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Rings with the Minimum Condition for Principal 
Right Ideals Have the Maximum Condition 

for Principal Left Ideals 
DAVID JONAH 

Introduct ion 

A ring R is said to have the ascending chain condition on cyclic left modules 
if each ascending chain of cyclic submodules of a module terminates. If a ring R 
has this property then clearly it has the ascending chain condition on principal 
left ideals. The ring of integers shows that the converse is false. 

Main Theorem. A ring R is perfect if and only if it has the ascending chain 
condition for cyclic left modules. 

Bass [1] called a ring perfect if each left R-module has a projective cover. 
He showed that a ring was perfect if and only if it satisfied the descending chain 
condition for principal right ideals; furthermore, he showed that this was 
equivalent to the Jacobson radical N being T-nilpotent and R/N having the 
descending chain condition. An ideal is called T-nilpotent if for each sequence 
{r,} of elements of the ideal there is an integer k such that the product r 1 r 2 ... r k 
is zero. Thus the rings with descending chain condition are perfect rings; in 
this case the radical is nilpotent. There are examples of perfect rings for which 
the radical is not nilpotent. 

The author is indebted to his colleague Richard Courter for many en- 
couraging conversations; in particular, for his matrix proof that full matrix 
rings over perfect local rings have the maximum condition for left principal 
ideals. The corresponding property for perfect rings was a natural conjecture. 
An examination of the "matrix" rings 

[0 M ] = { [ ;  m] r~R, s~S, m~M} 

where M is an R - S  bimodule and where R and S are perfect rings, quickly 

showed that if the perfect rings [R M] were goingto have the ascending chain 

condition on principal left ideals then all left R-modules would have the 
ascending chain condition on cyclic submodules. 

Sect ion  1. P e r f e c t  ~ acc-n  

For the purposes of the proof we find it convenient to introduce the following 
provisional definition: 
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A ring R is said to have acc-n iff each ascending chain of left R-modules 
each generated by less than or equal to n elements terminates. 

In order to work efficiently with the definition we will use the direct limit 
of a sequence of modules as explained below. Using it we will see that: 

Lemma. (i) The factor ring of a ring with acc-n has acc-n; and 
(ii) the direct product of finitely many rings with acc-n again has acc-n. 

Morita techniques will then show: 

Proposition 1.1. R has acc-n iff the ring M,(R) of n x n matrices over R has 
acc-1. 

Corollary. A skew field has acc-n for all positive integers n. 

From the Wedderburn theorem and the observation that the finite direct 
product of rings with acc-1 has acc-1 we have: 

Corollary. A semi-simple ring with the descending chain condition has acc-n 
for all n. 

The precision implied by the definition of acc-n does not exist because a 
simple corollary of the main theorem is that acc-1 always implies acc-n, as it 
is well known that the ring of n x n matrices over a perfect ring is again perfect. 

We will also use the notion and a few simple properties of the direct limit 
of a sequence 

A1 fl , A2 f2 ,A3--~'"--~An-f" ~ A.+1-~'" (1) 

of left R-module homorphisms. Recall that a limit is a family {re. :A.  ~ L}. of 
homomorphisms which satisfy 

A. 

(L 1) y, L is commutative for all n > 1 ; 
1 

An+l 
(L2) For  any family {p,: A,--*M}, also satisfying pn+l.f,,,=p,, n = l , 2 ,  ..., 
there is a unique homomorphism 0: L--* M such that 

O~,=p,,  n = l ,  2 , . . , .  

Because of the usual uniqueness proof we will talk about the direct limit. The 
second condition can be replaced by 

(L2') (i) L is the union of the images of the ~,; 

(ii) if re, (x)= 0, then for some k_>_ n the composition 

L...L+IL 
is zero on x. 

We will use the fact that the direct limit is an exact functor from the category 
of sequences to the category of R-modules and that it commutes with the 
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tensor product; the latter means that if B is an S - R  bimodule, then the direct 
limit of the sequence 

B (~R A1--~ . . . B QR An ---~ . . . , 

where the maps are 1| f , ,  is 

{1| r~.: B | 1 7 4  , 
where 

{Tr.: A.---~ L} .  

is the direct limit of the sequence (1). 

A module M is said to have property T if for each sequence (1) where 

A .  = M ,  all n, 

there is an integer k such that 
~Zk : M --~ L 

is onto, where {~,: M--~ L}, is the limit. 
Clearly, if the limit L is always finitely generated, then by (L2') (i) M has 

property T. 

Proposition 1.2. The ring R has acc-n if and only i f  the left R-module R " =  
R x ... • R (n  copies) has property T. 

Simple Morita theory then allows up to prove Proposition 1.1. 

Lemma. The ideal I is T-nilpotent r 

for  all L, R f l |  L = O .  

Proof. R / I  | L = L / IL .  Bass shows that I L  = L for L 4:0 implies L is not 
T-nilpotent [-1 ; Proof of Lemma 2.6]. Conversely, if I is not T-nilpotent there 
is a sequence {r,} of elements of I such that the products 

r 1 rE...rk, k =  1, 2 . . . . .  (2) 
are never zero. 

Consider a sequence (1) where each A . =  R and f .  is right multiplication 
by r~. As the products (2) are never zero, Condition (L2') (ii) shows that the 
direct limit L is not zero. But as each r ,~ l  each 

l| R / I | 1 7 4  

is zero, giving R / I  | L = 0 with L 4= 0. 

Corollary. I f  I is a T-nilpotent 2-sided ideal o f  R, then a left R-module 
homomorphism f:  M --~ N 

is an epimorphism if and only if  the morphism 

R / l  | f :  R / I  | M--~ R / I  | N 

is an epimorphism. 
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Proposition 1.3. I f  S=R/ I  has acc-1 where I is a 2-sided T-nilpotent ideal 
of R, then R has acc-1. 

Proof By Proposition 1.2 we need only show that R has property T. Let 
{f,} be a sequence of left R-module morphisms R--*R. As I is a two-sided 
ideal they induce S-module morphisms f , :  S -*  S; treating S as an R-module 
via the natural map R - . S  these morphisms are also R-module morphisms. 
The direct limit of the sequence {f,} as R-modules is the direct limit as 
S-modules; in fact, we have a commutative diagram: 

S| l| >S| R 

l l 
S 2, ,S 

of R-modules, where the vertical arrows represent the natural isomorphism 
S |  Then as R-modules the direct limit of {J~} is isomorphic to the 
direct limit of the sequence { 1 | fn}, i.e., is 

l| S| 

But as S has acc-1 it has property Tas  an R-module. Hence there is an integer k 
such that 

1 @ 7~k: R/I|174 

is an epimorphism. As I is T-nilpotent n k is an epimorphism as desired. 

This completes the proof that a perfect ring has acc-1. 

Section 2. acc-1 ~ Perfect 

The proof  that rings with acc-1 are perfect - for our needs, the Jacobson 
radical N is T-nilpotent and R/N has the descending chain condition - will 
start with the proposition: 

Proposition 2.1. acc-1 implies that the radical is T-nilpotent. 

As the factor ring of a ring with acc-1 again has acc-1 we may restrict 
ourselves to rings with the Jacobson radical zero; such rings are subdirect 
products of primitive rings. The proof  then proceeds as follows. 

Proposition 2.2. Primitive and acc-1 implies simple and the descending chain 
condition. 

Proposition 2.3. R having acc-1 and being the subdirect product of simple 
rings makes R the direct product of finitely many simple rings. In particular, if 
each of the simple rings has the descending chain condition then R itself has the 
descending chain condition. 

These three propositions show that acc-1 implies perfect, completing our 
main theorem. 
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Proof of Proposition 2.1. Let {r,}, be a sequence of elements of the radical, 
let A, = R and let f ,  be multiplication by r, for n = 1, 2 . . . . .  The direct limit L 
is certainly finitely generated as R has ace-1. Just as clearly, R/N|  L = 0. By 
Nakayama's lemma, L = 0. 

For  the next two more ring theoretic proofs we find it advisable to convert 
to an "elemental" statement concerning ace-1. 

Lemma. For a ring R the following statements are equivalent. 

(1) R has ace-1. 

(2) For each sequence {rn}~ 1 of elements of R there are integers j, k, with 
k >j  and an element s of R such that 

S r j  r j + l . . . r  k = r j + l . . . r  k . (3) 

(3) For each sequence {rn}~= 1 of elements of R there is an integer N such that 
for each j>=N there are an element s of R and an integer k > j  such that Eq. (3) 
holds. 

Proof of Proposition 2.2. If the primitive ring R does not have the descending 
chain condition then it can be considered as a dense ring of linear transfor- 
mations over an infinite dimensional vector space V. We will construct a 
sequence of elements {r.} of R such that Eq. (3) never holds. 

As V is assumed to be infinite dimensional let {xi}i~=o be a countable 
sequence of linearly independent elements of R. Because R is dense in the space 
of all linear transformations V--~ V there are linear transformations r i represent- 
ing elements of R which satisfy 

= f x j  for 0 =<j =< i-- 1 
ri (x j) 0 for i=j  i = 1 , 2 , . . . .  (4) 

Let k > j  be positive integers and let s be an element of R; then Eqs. (4) show 
that 

s rj r j+l...rk(Xj) = O, 
while 

r j+ l...rk(xj) = x j, 

which is certainly not zero as the sequence {x j} is linearly independent. 

Proof of Proposition 2.3. By assumption there is a nonempty family P of 
ideals d of R such that 

R / d  is simple 
and 

(~ P = 0 .  

We want to know that if such a ring R also has the ace-l, then it has a finite 
subfamily F such that 

(") F = 0 ,  
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for as is well known this will say that R is actually a finite product of simple 
rings. 

Actually we set out to prove the contrapositive: If for every finite subset F 
of P the intersection is non-zero then R does not satisfy acc-1. 

As the intersection of each finite subset is nonzero and as the total inter- 
section is zero we may choose by induction a sequence {tin}2= o of (non-zero) 
elements of the family of ideals P for which 

d 0 n d l  ~-. .  n ~ / _ l  ~: ~r for i = 1 , 2  . . . . .  

Thus for each positive integer i there is an element cl of R such that the image 
c i (j) of ei in R / d  r satisfies 

ci(j)=fO for O<=j<i- 1 
nonzero for i=j.  

Since c~(i) is a nonzero element of a simple ring R/sCi there are elements {di}F= 1 
of R such that 

{~ for 0 < j < i - - 1  
d~(j)= for i=j.  

Using these we may define a sequence of elements {ri}?= ~ of R such that 

r~(J)= { 10 for for 0 < j < i -  1 i=j.  

Then acc-1 does not hold in R because for any s in R and any pair of positive 
integers j, k with j < k we have 

S r j  r j  + 1 . . .  rk (J) = 0 
while 

r j+l...rk(j)= 1 =~0. 

Thus R does not have acc-1. Thus if a ring R with acc-1 is a subdirect product 
of simple rings then it is a finite product of simple rings. 

Section 3 

McCoy [5] called a ring K-regular if for each element x of the ring some 
positive power x" of it is (von Neumann) regular; Fuchs and Rangaswamy [3] 
call a ring if-regular if for each element x there is a positive integer m such that 
x" is regular for all n__> m. As the following proposition shows, perfect rings 
satisfy a stronger property. 

Proposition 3.1. I f  {rn},% l is a sequence of elements of a perfect ring R then 
there is a pair of integers j, m with j < m  such that for each k >__m the product 

r j . . . r  k 

is regular. 
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Proof Let A. = R and let J~: A. --* A. + 1 be multiplication by r. for n > 1. By 
Bass [1] the direct limit L is projective, and by our main theorem there is an 
integer j such that 

7zj: A~=R--* L 

is an epimorphism where {re,: A , ~ L } ,  is the direct limit. As L is projective 
there is a homomorphism s: L--*R such that rcj s = 1L. Let e =  s re j(1). 

Then 
~j(e)=~i(1). 

This will mean that there is an integer m>j such that 

(1--e)r~...rk=O for k>m. (*) 

From e--s  re j(1) and the compatibility relation 

re.+1 f . =  rc . which gives r. re.+1 (1) = re.(1 ) 
we have 

Hence 
e=rj...rky k for k>m, where yk=S(~k(1)). 

r j . . . r  k Yk r j . . . r  k 

=erj.. .r k by (**) 

--rj...r k by (*). 

(**) 
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