinear (polar) coordinates, V 2 is defined as (grad div - 
curl curl). The last term in Eq. (14) is cubic in Ap. Hence when the superfluid 
first condenses, the only role of the cubic terms is to fix the overall normaliza- 
tion of Ap, and the radial and angular dependences of the order parameter 
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will be given by the solutions of the simpler linear equation 

KT V2Ap + (KL -- KT)grad div A v + aAp = 0 (15) 

This equation, together with the boundary conditions (1t) and (12), can 
be regarded as an eigenvalue equation with a as the eigenvalue. The super- 
fluid cannot  begin to condense until the quadratic part of F [i.e. the part 
which gives rise to Eq. (15)] can turn negative. Since the strain terms are 
positive-definite, condensation in a finite geometry with diffuse boundary 
conditions can only take place if the temperature is less than the bulk 
superfluid transition temperature T~, that is, for nonzero, positive values of 
a. If we denote the smallest eigenvalue of (15) by al ,  then the exact onset 
temperature Ta is given by 

a I = ,~(1 - -  T1/T~) (16) 

For  the cylindrical capillary a 1 can be obtained explicitly. Notice that in 
Eq. (15) the different spin components- - the  components labeled by the 
index p- -a re  decoupled from one another, which means that we can solve 
for each spin component separately and so ignore the subscript p in (15), 
i.e., set Ap ~ A. For  KL > KT, it turns out that the lowest eigenvalue corres- 
ponds to an eigenfunction for which div A = 0. If one sets A = g(r, 0)~, 
where ~ is a unit vector along the capillary axis, the divergence will vanish 
identically. Then Eq. (15) reduces to 

K r V 2 g  + ag = 0 (17) 

In a cylindrical geometry subject to the boundary condition g(R, 0 ) =  0, 
Eq. (17) has solutions 

Icos toO) 
J,~(~z,,,,r/R))sinmO~, m = 0,1,2 . . . .  " n = 1,2,3 . . . .  (18) 

where c~,,, is the nth zero of Jm(x), not counting (for m > 1) the zero at x = 0. 
The eigenvalues associated with the eigenfunctions in (18) are 

= E,~o = K ~ L / R  2 09) 

The smallest eigenvalue corresponds to %1 ~ 2.40, and so superfluid 
condensation will first take place when 

a = a 1 = Eol 

or, using (9), when 

R / ~  T = CO1 

o r  

s ( r  "o~ ( ~ -  T1)/T~ = 3 2 2 

(20) 

(2Oa) 
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Equation (20) shows that finite size effects are appreciable only when the 
coherence length becomes comparable to the smallest linear dimension of 
the system ; in this case, the pore diameter. Equation (20a) indicates that the 
transition temperature 7"1 is depressed below the bulk value of T~ by an 
amount which varies as the inverse square of the pore radius. 

We shall attach the name "polar"  to solutions of the type Ap = g(r, 0)~. 
The reason for this name is that in the bulk liquid, the polar phase has an 
order parameter which can be written Ap = 6pl g~, where g is a temperature- 
dependent (but position-independent) constant. 2'6 It seems likly that the 
strong coupling coefficients/3~ have values which ensure that the polar phase 
is not a stable bulk phase. Its stability in a cylindrical pore is a manifestation 
of finite-size effects. 

We shall now list the possible types of solutions of the linearized 
equation (15). Nontrivial details are discussed in Appendix A. Writing A 
in terms of cylindrical polar variables and components (fr(r, 0), fo(r, 0), 
g(r, 0)), there exist the solutions: 

(i) "Polar  type":  

fcos tool 
~+,~Jm(c~m,r/R)lsinrnO ~, m - 0 , 1 , 2 ;  n =  1,2,3 . . . .  (2I) 

as in (18) with eigenvalues as in (19). The superscript _+ indicates the parity 
under reflection of the y axis, (x ~ x ,y -+  -y ) ,  as discussed further in 
Appendix A. 

(ii) "Transverse type" fr = 0 and 

fo(r) ~ J~(cq,r/R), n = 1, 2, 3 , . . .  (22) 

which satisfies the boundary conditionfo(R) = 0 and has eigenvalues 

a =- E l n  --- KTO~2n/R 2 (23) 

The lowest eigenvalue corresponds to c~1~ ~ 3.83. 
(iii) "Longitudinal type":  fo = 0 and 

f~(r) ~ Jl(cq~r/R), n = 1, 2, 3 . . . .  (24) 

which satisfies the boundary conditionf~(R) = 0 and has eigenvatues 3E1,. 
(iv) Mixed solutions. These are solutions of (15) forf~ and f0 which are 

neither purely transverse nor purely longitudinal. They are described in 
Appendix A. Define 

1 ~Jm(A)Jm(b)m 2 J'.,(B)J',.(a)~ 
(25) 
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where m = 1, 2 . . . . .  A = (a/KT)I /2R,  B = (a/KL)~/2R = A/all3, a = (a/Kr) l /2r ,  
b = (a /Kc) l /2r  = a / , J J ,  and J ' ( x )  - (d/dx)J, ,(x) .  Then there are two kinds 
of mixed solutions labeled + and - to indicate their parities under reflection 
of the y axis (see Appendix A): 

f m  + = vm(r) cos rnO, f,,+o = - u,~(r) sin mO (26) 

f L = v,,(r) sin m0, f ,~o = Urn(r) COS mO (27) 

The eigenvalue condition is 

mZJm(A)J, , (B)  = ABJ' , , (A)Jm(B ) (28) 

Denote by 7m, the nth solution of(28) for A. The lowest eigenvalue is 71 ~ ~ 3.36 
and corresponds to a temperature T M given by 

(T~ - TM)/T~ = ~{o/R)2(3.36) 2 (29) 

7~1 is the next smallest eigenvalue to the polar eigenvalue c~0~. 
For m = 0, the two mixed solutions reduce to the transverse and 

longitudinal solutions. 

2.3 .  S e c t o r s  

Any solution of the nonlinear equation (14) can be expressed as a linear 
superposition of solutions of the linear equation (15). However, there exist 
solutions of the nonlinear equations whose expansion involves only a subset 
(and not all) of the solutions of the linear equation. The problem is to deter- 
mine which combinations will occur in any given phase. It will help to con- 
sider first a. simple example (model) for the polar phase. 

Let (pl(r, 0) and ~pz(r, O) be two solutions of the linear equation, Eq. (17), 
with eigenvalues zl and e2, and suppose for the moment that it is adequate 
to write 

g(r, 0) = Ca~l + C 2 0 2 ,  Cl, 2 real constants (30) 

Then, in terms of cl and c 2, the free energy can be written as 

F ~ {--(a - -  ~ l ) C  2 - -  (a -- e2)c~ + 74c~ + 73c~c2 

+ 72c2c~ + 71clc  3 + 7oC~} (31) 

where the 7i depend on the strong coupling coefficients and on the explicit 
form of the functions 01(r, 0) and Oz(r, 0). For example, the coefficient 73 
will be related to the "interference" integral 

~ ~ dv ~ 0 2  (32) y~ 
d 
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Assume el < e2, so that initially the superfluid will condense into the state 
~1- We distinguish two cases. 

(i) Odd-odd  interference terms (like "/3 or 71) nonzero. 
We anticipate that for a just above el ,  when la - e l l  << la - e21, we 

should have c{/c 2 nonzero Cthough small), i.e., that c~ is nonzero even though 
a < e2- That  this is indeed so is easily demonstrated. If c 2 = 0, 

F ~ -Ca - el)c~ + 74c'~ (33) 

and is minimized by ca~ = C a -  q)/27~. To second order in c2, taking 

I a - g ' l l  << I a - g21, 

F ~ - ( a  - ~,)c~ + '/4c~ + ~3c3c2 + (e2 - a) c2 (34) 

which on calculating c?F/ac2 to find the minimum gives 

SO 

and 

73  c3  q- 2C2(g  2 - -  a) = 0 

C 2 = - - ~ / 3 C 3 / ( ~ 2  - -  a )  

( 3 5 )  

c2/c i = - ( ' / 3 / 2 ~ 4 ) ( a  - e 0 / %  - a )  ( 3 6 )  

which is small, as expected, and vanishes as a --, ~l. 
(ii) Only even-even interference terms nonzero. 
In this case, the free energy F can be put in the form 

2 ,2 1 4 F - -Ca  - gl)c~ - (a - ~2)c~ + �89 + fl12c,c2 + gfi2zc 2 (37) 

Depending on the relative values of fil l, fi12, fi2z, et,  and e2, several possi- 
bilities exist, and are spelled out in Appendix B. For  our present purposes, 
it is sufficient to notice that, if c 2 ever rises from zero, it can do so only at a 
further second- or first-order transition, which occurs at a temperature 
lower than that where condensation into the ~b 1 state begins. 

Hence it is essential to recognize the differences between combinations 
of linear functions which have, or have not, odd-odd interference terms, 
We shall divide the space spanned by the solutions of the linear equation 
(15) subject to diffuse scattering boundary conditions into sectors, such that 
functions all within one sector have no odd-odd  interference terms with 
any functions outside that sector, while there are odd-odd  interference 
terms within each sector. (See further remarks in Appendix C.) In other 
words, the order parameter of any given phase in the pore is associated with 
just one sector. Obviously, all functions in the same sector can combine 
freely, and by adjusting the relative weight of each function in the sector, 



498 G. Barton and M. A. Moore 

the shape of the order parameter adjusts itself to changing values of the 
temperature. 

One sector for the polar phase is made up of the functions Jo(~o,r/R).  
Condensation starts with the n = 1 function of this sector and it would seem 
reasonable to assume that the polar phase at all temperatures below T1 
is expressible as 

g(r, 0) = y~ C.Jo(~o.r/R) (38) 
n 

However, other polar sectors do exist ; they all cause g to vary with the polar 
angle 0. An example is 

g(r, 0) = ~ ~, Cm,Jm(o~mnr/R ) sin mO (39) 
m e v e n  n 

[Evidently, there are no odd-odd interference terms between (38) and (39), 
since all such vanish after integration over 0.] One might wonder whether 
the larger sector of Eq. (39) might at a certain temperature give a lower free 
energy than the sector of Eq. (38). Such questions cannot be answered firmly 
without resort to detailed numerical work, but on physical grounds we 
doubt whether admitting angular variation into g would lower the free 
energy. In other words, in this nonlinear variational problem, intuition 
trained on linear variational processes is unreliable; it no longer follows 
automatically that every  extra variational parameter leads to an improvement 
in the trial function. 

Assuming that the polar phase remains in the sector of Eq. (38), we 
examined numerically its development as a function of temperature. Speci- 
fically we took the first three coefficients in (38), c I , c 2, c 3, expressed the 
free energy in terms of them, and varied them until the free energy was a 
minimum: The results were as might have been expected. For values of the 
temperature close to T 1 , the onset temperature for polar condensation, the 
first term dominated g(r). As the temperature was reduced, the magnitudes of 
c2 and c3 increased, maintaining 1c3] < Ic21. We were able to conclude that 
for temperatures in the range such that 

2.4 < R / @  < 4.5" 

a three-parameter variational calculation was adequate for the polar phase. 
On cooling, the polar phase does not remain the most stable phase. 

This is easily understood. For temperatures well below T~, the coherence 
length will be small compared to the pore size and so finite size effects will 
become unimportant. At such temperatures, bulk terms dominate, and the 
liquid will have an order parameter very similar to either that of the axial 
phase or the BW phase, depending upon pressure of the liquid in the pores. 
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The details of the passage from the polar phase to these other phases is the 
subject of the next two sections. 

3. T H E  A X I A L  P H A S E S  

In the bulk liquid the A matrix of the axial phase, in a Cartesian basis 
labeled by (x, y, z), is 

A ~- 0 (40) 

0 

This is a standard form, which may be pre- or post-multiplied by independent 
real orthogonal matrices representing rotations in spin space and in con- 
figuration space. When the liquid is confined to a pore, we look for an Ansatz 
which is a minimal modification of (40), capable of satisfying the boundary 
conditions yet remaining, locally, as similar as possible to the bulk form. 
(Recall that to date even the bulk problem is too complicated for complete 
solution from first principles; a fortiori we do not tackle the restricted- 
geometry problem head on.) In constructing such an Ansatz for the cylinder, 
we bear in mind that the cylinder axis (z direction) is physically distinguished 
from the x and y directions, and that the strain energy introduces an explicit 
and basic distinction between row and column (i.e., spin and space) indices of 
A. Accordingly, we chose an Ansatz which maintains zero vectors in the 
second and .third rows of A (since there is no physical reason why restricted 
geometry should induce spin rotations) ; and in the remaining vector of the 
first row we maintain its x and y components (those in the cross-sectional 
plane) as pure imaginary relative to the z component, i.e., the polar com- 
ponent. But we allow for the possibility that confinement will (i) rotate the 
x and y components in their own plane (about the z axis) through an angle 
depending on r and 0, and (ii) alter the relative normalization of the in-plane 
and of the z components, also by a position-dependent amount. Thus, our 
Ansatz is 

A ~ 0 , f, g real (41) 

0 
i.e., 

A v = 6pl( i fx ,  iJy, g) = 6p~(if, g) (42) 

(We expect, though we shall not pursue the argument quantitatively, that 
for very large radius, If] and g assume their bulk values, except in a surface 
layer whose local structure is independent of the curvature, and except also 
very near the axis, where there is a disgyration. There are obvious analogies 
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in this limit between the behavior of f and the fixed-magnitude director in 
nematic liquid crystals.) 

The polar phase is a special case of the Ansatz with f = 0. The free energy 
in terms o f f  and g becomes 

F = f dV {�89 + (grad g)21 + �89 2 

_ �89 + g2) + �88 + g4) + ~fiCfag2} 
with 

f i=  fl~ +132 +133 +13a +135, 13C=-132 +134 + 1 3 , -  13~ -133 (43) 

]n the original spin-fluctuation model,* fl ~ (3 - ~), C --- (1 - 6)/(3 - c~), 
which, on taking b = 1 gives 13 ~ 2,75 and C = 0.27. 

The Euler-Lagrange equations are 

K-~ V2g + ag - 1393 _ flCf2g = O, (44) 

Kr V2f + (KL -- Kr) grad div f + af - flf 2f _ flCg2f = 0 (45) 

Because C is nonzero, the solutions for f and g are coupled. The polar 
component g forms first (while f is still zero) and develops as the solution 
to the equation 

K T V2g + ag - f i g 3  = 0 (46) 

The solution to (46), alone, for ~r << R, will be 

g2 = a/fi, with free energy F = - Va2/4fl (47) 

for, in such a region, finite size effects will be negligible, V2g .~ O, and gZ 
will take its bulk liquid value. By the same argument the solution of (44) and 
(45) for ~r << R will be 

ga = f2 : (a/13)(1 + C)- 1, with free energy F = - Va2/213(l + C) (48) 

just as in the bulk axial phase. In view of the fact that in the bulk liquid it is 
the axial phase which is stable and not the polar phase, which implies 
C < 1, one concludes that the polar phase in the pore must disappear on 
lowering the temperature sufficiently. There will be a temperature at which 
it is possible to obtain a lower free energy than the polar free energy obtained 
from (46), by making f nonzero. 

An upper bound on the temperature at which f first appears can be 
found by dropping the cubic terms in (45), when the resulting linear differ- 
ential equation is similar to Eq. (15), viz. 

Kr  VZf + (KL -- KT)grad d ivf  + at" = 0 (49) 

*See R e f  5. S o m e w h a t  different  express ions  were  o b t a i n e d  in a la te r  pape r .  15 
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The lowest eigenfunction of (49) corresponds to the m = 1 mixed state 
solution (26) and forms when 

(T~ - T)/T~ = ~(?.o/R)2(3.36) 2 (50) 

The exact temperature at which f condenses could be obtained by finding 
the lowest eigenvalue of 

Kr  V2f + (KL - Kr) grad divf  + af - fiCg2f = 0 (51) 

In principle, one must first solve (46) for g, and substitute the solution into 
(51). The resulting differential equation, though linear, would be quite 
intractable, so we shall make the approximation of replacing g2 by a con- 
stant, its bulk polar value, aZ/fi, which should give a lower " b o u n d "  on the 
temperature at which f condenses, since gZ in the pore is unlikely to much 
exceed its bulk value over large regions of the pore. The resulting expression 
for the onset temperature is 

(T~ - T)/T~ = ~(~o/R)2(3.36)2(1 - C) -1 (52) 

Notice that because C > 0, the effect of cross-coupling between Eqs. (44) 
and (45) for f and g is to delay the condensation of L or increase the stability 
of the polar phase. We shall call the phase which develops from the polar 
phase the mixed axial state (or phase), because it is initially dominated by the 
m = 1 mixed solution. Its development as the temperature is lowered can 
only be obtained from a study of (44) and (45). The angular variation of the 
mixed solution for fwill induce, via the cross-coupling term, only- even multi- 
poles in g (that is, terms in cos m0 and sin mO with m even), f itself probably 
remains in the sector consisting of just the f+aa solutions isee Eq. (26)], 
since initially it condenses into just this sector. (The cubic term flf2f in (45) 
mixes different m values, but odd values of m remain in a separate sector to 
the even values. A summary on the sectors is given in Appendix C.) 

However, we believe that the mixed axial phase will probably be over- 
taken at a first-order transition by the "transverse" state which has 

f(r ,  0) = (0, fo(r)), gO', O) = ~ C,Jo(C~o,,r/R) (53) 
n 

where 

fo(r) = Z b,J l(c~l,r/R) (54) 
n 

The transverse state has no chance of forming until 

( T ~ - T ) / T c  3 . ,  2 2 = ~(go/R) ~11, cqI ,,~ 3.83 (55a) 

as can be seen by the same type of argument which led to (50). The transverse 
state is the one which AGR suggested would be the most stable state in a 
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cylindrical pore. Because If] ~ 0 at the center of the pore [J~(x) ~ x/2 as 
x ~ 0] it has a disgyration there, in contrast to the mixed state, whose 
disgyrations, if any, are at the surface. 

The competition between the mixed and transverse states can be 
illustrated in a mathematically very crude way by ignoring the polar 
components, and retaining only the leading term for the mixed state (the 
f [  eigenfunction) and the transverse state (the ~-1 eigenfunction). This 
leads to the model problem of Appendix B, where the relative stability of 
two states labeled (x) and (y) is worked out [see also Eq. (37)]. Identifying (x) 
with the mixed state and (y) with the transverse state, the parameters are 
el = 3.36, e2 = 3.83, fl~r ~ 1.44, i l l 2  ~ 1.69, and f l 2 2  ~ 0.98. In this case 
fl11,/312, and fizz just involve overlap integrals, e.g., 

It is shown in Appendix B that if the parameters satisfy the inequality 
fl12 >/711 >/?22, then the transition from (x) to (y) (or mixed to transverse) 
will take place at a first-order transition, at a temperature given by 

R1/2~  
I P 2 2  ] /  P l l  P 2 2 1  

that is, (55b) 

(T~ - T ) / ~  = ~(~o/R)2(6.04) z 

A more refined calculation, taking more functions in each sector and allowing 
for cross-coupling to the polar components, would be needed to obtain an 
accurate expression for the transition temperature. 

The mechanism by which at lower temperatures the mixed axial phase 
becomes less stable than the transverse axial phase is hard to describe in 
physical terms but would seem to be connected with the small value of the 
parameter/?22 in the model. It is shown in Appendix B that if the/?q had 
satisfied, for example, the inequalities /?11 > ill2 >/722 and (/71d~12- 
/?~2) > 0, then there would have been an intermediate phase lying between 
the mixed and transverse phases, which would have formed and disappeared 
at second-order transitions. Presumably in other restricted geometries, this 
possibility, or other similar ones, might be realized. It is not obvious either 
that a more refined calculation for a pore might not show the existence of, 
say, the intermediate phase, but we would doubt it, mainly because of the 
generous margin by which the/?~i of the model satisfy the inequality governing 
the existence of a first-order transition. 
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4. THE BW PHASE 

In the bulk liquid the standard form of the A matrix of the BW phase is 

A--l~ 01 (56) 
To construct a corresponding Ansatz for the pore, we follow the same line 
of reasoning as at the beginning of Section 3 ; in particular, we now maintain 
the three rows of A as mutually orthogonal real vectors. Thus one is led at 
once to the Ansatz 

A --- hx h~. , f, h, g real (57) 

0 0 

f . h  = fxhx + f ,h  r = 0 (58) 

We shall see presently that (58) is an extremely strong constraint which 
practically determines our choice of f and h. 

The free energy in terms off,  h, and g becomes 

f dV {�89 f)~ + (curl h)~ + (grad g)2] F 

+ �89 2 + (div h)2~ 

_ �89 if_ h 2 + g2) q_ lf l (f4 q_ h 4 + g,~) + �89 q_ hZg2 q_ fZh2)} 

where (59) 

=- fi, + flz + f13 + ~4 + fis, tiC' - ( ~  + ~2) (60) 

/3 has the same form as for the axial Ansatz but C', in terms of spin-fluctuation 
model parameters, is (1 + 3)/(3 - 8) ~ 0.45 at 6 = �88 which is greater than 
C for the axial Ansatz. 

We shall be driven by the complexity of (59) to assume that the BW 
state lies in the sectors 

g(r,0) = ~ a.Jo(c%,r/R ) 
n 

f(r, 0) = (O, fo(r)), i.e., f i s  purely transverse (61) 

h(r, 0) = (hr(r), 0), i.e., h is purely longitudinal 
where 

fo(r) = ~ b.J~(~,.r/R), hr(r) = ~ c.Jl(cq.r/R) (62) 
n n 
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Notice that (61) and (62) imply that there is a disgyration at the center of the 
pore for the BW state, since, as r ~ 0, ]fl ~ 0 and Ih[ - ,  0. At this disgyration, 
the BW phase locally resembles the polar phase. 

When outlining the sequence of transitions in Section 1, we indicated 
that the axial phases would always be formed before the first-order transition 
to the BW phase takes place. This will certainly be true if the pressure on the 
superfluid is greater than the pressure at the polycritical point (PCP), for 
then the transition will resemble the bulk A to B transition. Finite size effects 
will modify the AB transition more strongly near the PCP, and Privorotskii 12 
has worked out their effects on the shape of the AB phase boundary in its 
vicinity. Well below the PCP the situation is uncertain, and one might 
envisage transitions from, say, the mixed axial phase direct to the BW phase, 
omitting the transverse axial phase. However, detailed analysis is impossible 
without values for fl and C', and at low pressures nothing is known about 
them. 

5. SPECULAR BOUNDARY CONDITIONS 

So far, all the discussion has been for boundary conditions on the order 
parameter appropriate to diffuse scattering of 3He quasiparticles at a 
solid surface. For the case of specular reflection, the boundary condition 
on the component of the order parameter normal to the surface remains as 
before7 : 

(Ap)• = 0 (63) 

but that on the tangential components is radically altered. The strain terms 
F s in the free energy are 

�89 f dV {K L air  A* air  Ap + Kr curl A*. curl Ap} (64) Fs 

which, using Gauss' theorem, can be rewritten as 

-�89 f dV {KL(A* �9 V)div Ap + KTA~ �9 curl curl Ap} Fs 

The longitudinal surface term in (65) is automatically zero because of the 
boundary condition (63) on the components of the order parameter normal 
to the surface. 

In the Euler-Lagrange minimization procedure, both bulk and surface 
terms must be minimized. On varying A* in the transverse surface term in 
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(65), one has 

f dS.  6A* x curlAv = 0 (66) 

But A* and 6A* are constrained on the surface by (Ap)• = (Av*)i = 0, so 
both 6A* and A* lie in the tangent plane. Thus for a plane surface lying 
parallel to the xy plane, (66) becomes 

which implies 

or  

f dS~ {(6A*)~(curl Ap)y - (6A*)y(curl Av)~} = 0 

(curl Av) x = (curl Av)y = 0 

(67) 

8Apz 8AP'; - ~APx OAw - 0 (68) 
~y 8z Oz 8x 

But, on the surface, Apz is zero, hence 8Apz/Sy = 0 = OApz/OX oi1 the surface. 
Hence, from (68) we have 

~Apy/3z = 0 = OApx/c?z at the surface (69) 

Equations (69) are the appropriate boundary conditions on the tangential 
Cartesian components of the order parameter for the case of specular 
reflection from a plane surface. 

The boundary conditions (63) and (69) give results in agreement with 
those produced by a full microscopic calculation by AGR. 7 It is important 
to realize that as far as pure phenomenology goes, other surface terms could 
be added to (65). 12 Such terms, if present, could completely alter the boundary 
condition (69) and produce results at variance with the microscopic calcula- 
tion. We feel that the agreement with the microscopic calculation justifies 
the neglect of such further surface terms. (It must be remembered also that 
surface terms are defined uniquely only once a particular form has been 
adopted for the bulk free-energy density. In other words, the introduction 
of a total divergence in fact modifies the surface energy.) 

For a cylindrical surface, (66) gives the condition 

But 

(curl Ap) o = (curl Ap) z = 0 (70) 

(curl Ap) o = ~Apr/OZ - 8Apz/c3r 
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and since OApr/~?z = 0 at the surface since Apt = 0 at r = R from (63), we must 
have 

c~Ap~/3r = 0 at r = R (71) 

Also, 

1 • 1 ~Apr 
(curl Ap)  z = r ~r  (rAp~ r 00 

and since OAp,/O0 = 0 at r = R from (63), we have 

(~?/~r)(rApo) = 0 at r = R (72) 

Equations (63), (71), and (72) are the appropriate boundary conditions if 
ZHe quasiparticles are reflected specularly at a solid cylindrical surface. 
We expect them to be valid only for the treatment of phenomena which vary 
on a length scale greater than ~o- For  effects on the scale of ~o, the micro- 
scopic approach will be necessary. 

Specular boundary conditions result in some striking differences in 
behavior. The formalism and the general approach of Section 2 still apply, 
and the solutions of the linearized equations (15) with specular boundary 
conditions are given in Appendix A. The first phase to condense from the 
normal phase will be the polar phase, as before, but because of the changed 
boundary conditions, Og(R, O)/Or = 0, (46) now admits the solution gz = a/ft. 
Notice that this phase will start to condense exactly at the bulk critical tem- 
perature T~, and appears as if it knew nothing of the presence of the walls. 

As the temperature is lowered, the polar phase will become unstable 
relative to an axial phase. The temperature at which f begins to be nonzero 
can be determined exactly, for in (51) one can set g2 = a/fl without approxi- 
mation. The lowest eigenfunction of (51) with specular boundary conditions 
is the transverse solution (see Appendix A) 

f~ = O, fo ~ J'o(C%,r/R) (73) 

and appears at a temperature 

(T~ - T)/T~ = ~(~o/R)2(2.4)2(1 - C) - t  (74) 

Because of the form of the solutions to the linearized problem (Appendix 
A), there is now no plausible reason to expect an analog to the transition 
between the mixed axial and transverse axial phases as found in the case of 
diffuse scattering boundary conditions, although such behavior cannot be 
ruled out rigorously without extensive numerical calculation. We believe 
that the most likely development of the axial phase as the temperature is 



Superfluid 3He in Restricted Geometries 507 

lowered is in the sectors 

f(r,0) = (0, fo(r)) 

g(r, 0) = ~ a,Jo(~Zl,r/R), 
n = 0  

where 

0~10 ~ O 

(75) 

fo(r) = ~ b,J'o(%,r/R) (76) 
n = l  

Note that (75) satisfies the boundary condition 

(Sg(r,O)/Or = 0 at r = R (77) 

because 

S o ( ~ l . )  = - J l ( ( Z l . )  = 0 (78 )  

and that (76) satisfies the boundary condition that 

(O/&)(rfo(r)) = 0 at r = R (79) 

because AJ~(A)+ J'o(A)= -AJo(A) for any A, so A must be (%,r/R) 
to satisfy (79). 

On cooling further, the BW phase will form. Arguing by analogy with 
the case of diffuse scattering boundary conditions, we believe the appropriate 
Ansatz is as in (57), but with g given by (75), f given by (76), and h by 

hr(r, O) = ~ c,d'o(%,r/R), ho = 0 (80) 
n 

which is a superposition of longitudinal solutions. 
To summarize, the sequence of transitions for specular reflection 

boundary conditions will be normal 2"a*polar Znd ~axial 1s, ~BW, where 
the order of each transition between the phases has been indicated. 

6. DISCUSSION 

The only experiment to date (of which we are aware) in which there 
might have been a chance of observing phases similar to those predicted 
for restricted geometries is the experiment of Dundon et a1,i6 on superfluid 
3He in sintered copper. Their sintered copper was made up of copper 
"spheres" of diameter i ttm. Because of experimental difficulties, their 
results were lacking in precision. However, they did find one interesting 
feature, namely, metastability involving the A to B transition of a peculiar 
kind, suggesting that finite size effects may enhance metastability. One would 
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not expect metastability to be associated with any of the second-order 
transitions at which components of the order parameter begin to grow 
gradually. However, at a first-order transition such as that between the mixed 
and transverse axial states, metastability effects may preserve the mixed 
state over a larger temperature range than equilibrium considerations would 
allow, and thereby make its detection easier. 

In a sufficiently large magnetic field, the predicted sequence of phase 
transitions will be changed. The first phase formed in the bulk liquid in a 
field is the A 1 or 7 phase (in the notation of Ref. 6). It is a phase in which only 
one spin component of the order parameter (A,) is nonzero, while A+ = 
Ao = 0. However, in a pore, the fl phase, which also has only A, nonzero, 
will form preferentially, for the same reasons that cause, in the zero-field 
situation, the condensation of the polar phase before the axial phase. The 
order parameter of the bulk/? phase can be written as A ~ ~(0, 0, 1), where 
~, a spin-space vector, is such that [~1 = 1, ~2 = 0. On lowering the tempera- 
ture, a transition will have to take place to a 7 phase, for this is favored by 
the bulk free energy over the p phase. The order parameter of the bulk 7 
phase can be expressed as A ~ e(0, i, 1), which suggests an Ansatz for the 
7 phase in a pore of A = ~(/fx,/fy, g) [cf. Eq. (42) for the axial phas@ By 
analogy with the behavior of the axial phase, we expect there to be two 
7 phases, mixed and transverse, with a second-order transition taking place 
from/~ to mixed 7, and a first-order transition from mixed 7 to transverse 

7. 
What happens on further cooling is complicated, depending on the 

strength of the field and the radius of the pores. One would guess that an 
axial phase and a BW phase would eventually be produced. We have not 
studied the resulting crossover problems, but expect the behavior of super- 
fluid 3He in pores and in a magnetic field to be of great interest and com- 
plexity. 

APPENDIX A. SOLUTION OF THE LINEARIZED EQUATIONS 

We aim to obtain the complete set of solutions of the linearized Euler- 
Lagrange equations (15), replacing the quantity a there by eigenvalues E 
to be determined. For this purpose the spin index p can be ignored ; A is a 
two-dimensional vector independent of z and lying in the cross-sectional 
plane. We use plane polar coordinates and components, so that A - (Ar(r, 0), 
Ao(r, 0). We shall deal separately with diffuse and with mirror reflection, 
since they lead to different boundary conditions at the walls (r = R), as 
explained in the text. Readers who suspect that the resulting formalism is 
unnecessarily complicated can convince themselves of the contrary by 
consulting Chapter 13 of Morse and Feshbach.1 
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A1. Diffuse Scattering 

The boundary conditions are 

A(R, 0) = 0 (AI) 

It turns out to be convenient to express A in terms of its "potentials":  

A = grad 4) + curl V (A2) 

Though the equations for 4) and V decouple, the boundary conditions do not. 
Since only the z component of V is relevant, we write 

V = ~V(r ,  O) (A3) 

and note 

o4 10v l&b 0v 
Ar = ~ r  + - - -  A o - (A4) r ?0 ' r ~0 Or 

The equations to be solved, subject to (A1), become 

V24) ~- K24) = 0, V2V + ~cgv = O (A5) 

where we have set, in terms of the eigenvalue E, 

~c 2 = E / K L ,  ~c 2 = E / K  r (A6) 

For later use we define also 

a = tCTr , A = K T R  , b = ~c;r = a / x / 3 ,  B = K L R  = A/x~~-3 (A7) 

The (real) solutions of (A5) are 

4) = Jm(b) [ %  e ira~ + c* e-imO] 
(A8) 

V = Jm(a)[d m e i~~ + d*e - imo]  

where m = 0, 1,2 . . . . .  
Using (A8) and (A4), the boundary condition (A1) eventually leads to 

= 0 (A9) 
B J ' ( B )  imJm(A)  ] dm 

which yields the eigenvalue condition 

m2Jm(A)Jm(B)  = ABJ '~(A)J ' , , (B)  (kl0) 

Here, J',,(x) = dJm(x) /dx .  

For m = 0, the solutions for O and Vdecouple, giving 

4)0 = N J o ( b ) ,  Vo = M J o ( a )  (AID 
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where N and M are mutually independent and arbitrary normalization 
constants. But for m > 1, q~ and Vdo not decouple [essentially because J,. 
and J~. do not vanish simultaneously, so that (A9) has no solutions with 
% = 0 or dm= 0 for m > 1], and from (A9) we obtain, after setting d" = D,. 
x exp (i6,.), 

4),, = Dm[AJ'~(A)/mJm(B)]J , . (b)  sin (toO + 6,,) 
(A12) 

1/,,. = DmY.,(a) cos (mO + 3,.) 

where Dr. and 6,. are arbitrary but common to both expressions. The two 
choices 6,. = 0 and 6m = �89 give two mutually orthogonal though degenerate 
solutions, both being needed to make a complete set. Choosing the normaliza- 
tion for later convenience, we construct the solutions 

d? + = [ A J ' ( A ) / m ] J , , ( b ) c o s  mO 
(A13) 

V + = - J , . ( B ) J , . ( a )  sin mO 

(aT. = [AJ' . , (A) /m]J, . (b)  sin mO 
(A14) 

V~, = J , , (B)J , , (a)  cos  mO 

The relative normalization of q5 and Vin each set is fixed by the boundary 
condition; but the two sets (A13) and (A14) are of course independent of 
each other and the overall normalization of each is arbitrary. 

The superscript indicates the parity of ~b,, under reflection of the y axis, 
i.e., under the transformation (x --, x, y --, - y ,  z --* z), or (r ~ r, 0 ~ - 0 ,  
z --* z). (Recall that Vis the z component of a vector V and has no intrinsic 
sign change under this reflection.) From (A11), (A13), and (A14) we construct 
the corresponding solutions for A itself by appeal to (A4) : 

Ao + = Jo(b)  = _ J l (b) ,  

Aor = O, 

A +, = v,.(r) cos m0, 

AT,, = Vm(r) sin m0, 

A~o = 0 (A15) 

Aoo = J'o(a) = - J i ( a )  (A16) 

A+o = -urn(r)  sin mO (A17) 

A~, o = u"(r) cos mO (A18) 

where u"(r)  and v"(r) are given by Eq. (25) in Section 2. Note that Ag- is 
purely longitudinal, Ao is purely transverse, while for m > 1 the A + are 
neither. Note also the special feature of the solutions with m = 1, that they 
give nonsingular yet finite fields at the origin. 

As r ~ 0, one finds, reconstructing the Cartesian components of A, 

A~-x = (cos O)A~, - (s inO)A~o ~ � 8 9  -- J'a(B)], A1;, --~ 0 

while similarly 
A'~:, ~ O, A •  ~ �89 - J'I(B)] 
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Finally, in Appendix C we shall need the parities of the solutions (115)- 
(118) under separate reflections of the x and of the y axes. 

It is evident that under y reflection (r -~ r, 0 -~ - 0), A o has intrinsic 
parity - 1 ,  while A r has intrinsic parity + 1; thus we see that under this 
transformation the A~, transform precisely with the parities given by their 
superscripts' A + --, +_A~. By contrast, under x reflection, i.e., (x ~ - x ,  

+ y --, y), so (r ~ r,. 0 - ,  ~ - 0), the positive parity functions are A . . . .  and 
A2dd, and the negative parity functions are Ao+ad and A ~ , ,  where the sub- 
scripts "even"  and "odd"  specify whether the index m is even or odd. 

For  completeness, note that our functions are of course orthogonal. 
Thus, with N~,~ a normalization constant, one has 

f f  r dr dO A~ .  A7., = N~m c~,  bmm, 

are 

A2. Specular Reflection 

As discussed in Section 5, the boundary conditions now replacing (A1) 

A~(R, O) = O, (O/Or)(rAo)p,= R = 0 (A19) 

while the field equations are unchanged. Consequently (19) is now replaced 
by 

BJ;(B) imJm(A) ] d,, 

Note from Bessel's equation that -A[J'm(A) + AJ~(A)? = (A 2 - m2)J,,(A). 
In sharp contrast to diffuse reflection, (A20) admits pure longitudinal 

(din = 0) and pure transverse (% = 0) solutions for all m. The pure longi- 
tudinal solutions are 

~cos rnO ~ , 
q)+ = J'n(b)[sin m0J A2+- = vqS+ (121) 

corresponding to eigenvalues determined by 

J'~(B) = 0 (A22) 

The pure transverse solutions are 

(sin m0 ] 
Vm = Jm(a)lcosmO ~, A r-+ = curl V,~2~ (A23) 

corresponding to eigenvalues determined by 

J;,(A) + AJ~,(A) = 0 
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which by appeal to Bessel's equation becomes simply 

Jm(A) = 0 (A24) 

Finally, it is easy to convince oneself that with these boundary con- 
ditions there exist no additional nontrivially mixed solutions (with inter- 
dependent % and din). To see this, note from (A20), (A22), and (A24) that for 
such additional solutions to exist one would need to satisfy the conditions 
J',,,(B) ~ O, Jm(A) ~ O, and yet have the determinant of the coefficients on the 
left of (A20) vanish. But this determinant may be expressed in the form 

- BJ'(B)A2J,,(A) 

For  completeness note that the set of functions (A21) and (A22) are, once 
again, or thogonal  as well as complete. 

A P P E N D I X  B. T W O - P A R A M E T E R  M O D E L  

With reference to the discussion in Section 2, we study a model free 
energy defined by 

F = - ( a  - e l ) x  - ( a  - e2 )y  + 1 /~11x2  -~- f112xy + l f 1 2 2 y 2  (B1) 

Compar ing with Eq. (37), x = c 2 and y = c 2 are the squared order parameters 
measuring the condensation amplitudes in two different sectors (see Appendix 
C); el and e2 are the eigenvalues of the linearized equations and we take 
e 2 > el ;  a = 2(1 -- T/T~), where T~ is the bulk critical temperature. The 
flis depend on the strong coupling coefficients and on overlap integrals of 
products of four basis functions. 

The problem is to find the true minimum of F as a function of a, as a 
increases (i.e., as T decreases), bearing in mind that x and y are nonnegative. 
This is a straightforward exercise, though the algebra is tedious because one 
has to allow for many different possibilities depending on the relative 
magnitudes of the/~is" [The only general stability condition is that the quad- 
ratic part  of (B 1) be strictly positive.] We shall set up just enough formalism 
to show the provenance of the expressions entering the end results, and then 
confine ourselves to quoting these. 

First, if one maintains y = 0, then x begins to condense (increase from 
zero) at a = a 1 = el, and for a > e 1, F is given by 

Vl = - ( a  - el)z/2fl11 (B2) 

Similarly, if one were to keep x = 0, then y would begin to condense at a -- e2, 
and F would be given by 

f 2 = - (a - ez)Z/2flz2 (B3) 
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If all o ther  possibili t ies were excluded, then, p rov ided  that/722 < I7tl, one 
would certainly have  a f i rs t-order  t ransi t ion f rom F 1 to F 2 (x ~ 0, y = 0 to 
x = 0, y 4= 0), at a t empera tu re  a* de te rmined  by F 1 = F 2, i.e., 

a* (/?I/12e2 _ R1/Zo = v22 "1I (B4) 
( /?l l  2 

Second, if we ignore for the m o m e n t  the nonnegat ive  nature  of  x and  y, 
and formal ly  minimize  F with respect  to x and  y, then  we ob ta in  the equat ions 

/712 /7221 Y 821 

x - (/?22 - /712).( a _ a3), Y - -  (Bil l  - -  /712)(a _ 1;12 ) (B6) 
D D 

where we have defined 

D = det/? -- f11/722 - -  /?22 (B7) 

(g2 f l l l  - -  /3Ifl12) (~1fl22 - -  e2fl12) 

a2 = ( f i l l  - -  /?12) ' a3  ~--- ( f22  - -  /712) (BS) 

The  true m i n i m a  of  F are quoted  below, in te rms of the quanti t ies  D, a*, 
a 2 , and  a 3 defined so far, and using the following symbol ism.  (x), (x + y), and 
(y) denote  phases  where  the indicated order  pa r ame te r s  are nonzero  ; a r rows 
denote  phase  transit ions,  those occurr ing at  a* being first order  and  those 
occurr ing at a 2 or  a 3 being second order.  

/?11 • /?22 : 
(y) never  stable. 

1711 </712:  (x) stable everywhere  (B9) 

/712 "( /7111 (X) ~ (X + y) at a = a 2 (B10) 

/711 > f22: 

/712 > f l l  >/722: ( x ) ~ ( y )  a t a *  (Bl l )  

/711 >/712 > / ? 2 2 a n d D < 0 :  (x) ~ (y) at a* (B12) 

/711 > /712 > /?22 and D > 0: 
(x) --. (x + y) at a 2 ; (x + y) --* (y) at a 3 (B13) 

/~11 >/?22 >/712:  ( x ) ~ ( x  + y) at a 2 (BI4) 

The  par t icular  numer ica l  values of  the f u  considered in Section 3 Dead to 
(Bll) .  

solved by 
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APPENDIX C. SECTORS 

When the order parameters are expressed as linear combinations of 
solutions of the linearized Euler-Lagrange equations, there is a physically 
significant division of the basis functions into sectors, as explained in Section 
2. The sectors are defined with a view to the quartic terms in the free energy. 
The test for a sector is as follows. Taking any three basis functions from the 
sector, and a fourth basis function not in the sector, the integral over any 
quartic scalar containing all four functions must vanish. The physical 
significance is that the order parameter in any one phase is a linear com- 
bination of (in general) all the functions in one sector; functions from another 
sector can enter the order parameter only at a phase transition point. 

In this appendix we confine ourselves to diffuse scattering boundary 
conditions; specular scattering can be treated straightforwardly along the 
same lines. Though we believe that most of the sectors are irrelevant to the 
actual physics in the cylinder, nevertheless we quote the full results as an 
illustration (and a warning) of how complicated the situation could become 
in principle, and, for other geometries, perhaps even in practice. 

It is convenient to start with the axial phase, and the vector functions 
A~ defined in Appendix A1. A privileged role is played by the two types of 
functions independent of 0, i.e., by A~- and Ao ; evidently each constitutes a 
sector by itself, as does their combination. Thus we obtain the three sectors 

(A~}, {Ao), {A~,Ao} (C1) 

Further arguments are based on the x and y parities discussed in 
Section 2 and Appendix A. The minimal consistent extensions of (A~) are 

+ {A+ven}; they, and the sets {AoSd}, constitute four fundamental sectors, 
"even" and "odd"  specifying that m is even or odd. Thus we find 

{Ae+en}, {Ao~d}, {A~e,}, {Ao~d} (C2) 

established by noting that their y and x parities, respectively, are (+  1, + 1), 
( + l ,  -1 ) ,  ( - 1 ,  -1 ) ,  ( - 1 ,  +1). 

Finally, one can readily convince oneself that any pair of sets from 
(C2) can be combined to yield further sectors ; four such pairs are distinguish- 
ed by embracing all functions sharing either a common y parity or a com- 
mon x parity, and two further pairs by embracing all the functions with m 
even or with m odd. These six pairs together with (C1) and (C2) yield a total 
of 13 sectors. Those in which we have been especially interested in this paper 
are {Ao}, the pure transverse function, and its minimal extension {ALen} ; 
and {Ao~d}, the mixed axial function. 

The sectors for the polar phase can be obtained from the axial ones 
simply by substituting ~+ for A + [the functions ~b + are defined in Eq. (21)], 
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and remembering that 0o  vanishes identically, so that (C1) yields only one 
polar sector. Thus there are 11 polar sectors all together. 
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