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N U M E R I C A L  I N V E S T I G A T I O N  O F  M O D E S  O F  A P L A N E -  

P A R A L L E L  C A V I T Y  W I T H  P E R I O D I C  M I R R O R S  

S. N. Kozlov and A. P. Napartovich 

Selection of the transverse modes of wide-aperture cavities is of great importance when it comes to obtaining high- 

power laser emission with low divergence. It was proposed in [1] to improve the directivity pattern of a laser by replacing one 

of the mirrors of a plane-parallel cavity by a periodic reflecting grating. The Talbot effect of reproducing periodic field at a 

certain distance [2] was used to maximize the selectivity of the method. If the cavity length is half the Talbot length, a 

minimum-loss periodic mode which is self-reproducing on a grating mirror is established in the cavity. 

The experiments of [1] have shown that the proposed method makes it possible to fill completely the active medium 

and to make the divergence of the individual lobes of the directivity pattern as close as possible to diffractive pattern on the 

full aperture of such a cavity. 

Further investigations of these, for short, Talbot cavities were based on the theory developed for infinite gratings [3, 

4], although the experiments were performed with gratings not larger than 30 periods (see, e.g., [4-7]). 

Under the influence of the boundaries, the image of each reflecting groove of the grating is "smeared out" by an amount 

8 = d~L T, where ~ --- X/Na is the diffraction-divergence angle, L T = 2a2/X the Talbot length for a square grating (N is the number 

of rules, a the grating period, and X is the wavelength). It follows hence that for N = 10 the diffraction causes the grating image 

to become "smeared" by approximately 1/5 of its period and fill the gaps between the grooves. After many passes there is 

established in a Talbot cavity a certain periodic mode subject to definite diffraction losses both through the gap and through 

the edges of the cavity. 

We report here a detailed study of the influence of the grating boundaries and of a continuous mirror and the mode 

structure of a Talbot cavity. 

Consider for simplicity a cavity in which one mirror is a square bounded grating and the other is not ruled and is of 

sufficiently large size. The equation that determines the modes of this cavity is then separable with respect to the variables in 

the mirror planes, and the problem reduces to determination of the modes of a two-dimensional Talbot cavity. 

The corresponding equation is 

N-1 na+t~ 
erp(-t~/4) , (x-x')2 

n=O 1 ~  

where L is the cavity length and A is the dimension of the reflecting part of the rule. Since the replica is observed at distances 
that are multiples of LT/2 = a2/X, the cavity length is [1] 
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Fig.  1. D e p e n d e n c e  of  the re la t ive  loss W (in %) on s for m = 1 and N = 10 

(1), N = 20 (2), N = 30 (3), N = 40 (4), in loga r i thmic  coordinates :  a - -  

bounded  con t inuous  mirror ,  b - -  unbounded  cont inuous  mirror .  

Fig.  2. D e p e n d e n c e  o f  re la t ive  loss W (in %) on s for m = 2 and N = 10 (1), 

N = 20 (2), N = 30 (3), N = 40 (4), in l oga r i t hmic  coordinates :  a - -  in phase  

mode ,  b - -  ant iphase  mode .  

met ~ 
L = , ~ 1 . 2  . . . . .  ( 2 )  

2X 

One,  ant iphase  m o d e  exis ts  at m = 1, and two,  in- and ant iphase,  are p roduced  at m = 2, hav ing  m i n i m a l  losses and 

compe t ing  with  each other.  As  m increases ,  the number  of  compe t ing  per iod ic  modes  increases ,  and the p roposed  t ransverse-  

mode  se lec t ion  me thod  e f f i cacy  decreases .  It is advan tageous  therefore  to cons ide r  a cav i ty  wi th  m = 1, in which  mode  se lec t ion  

is mos t  e f f ec t ive ,  and a cav i ty  wi th  m = 2, in which  the se lec t ion  is worse  but  on the o ther  hand the far - f ie ld  o f  the in -phase  

m o d e  has one  cent ra l  lobe  conta in ing  a s ign i f i can t  f rac t ion o f  the energy.  
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Fig. 3. Distribution of  in-phase mode emission intensity for m = 2, N = 10, s = 0.5 behind a periodic mirror in 

the near field (a) and far field: passing through the gaps (b), over the edges of  the mirror (c), and the total (d). 
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Ii 
Fig. 3 (continued) 

Substi tuting (2) in (1) and making all dis tances dimensionless  with respect  to a, we obtain the fol lowing equation for 

the natural  modes of  a Talbot cavity: 

N-1 n+s 
exp(-lzl4) , (~-l~')z 

n=O 

(3) 

where s = A/a is the diffract ion ruling ratio, ~ = x/a, u(~) is an eigenfunction,  and 7 is the eigenvalue connected with the relat ive 

losses w per pass by the relat ion w = 1-  1712 
As seen from (3), the loss in a Talbot cavi ty depends only on the three parameters  m, s, and B. This dependence can 

be descr ibed approximate ly  by starting from the considerat ions advanced above: The image of  the groove is "smeared" by an 

amount 6 -~ 2~L, where ~ --- ~./Na and L is determined from (2), i.e., ~ ~- ma/N. The relat ive loss is therefore 

111 

.,.,~tA.,, tin (4) 

An analyt ic  solution of  (3) meets with certain diff icult ies,  therefore the pr incipal  modes of  the cavity were determined 

here by numerical  i teration. To separate an in-phase or antiphase mode, an in- and anti-phase init ial  f ield was specif ied on the 

per iodic  mirror.  Measures  were taken to preserve pari ty of  the computat ion scheme. 

The problem connected with radiat ion propagat ion from one mirror  to the other was solved in the parabol ic  

approximation.  The corresponding differential  equation was solved by the Fourier  method using the fast-Fourier- t ransformation 

(FFT) algori thm [8]. To use this method, the computat ion range must be chosen large enough to prevent  the radiat ion inside 

the cavity from touching the boundaries  of  the region. 

In the present  study, the subdivis ion and size of  the computat ion region were determined,  by trial and error, to keep 

the loss-determinat ion error from exceeding several  per  cent. Specif ical ly,  the per iod of  the grating mirror  was subdivided into 

64 parts,  and the computat ion region was 5-6 t imes the dimensions of  the per iodic  mirror.  

Computat ions have shown that a repeated antiphase mode, arg 7 = -re/4 exists for m = 1, jus t  as in case of  an infinite 

per iodic  mirror,  but t T I < 1, i.e., this mode is subject  to definite losses. The computat ions were made for two cases, infinite 

and bounded continuous mirrors (the dimensions of the latter are equal to those of the per iodic  mirror).  The corresponding 

dependences  of  the losses on N and s are shown in Fig. 1. It is seen from the curves that the loss of  a cavi ty  with a bounded 

continuous mirror  is larger  than that of  a cavi ty with an unbounded continuous mirror  only if  s < 0.5. 

Final ly ,  numerical  calculat ions y ie lded a more accurate Eq. (4) for the relat ive losses. For  an unbounded continuous 

mirror  this dependence is given, in a wise range of  parameters  (for 1 - s >> 1/N and Ns >> 1) by 

(5) 
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Fig. 4. Distribution of in-phase mode intensity at m = 2, N = 10, s = 0.5 behind a continuous 

mirror in the near (a) and far (b) fields. 
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I f  the continuous mirror is bounded, the loss, as seen from Fig. l ,  is given by Eq. (5) in a narrow range of parameters (actually 

for s < 1/2). 

A cavity with an unbounded continuous mirror was investigated for m = 2. The computations have shown that the 

corresponding periodic modes have the highest Q and that arg 7 --- 0 and arg 7-- - n / 2  for the in-phase and antiphase modes, 

just  as for an infinite periodic mirror. The dependences of the losses of both modes on N and s are shown in Fig. 2, just  as for 

m = 1, they are well approximated by the equation 

1.56 
~ (6) 

Na 

and only for s > 0.5 does the loss of the even mode tend to decrease. Combining (5) and (6), we can conclude that the loss of 

an antiphase mode is well enough described in a sufficiently large range of parameters (at 1 - s >> m/N ans Ns >> m) by the 

equation 

In 
,=o.78 �9 (7) 

Ns- 

The loss of an in-phase mode is also described by (7), but in a narrower range of parameters (at s < 0.5). 

It is seen from Fig. 2 that the in-phase mode has a higher Q at s > 0.5. It must be noted that, as follows from the 

qualitative derivation of (7), the losses of a higher-order modes not investigated here should be proportional to the number of 

the mode. 
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Let us examine the best way of extracting the radiation from the cavity. From the standpoint of energy, it is expedient 

to use an ideally reflecting grating and a continuous mirror. Figure 3a shows the intensity distribution of an in-phase mode in 

the plane of a periodic mirror (prior to reflection) at cavity parameters m = 2, N = 10, and s = 0.75 (unbounded solid mirror). 

It is seen that the gaps between the grooves are almost completely filled with radiation; a significant part of the energy emerges 

also from the edges of the mirror. Figure 3 shows the field intensity distribution, in the far zone, of radiation emerging only 

through the gaps between the grooves; Fig. 3a shows the result in the far field when the radiation is emitted only from the edges 

of the periodic mirror; for radiation emitted both from the edges and through the gaps, the corresponding intensity distribution 

in the far field is shown in Fig. 3d. 

Evidently, radiation emerging from the edges of a periodic mirror complicates the far-field picture, whereas radiation 

emerging through the slits has an appreciable number of peaks among which the entire emitted energy is distributed. In the 

latter case the divergence of an individual lobe of the directivity pattern reaches the diffraction value for the total aperture of 

the cavity. 

Figure 4a shows the intensity distribution of an in-phase mode on a continuous mirror for the same cavity parameters. 

If this mirror is semitransparent, the field intensity distribution, in the far field, of the radiation emerging through this mirror 

takes the form shown in Fig. 4b. The divergence of the central lobe is determined by the total aperture of the periodic mirror, 

and contains an appreciable fraction (= 77%) of the energy emerging through the continuous mirror. 

It is thus advantageous to use the openings of a periodic mirror to extract radiation. To improve the selectivity and 

to increase the energy fraction contained in the central lobe it is desirable to have a groove to peak ratio of the periodic mirror 

larger than one-half. Determination of the optimum value of this ratio calls for a more detail investigation of the modes of a 

Talbot cavity. 

In conclusion, the authors thank N. N. Elkin for help in organizing the computation program. 
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