
K = [ ; - u t z , ~ a / ( z - z ' ) ~ ] i / 2 ( 2 r t i ,  t ) -~ / : e z ,  p { ~ [ ( z -  z ) 2 1 2 t _ . a u t / ~ z _  z )]} (4.2) 

and the reflection coefficient 

E = er/(-Opo) + 4ua/(Po3t).  (4.3) 

We see that the first term in (3.11) and (4.3) corresponds to free motion, and the expansion parameters are the ratios 

of the potential energy to the kinetic and of the barrier width to the distance traversed. The last result can be generalized to 

any potential U(x) that falls off rapidly enough at infiity 
+0o 

R = erf(-opo) + 2 S U ( z ) d z / ( p o ~ t ) .  (4.4) 

~e~O 

At large values of (~Po, the last term plays the decisive role. 
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Q U A N T U M  U N C E R T A I N T Y  A N D  I T S  R O L E  I N  N O N L I N E A R  

P R O P A G A T I O N  O F  A N O N L I N E A R  S O L I T O N  I N  A 

L I G H T G U I D E  

A. V. Belinskii 

An exact solution of  the Schr~dinger quantum equation is used to investigate the evolution of  a fundamental 

optical soliton in its proper waveguide having a Kerr nonlinearity. It is established that the quantum 

fluctuations grow unceasingly over the entire length of  the nonlinear propagation, so that the soliton is 

ultimately annihilated. A four-photon interaction model is used to clarify the physical nature of  this 

phenomenon. It is shown that the effects considered restrict the possibility of  producing quantum squeezed 

states of  a light pulse. 

I. Introduction 

One of the most attractive features of optical Schr6dinger solitons produced and propagating in nonresonant cubically 

nonlinear media is their stability. The forms and regularity of the phase of a fundamental soliton follows from the classical 

Schr0dinger equation. Moreover, the soliton is stable against initial noise modulation and "clears itself" of the fluctuation 

components in the course of nonlinear propagation [1, 2]. 

The quantum picture, unfortunately, is not so optimistic. Thus, one of the results of the development of a consistent 

quantum theory of the pulse evolution in nonlinear lightguides [3-10] is the conclusion that the phase and amplitude 

uncertainties increase and the soliton spread dispersively [11-13]. However, the approximations used in the cited references 

restrict the validity of these statements only to the initial nonlinear-propagation state. 
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What happens next? Does the classical "self-clearing" property compensate for the growth of  the quantum fluctuations 

on going to the far zone? After all, elimination of soliton noise is observed precisely at considerable propagation paths. Or does 

the destabilizing influence of  the quantum uncertainty grow continuously and leads" ultimately to destruction rather than 

formation of  an ideal soliton? The answers to these and other questions is the subject of  the present paper. 

2. Basic Relations 

The evolution of  the electric field of  one-dimensional radiation entering a transparent medium having a cubic 

nonlinearity can be described, in second-order dispersion theory, by the equation [3-13] 
-I + )  ( Z = "~ ":" t--~ " ( O / O z  + u O / 0 t . ) E  ( , t )  [ ( i / 2 : ~ g ~ / 0 t - +  ( i l ' s  X 

X E ( - )  ( z ,  t ) E  ( + )  ( z ,  t . )  ] E  ( + )  ( 7 ,  t ) .  (2.1) 

Here E(+)(z, t) and E(-)(z, t) are the operators of  the positive- and negative-frequency parts of  the field in the Heisenberg 

representation and vary slowly with time, the z-axis is directed along the propagation path, t is the time, u = (Ok/Om)-qs the 

group velocity at the carrier frequency m, k is the carrier wave number, the parameter g = OZklbm2is indicative of  the group- 

velocity dispersion, and e tand e 0 are the nonlinear and linear parts of  the dielectric constant of  the medium. It is assumed that 

the interaction is collinear, the propagation mode is planar, and the nonlinearity is instantaneous. A rather detailed derivation 

of (2.1) can be found, for example, in [4, 9] and we shall therefore not dwell on it in detail. We note only that for a transition 

to the classical equation [1] it suffices to replace E (+) and E(-) by a pair of  complex amplitudes A and A +. 

Relation (2.1) reduces to a nonlinear quantum Schrtidinger equation by introduction of the dimensionless variables 

>" = u t  - z ,  S = g u  z / - ' ,  
- 2 ":~ 

q)(S,>. ' )  = E ( + ) ( z , t ) /  1AOI, = - , . - a ~  I%1 / 2 u - g e  O" (2.2) 

where x is the deviation from the crest of a pulse propagating with velocity u, S is the normalized distance traveled by the pulse, 

r x)is the normalized photon-annihilation operator at the points S and x, and A 0 is the pulse amplitude at its crest. 

We adhere to the notation widely used in the literature, we replace the variable S by t, which has in fact the meaning 

of the normalized propagation time. We obtain then 

ion,: t . ,  > - : , / a t  = t , + r  t .  , t ,  >.-) . ( 2 . 3 )  

This equation, as well as the operators it contains, is written in the Heisenberg representation. The following 

commutation relations should then be satisfied: 

[ ~ ( t , > - )  , r  ) ] = ~(>-'--::-:' ) ,  
(2.4) 

= = o .  

It is more convenient, however, to obtain an exact solution by using the Schredinger representation. The transforma- 

tion of  the system state vector I~> is then described by 

i h d  IqJ>-/dt. = H 1~::"  (2.5) 

with a Hamiltonian 
+ + qb("x) qb(•  d>'. ] 

From now on, unless otherwise stipulated, the integration is between the infinite limits. 

A solitonqike solution of  (2.5) exists only for negative c. It has the form a superposition of  Fock states In, p> with a 

definite number n of photons and a momentum p [11] 

l~}:. = ~ 2 a n ; g n ( P ) e - i E ( n ,  p )  t. i n  , p > d p .  (2.7) 
13 

Here In, p> are eigenstates for the Hamiltonian (2.6): 

I n , p >  = f . n , ) - l / 2 ~ f  " , .  " + . .  @§ )d>." 1 d>." I O > ,  (2.8) 
" n p t •  " '>"n  ) ~  ( •  " n " " n 

l r l  

fnp(:- . . ' . l  . . . . .  >.'n) = N n e ) t p [ i p ~ x  i + ( c 1 2 ) ~ , ,  ~ l>:j- >." I (2.9) 
" j = l "  1~<i < j ~<n i ' 
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and the normalizat ion factor N is determined from the condit ion <n', p'ln, p> = d , 6 ( p - p ' ) :  

= l tn-t(/3- I ) ! / 2 % ,  

with 

(2./0) 

f l~no(''l ..... >"n' t) l-dXl.., d~-'./3 = I. (2.11) 

The energies are eigenvalues for the Hamil tonian (2.6) and the state (2.8): 

nP  2 <2 c, - ( n , p ) ~ -  = - c ~ n ( n ~  - 1 ) / 1 2 .  (2.12) 

If  the pulse entering the l ightguide is an aggregate of coherent  modes,  the weighting factors a and functions g~ have 

= CtOexP(-no/2)/( n! ) I /2  

respect ively  Poisson and Gaussian distr ibutions:  

n 

2 2 gn(p) = ~- I /a~o- I /2exp[- (p-po)  / 2 ~ o -  

where n o = la0F is the average number of  photons in the pulse,  and 

Y, 1%12= 1, J'lgn(p) 12dp = 1. 
13 

i/3P• 
(2.13) 

(2.14) 

We determine first the average ampli tude of  the pulse as in the course of  its nonlinear propagat ion (a derivat ion is given 

in Appendix  1) 

]1/2 ~: 2 
<%bl(~(x) I~2" ~ ~, [n (n+ l ) / I c  lql anan+lexpCitc n(n+l ) /~ + 

/3 

2 2 
+ [ iPo(X->'o-Po t) - (x-x O) ~o /4]/ql)fe>.'p[ (-[~o-2+i2t§ 

2 o ? 
+4t /3(n+l)~o~]p-+ i2(n+l/2)(• 

ql = I + i t~o 2 (2.15) 

In contrast  to [11] this equation was der ived without any restr ict ions on the path length (the parameter  t) and on other 

parameter.  The approximate-equal i ty  sign applies only the average number n o of  the photons, which exceed unity substantial ly,  

as is the case in practice.  

During the initial  stage (tAp 2 << 1) and under the condit ion 

I c I '~ l~l:' '~ n o i c I (2.16) 

relation (2.15) reduces to a superposi t ion of  pulses with envelopes in the form of  a hyperbol ic  secants, i.e., c lassical  solitons. 

If, however, the spread in the number n of  photons and in the momentum p is neglected,  we obtain, putt ing n = n o and p = P0, 

the fundamental  c lass ical  soliton in pure form: 

~. e:.~p[ i (no-1)~c t/a + XpotZ::->-'.o-Po t) ] X 
(2.17) 

X sech[2 -I <%-: > tc I (,.--->.-o-2Pot) 
The dist inct ive feature of quantum treatment,  however,  is that exact knowledge of  the number of  photons n and of the 

momentum p makes absolute ly  unknown the phases and coordinates  of  the pulse. This means in turn that its mean ampli tude 

is zero and the envelope is independent  of  x. 

The necessary condit ion for the existence of  a soliton is thus the presence of  energy and momentum spreads. These, 

as we shall verify below, lead to rather sad consequences in the course of  nonlinear  propagat ion.  

466 



(N) 

J 
I 

)3 �84184184 ' ~  ' ' ' x  

4 X a 

t= 20 

-2 0 2 x  b 

Fig. 1. Evolut ion of envelope of a nonlinearly propagating soliton: (a) n o = 40, (b) n o = 80. The 

remaining parameters are the same for both cases: Icl = re/100, Ap = 0.1, Po = Xo = 0, 
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Fig. 2. Plots illustrating the disintegration of a nonlinearly propagating soliton. The dashed lines are the boundaries of the 
region of the photon-number quantum uncertainty, as calculated from (3.2) and (3.6). (a): n o = 500, (b): n o = 2000. The re- 
maining parameters are the same as in Fig. 1. 
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3. Evolution of Soliton Shape and of the Photon Fluctuations 

To make clear the pulse dynamics, we calculate first its average intensity: 

+ ~ l: l-lexp(-no)) -] 2 n > ;an(." - = '" >-, ). " ( n  n o / n !  p ) d p ,  (3.1) 
n 

2 2 2 2 an(:'~',P ~ ~ P  sh - i (2~ 'P / Ic  I:' e •  ~  41. n ~p )p + 
(3.2) 

+ i 2 n  ( x - : , . - o - 2 P o t )  p ] .  

The approximate equality symbol in (3.2) applies only to the average number of photons in the pulse: n o >> 1. Just as 

in (2.15), no constraints are imposed on the path length or on any other quantities. Relations for them are given in Appendix 

2. 

To estimate the soliton evolution analytically, we assume initially that the spread of its components with respect to 

n plays a secondary role in this process, and assume n = n 0. The integrand in (3.1), apart from the exponential phase factor, 

is then the spectrum of the pulse. It can be seen that this spectrum becomes narrower with time, in view of the terms 

exp[-(2tnpAp)2], which leads in turn to a continuous spreading of the soliton in the course of its nonlinear propagation. 

Further analysis of (3.1) and (3.2) shows that the characteristic time of twofold broadening depends on the ratio of the 

parameter c to the range Ap of the distribution function of the momenta. We can distinguish then between three regimes, for 

which 

t c h a r  ~ 2 / n O l o  I ~  for ~O ~" Ic I ,  (3.3) 

tch ~ = 2 1 / 2 / n O  IC 1~ '  fo r  ~ ,  " It 1' (3.4) 

3 1 / 2 . ~  ~ 2  
tchar r Ot. ~ for ~p r Ic 1- (3.5) 

Expression (3.3) was obtained earlier in [11], but only in the small-t approximation. Here, however, it is generalized 

to include arbitrary times. 

The validity of the assumption made and of these estimates is confirmed by numerical calculations in accordance with 

(3.1) and (3.2). The results are illustrated in Figs. 1 and 2. It can be seen that the soliton disintegrates completely in time. W e  

become even more certain of the validity of this conclusion by determining the variance of the photon-number fluctuations: 

.-9 

[ e:<p ( -n o ) 13 ] 
n 

2 2 ~ 
n (n -l)(n;In!)~(l+atp'/cZ)Gn(X,p)dp + 

�9 2 (3.6) 
+ < N ( x ) >  - <N(x~.:- . 

This relation is derived in Appendix 3. 

The results of the numerical calculation are shown in Fig. 2. Unfortunately, expression (3.6) turns out to be more 

sensitive than (3.1) and (3.2) to satisfaction of the condition n o >> 1. The ranges of the photon-number quantum uncertainty 

are therefore not indicated in Fig. 1. The approximate relation (3.6), however, is perfectly applicable for n o = 500 and more. 

It follows from the foregoing that nonlinear propagation of a soliton is accompanied not only by spreading of the 

envelope, but also by a continuous growth of the amplitude fluctuations, so that the pattern of its gradual annihilation becomes 

even more aggravated. Thus, the initial Poisson statistics of the photons, with (AN2(x)) = (N(x)), becomes super-Poisson with 
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At 

Fig. 3. Simplified correlator scheme. The pulse in one of the 

channels is delayed prior to detection by a time interval At rel- 

ative to the passage through the second channel. 

(AN2(x)) > (N(x)). This important conclusion could not be drawn in the earlier studies [3-13] because inadequate models were 

used for large ranges. For example, both the Hartree approximation [11] and the quasistatic given-channel approximation [8- 

10] lead to the conclusion that the photon statistics remains unchanged in nonlinear propagation and retains its Poisson 

character. 

The results in Fig. 2 lead also to the conclusion that the pulse becomes "all noise" just when its width is doubled. 

What is the cause of this behavior? Why does not the soliton get rid of the fluctuations by classical "self-clearing" [1, 

2]? We explain the resultant situation by using the following model. 

The initial soliton entering the light guide and constituting an aggregate of modes in coherent states having various 

amplitudes can be represented as a superposition of a classical envelope in the form of a hyperbolic secant (regular component 

of the signal) and quantum vacuum fluctuations (noise). 

The initial noise modulation, present only during the soliton lifetime, is "dumped" to the wings in the course of 

propagation, and the soliton is gradually "self-cleared." It is unable, however, to be free of the stationary vacuum noise, since 

such a "dumping" is accompanied by "inflow" of the fluctuations initially present in the solitons. 

Why, then, are these oppositely acting phenomena not balanced ultimately and stabilize the picture at some level of 

the growing fluctuations? To answer this question we analyze the nonlinear evolution of vacuum noise in the presence of an 

intense regular soliton component. We use the Heisenberg representation of the SchrOdinger equation (2.1) or (2.3). We 

linearize it with respect to the fluctuation components and consider for simplicity and clarity a single-mode interaction regime. 

As a result we find that the average number of noise photons is [13] 

<t~,~rl{ > = ~ 2  (3.7) 

where q~ = t(cno)2/2 is the nonlinear phase shift in the propagation, and n o the average number of photons in the mode. 

Linearization in terms of the fluctuation components means in fact the use of the model of four-photon parametric 

interaction in a specified classical pump field (regular signal). In accordance with (3.7), the noise intensity increases 

continuously through transfer of photons from the regular component to the fluctuation one by four-photon parametric 

amplification. 

This is not the only cause of destabilization. On going to the far zone, where the linear approximation no longer holds, 

the increase of the fluctuations is accompanied by depletion of the soliton itself, a process that pumps parametrically amplified 

vacuum noise, since the total number of photons must remain unchanged. 

These irreversible processes cause the soliton to spread out gradually and become ultimately degraded. 

By now the reader is apparently asking himself a valid and fundamental question not yet raised by us: After all, 

calculation of (N(x)) and (AN2(x)) provides no valid grounds for distinguishing between real soliton spreading, on the one hand, 

and simple uncertainty with respect to x. Does the soliton actually spread out, or is the (N(x)) broadening due to averaging, 

over the ensemble of solitons that begin to propagate at the same instant of time and are then subject to a quantum scatter in 

the coordinate x, i.e., to different time delays? Quantum-mechanical averaging does not distinguish in this case between two 

such unlike evolutions. 
The situation, however, is not hopeless. To clarify the true state of matters we can calculate the intensity correlation 

function 
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K(~.') = , J ' <N(x )N ( •  (3.8) 

This correlation function is physically realized, for example, in measurements of ultrashort-pulse durations. A rough 

scheme is shown in Fig. 3. The result of measurements in this variant are independent of the absolute instant of pulse arrival, 

but is determined only by the delay time. Consequently, if the soliton does not spread during the nonlinear propagation, the 

correlation function after the soliton passes through the fiber will be exactly the same as the input (at t = 0), since the x 

uncertainty should not come into play in this case. If the pulse spreads, however, K(Ax)should broaden in accordance with the 

degree of this spreading. 

Thus, 

+ = 

�9 . " : "  . t  ~ n ~exp ( - [ (p-po)--+(p' -p- ) ,'~ = ~-I/2~'-lexp(-no ) ~ ( n o / n ~ )  t) 
Tt 

. . , , 2  ? , . , 

+ l n [ : : - ' o t . p  - o ~ + t ( p  - I : : , - ) ] } F  ( : : - : , A - , : , p - p ) ~ p  dl : : : ,+ 
" " n 

N ( x - )  O( ~b-." ) ,  (3.9) 

where the matrix element is 

F n(x , A-.,., p-p' ) = i >.) r162 P>. 

Direct calculations of F are unfortunately very difficult and do not yield in general analytic results. We use therefore 

the following indirect estimate. 

We change to new variables Pl = (P - p ' ) /2 ,  P2 = (P + p ' ) /2  and integrate the resultant relation with respect to p2. The 

result, with the subscript of pl dropped, is 

-2 2 2 2.  2 
v.:(&,:',. = no~3(&,. ' : '  + 2 e x p ( - n  o )  ~ f n n / n ' " ~ e > ' . p t - r ( ~  ' .  O . .  . + a t .  n ~ ,  . ,p  + 

n 

(3.10) 
-~, f o  + ~ " " & ~ , 2 p ) d x ] d l = , .  + ; t = n ' = P o t  >"0" P] '~EJ 'Fn ( : :< '  

We can put x 0 = P0 = 0 without loss of generality. Integration with respect to the momentum p means then that the 

expression under the inner integral sign is in fact approximately the soliton spectrum. The validity of this approximation was 

confirmed by the calculations of (N(x)} and of the characteristic spreading times (3.3)-(3.5). Consequently, the spectrum 

becomes narrower durring the time t, and K(Ax) should correspondingly broaden. This means that the soliton spreads nev- 

ertheless! Otherwise K(Ax) would not change when t is increased. 

4. Phase and Frequency Fluctuations.  Squeezed States 

The processes considered so far concerned only the evolution of the amplitude characteristics. The spreading and the 

noise-intensity growth are far from all the concomitant phenomena. Thus the increase of the phase fluctuations during 

nonlinear soliton propagation turns out to be much swifter and manifests itself strongly even during the initial stage, i.e., in 

the near zone. 
It is shown in [12, 13] that in the quasistatic approximation, which is valid for a given channel at small t, before the 

dispersive spreading considered above comes into play, the dispersion of the soliton phase fluctuations increases like 

= E1 + 4 ~ r 2 ( t ) ] / a n  O (4.1) 

Here u/(t) = t(cno)2/2 is double the nonlinear phase, i.e., the nonlinear phase advance in the absence of dispersion. A 

similar relation can be obtained also from estimates made in [ 11] using the Hartree approximation, which likewise ignores the 

dispersion spreading. 
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If the pulses are recorded with a square-law detector, the quantum uncertainty of the phase does not by itself influence 

directly the measurement results. It leads, however, to at least two undesirable consequences, even disregarding interference 

experiments, in which the phase stability is of primary significance. 

First of all, the phase scatter leads inevitably to a corresponding frequency destabilization. Such a phenomenon was 

considered within the scope of the classical approach in [15], where the propagation of the fundamental soliton periodically 

enhanced to compensate for the loss in the fiber, was analyzed. Amplified with the soliton is also the concomitant spontaneous 

noise. The noise accumulates, increases, and the first symptom of its presence are random departures of the carrier frequency 

and the ensuing changes of the propagation velocity. This is extremely undesirable in information-carrying communication 

lines, for which the optical solitons are in fact mainly intended. Therefore certain limits are imposed on the operating range 

of the information channel. 

The dispersion of the frequency fluctuations turned out therefore in the classical approximation to be [15] 

<A(E2>cZ = ( e  ' ~ t -  I ) A / 3 n  O ~" A T t / 3 n  O, (4.2) 

where T is the growth rate of the gain compensating for the losses, and A = (no--1)lcWV2 is the normalized soliton amplitude 

[see (2.17)]. 

The simple relation (4.2), which is convenient for practical computations, can be generalized also to take quantum 

fluctuations into account. This can be done by virtue of the correspondence principle [16], which is valid in the considered 

situation of linear amplification. Account must be taken, however, of the additional "noise making" due to the losses (for the 

gain to cancel the noise completely the growth rate must be doubled), and also the vacuum fluctuations (the factor 1/2). The 

result is 

<A(d>qu ~ A ( 2 ~ ' t  + 1 / 2 ) / 3 n  O. (4.3) 

It is estimated [15] that the random frequency deviations should set in at distances exceeding 1000 km. 

Another unpleasant consequence of the growth of the phase uncertainty is its destructive effect on the preparation of 

squeezed states. 

Quantum squeezed states are known to permit suppression of photodetection shot noise and extend correspondingly 

the capabilities of various systems in which photons are the information carriers (see, e.g., [10, 17-20]. One of the most 

promising methods of preparing such states is precisely the use of optical solitons [3-10]. 

We introduce the quadrature component 

X = (~e - i ~  + (~+e i(p,  (4.4) 

where (p is a free phase parameter, the choice of which can optimize the depth of suppression of the dispersion of the quadrature 

fluctuations: 

2 < A x  > -=  < X 2 >  - <X.'- :-~---= 

. 2  - _ 12 = I + ( < ~ I 2 > e  - i 2 ~ 0  + < (~ *qb } : - -  <~9.::- e i2q3  i<qb;. " + K . O , ,  ) .  (4.5) 

The criterion for the onset of a squeezed state is satisfaction of the condition <Ax 2> < 1, i.e., lowering the variance of 

the fluctuations below the vacuum level. 

For the fundamental soliton we have 

".-, o <*1r IqU> " :2%e>. ,p<-%: , ;  tc 1 / o  lq2 - ]  ~, n 
- [ n o ( n + l ) 2 1 [ n ( n ! )  ( n +  

+I "~ ~ ] - I / 2 } e •  ( ~ - - . - - . ~ . - p _ t ) - ( ' . ~ ' - x _  } ~ : ~ - ] / q o }  2 
" " 0 " "  0 t ]  " O ~. 

�9 o ? .'7, 

x f p  sh  - i  ,." 2 ,J t c I ) e).-p{ { - r  A r : - ] p - §  
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Fig. 4. Plots indicative of  the evolution of  the squeezing limit in linear 

propagation, i.e., with increase of 9 ,  for different n o = 13, 50, 2000, and 

30000. The dashed curve corresponds to the limit n o ~ o~ i.e., to the 

ideal case of  zero phase fluctuations. 

+ i 2 ( n +  1 ) ( X - X O - 2 F ,  O t } ~, 3 / q 2  } d p ,  (4.6) 
"3  

q2  = 1 + i 2 t A p " - .  

This relation is derived in Appendix 4. Note only that the approximation sign is related to the condition n o >> 1. 

Analyzing the structure of  (4.6), we can conclude that as t increases the modulus of  (~z) decreases much more in- 

tensively than {~'~) defined in accordance with (3.1) and (3.2). This is due primarily to the presence in (4.6) of  the phase term 

exp[itc2(n + 1)2/2]. In fact, 

~, n ~ ~" - 1 / 2  2 .2 .~ 
[ n o e > C p ( - n o ) / n ! ] e x p [ i t c ~ ( n + l ) ~ / 2 ]  -~ q e>.-.pEitc (no+1~' I z 9 ] ,  

n 

2 (4.7) 
q = 1 - i t c  n O,  

and an increase of  t is accompanied by a decrease of  the absolute value of  (4.7). We have assumed in these calculations that 

n o >> 1 and used a Poisson distribution of  the form in (A.9). 

However, the lowering of 1(~2)1 in advance of  <@+@) decreases, according to (4.5), the maximally attainable squeezing. 

Thus, the effective generation of squeezed states during the initial stage of nonlinear propagation [3-11] should give way to 

their degradation. 

One can point to at least two causes of  this behavior. 

In the framework of the foregoing four-photon model of nonlinear interaction with a soliton passing through a fiber, 

the regular component is so to speak a pumping of  parametrically amplified vacuum fluctuations. In this case the pump first 

becomes depleted by transfer of  the phonons to the noise component, and it is this which degrades the squeezing. A similar 

effect takes place, for example, also in three-photon parametric amplification [21]. 

The second cause is more substantial and is manifested already in an early stage of  the propagation. It constitutes a 

growth of  the soliton phase (i.e., pump) fluctuations whose destructive influence is also similar to the generation of  squeezed 

states in parametric amplifiers, considered in [22-24] where, however, synchronous amplification was analyzed. In our case 

the interaction is fundamentally asynchronous in account of the presence of  a nonlinear phase advance of the pump. More 

details on this difference can be found, e.g., in [13]. 
To obtain analytic estimates of  the influence of  phase fluctuations, we use the following simple model. 
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In the framework of the quasistatic approximation of the specified channel, the variance of the quadrature component 

for the soliton vertex is equal to [8-10] 

< ~ - ( t . , O ) ; ' - -  = I - .2~J s i n 2 ( ( p - - ~ / 2 )  + , 4 3  s i n 2 ( C Q - ~ / 2 ) .  (4.8) 

Optimal squeezing, i.e., a minimum of (Ax 2) is obtained by choosing a phase parameter q~ = % such that 

t g ( 2 q )  O _ ~)  = ~ - I .  (4.9) 

The quantum spread of the soliton phase, however, makes satisfaction of the last condition impossible. It can thus be 

concluded that even in the optimum case 

< A X 2 ( t , O ) ; ' - - m i n  "-' 1 2 ~  , . 2. 1 / 2  _ _ s in(2qOo+,~A8 ;- - ~ )  + 

a ~  r2 ? - @ ) / 2 3 ,  (4.10) o + <A02> Ix-:" 
where (A02) is defined in accordance with (4.1). 

The results of a numerical calculation of the maximum attainable suppression of quantum fluctuations of the 

quadrature are shown in Fig. 4. Evidently, an effective production of squeezed states of an optical polaron is possible only on 

a certain interval of its range, above which destructive effects set in. However, high-intensity solitons with n o > 105 can make 

the fluctuation suppression depth quite substantial and hardly limited by the effects above. Nonetheless, the presence of a 

quantum limit seems important from the fundamental point of view. 

5. Conc lus ion  

We have thus ascertained that the quantum effects accompanying the propagation of a Schr0dinger soliton in a proper 

nonlinear waveguide cause gradual but steady disintegration of the soliton. We have also shed light on the four-photon nature 

of this phenomenon. Examining the practical aspects of the results, let us estimate the maximum possible range of a soliton 

in a fiber. 

In accordance with (2.15), (3.1), and (3.2), a fundamental soliton adequately described classically, i.e., with an 

envelope in the form of a hyperbolic secant (2.17), can exist in a fiber only if Icl < Ap. Assuming Ap = Iclin the limiting case 

corresponding to minimum spreading, we get from (3.4) 

= ~ I / 2 .  2 i / 9  
%lira x.  / n o C  -= 2 ~ n o T / 8 ~  ~ n o T / 2 0 -  (5.1) 

The soliton period T = 3rt/(noC)2is here the time during which a nonlinear phase advance equal to 2n is accumulated. 

Recognizing that, as established by us, the soliton is practically annihilated by the growth of the noise when the profile 

of its average intensity is doubled, we can conclude that t~ m does indeed determine the maximum possible propagation route. 

N e x t ,  tUr ~ exceeds T substantially, since n o >> 1 in real situations. This means that the amplitude quantum effects come 

into play only for extra long paths, or else in media with high nonlinearity, i.e., under conditions when a stronger destabilizing 

influence can be exerted by other factors, such as losses and the gain needed to offset them [13, 15], inhomogeneity of the fiber 

[4], dispersive effects of third and higher orders, and a finite nonlinear-response time [25]. The disclosed quantum 

disintegration of the solitons imposes nonetheless a fundamental restriction on the limiting length of its propagation path, a 

fact of undisputed importance. 

The arguments advanced concerned only the average intensity and the amplitude noise. The growth of the phase 

fluctuation, on the other hand, is swifter. Considering in addition random deviations of the carrier frequency, a clear picture 

of the soliton destabilization emerges. And all this seems to be caused by the insignificant quantum uncertainty! 

Note also that for detection of ultrashort pulses account must be taken of the concomitant interesting peculiarities 

of the photocount statistics [26]. 

The author thanks V. A. Vysloukh, I. V. Sokolov, and A. S. Troshin for fruitful discussions. 
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APPENDIX 1 

Determination of Average Pulse Amplitude 

This appendix illustrates the derivation of (2.15). In accordance with (2.7) we have 

*'%fW~,(p') " " <~1@~-") I~b::- = T,,Y, %, %,.p., 
n n 

itEE(n' ~ e , p  )-E(n,p)] X 

x ,:n , p '  Iqb<>') " ' ' In, p ~opdp 

Calculation of  the matrix element (n', p'lCp(x)ln+ 1, p) yields [11] 

(A.1) 

<~",p' I@~:'-')In+i,P> = ~nn' ( '~ : ) - lEr ' (n+I )  j 1 / 2 ( " - i ) ! n }  1~ 1 ' ' '~-l /e x 
v !  

' ? 2 i [ (n+! )  p-r ip'  3>'. (A.2) X [ I I [ ( p -p ' )~+c  ( 2 n - 2 r + l ) 2 / 4 ]  - I }  e -~ 
r= l  

~ n n , 2  -11c l - I / 2 [ n ( n + l ) ] I / 2 e i [ f n + l ) p - n p  ' ]  . , " sech[~(p-p  )llc I ] .  (A.3) 

The approximate part (A.3) is produced following the transition to the limit n ~ .  oo, but actually at n > 10-500 it depends 

on the ratio of the parameters Icl and p - p ' .  

We substitute (A.3) in (A.1) and introduce the new variables 

Pl = ( p - p ' ) / 2 ,  P2 

Taking (2.13) into account, we obtain then 

' :~1~'->~:' I~b:::- = T, E I~ I - l ~ , : : ~ + l )  j 1 / 2  
n 

�9 l 

= ~.p+p ) / 2 .  ( A . 4 )  

2 
anan+~: I q~-I/2 t~O-1 ei tC n(n+ l  ) / 4  x 

-' 2 2 
X ffe::cpC-Zp~+(p_-po) /Ap ] + i  [ [ 2 P i  (n+1 /2" )+ r :_ ]  (=----:.:_ ) -  

= - " " ~-Z . . . .  O" 

2 2 -t[4PlP2(n+I/2)-Pi-P2]}sech(2~tp/ Ic l)dP2dP 1 * 

Integrating with respect to P2 and omitting the subscript of  pl, we arrive at the final expression (2.15). 

APPENDIX 2 

(A.5) 

Determination of the Shape of the Pulse Envelope 

In this section we derive relations (3.1) and (3.2), which we recast in a form useful for practical calculations. 

According to (2.7), 

+ .... - ~ : ' a n f f g ~ : ' ( P ' ) g n  ( p ) e i t [ E ( n ' ' p ' ) - E ( n ' p ) 3 n  X 
v i  v !  

with [11] 

. n  , p  

X <n' ,p '  

Iqb+(:-',')qb(>:) In,p> : 

n--1 
x H  

j = l  

I~ t:.'c.' (~t x) I n ,  I::'-'dpdp , 

- I  2 ( n - l )  , (2~) c nn ( n ! ) "  

E ( j c ) 2 + ( p - p ' ) 2 ] - l ~  

ein(p-P')>~ X 

(A.6) 

(A.7) 
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~ , c , ' ~  ' ' t p - p  >:'V21c I:]~:p-p':' s h - l C ~ ( p - P ' : ' / I  c I:] n n  " (A.8) 

The approximate part (A.8) is valid for n >> 1. 

The succeeding transformation is similar to that described in Appendix 1: variables of type (A.4) and integration over 

p:  are introduced. The result is (3.1) and (3.2), but these equations are not too convenient  for practical calculations. We 

therefore transform them somewhat, using the condit ion n o >> 1. The Poisson distribution can then be replaced by a Gaussian 

one (see, e.g., [141): 

n ,  ( 2 , g n o )  - 1 / 2  . 2  . .  exp(-n O) n O, n! -~ exPE-(n-no-~ /"'no]' (A.9) 

and the summation by integration over n with infinite limits, getting 

O O  ~ s  . q  . . - - ,  

< N ( : , : ) >  c~ 4n Olc l-l~p[(U+n _V=/n_-~tos(UIV)_2Vsin(U/V) ]U--- /= X 
O O" 

O 

x ~h --~ <2~.x I~ I:' ~;,:pc [%< l-U)-V~-/noJ/2U-p~/~:-'~dp, 

~ = 1 + 8 n o t / - p ~ - A r :  = _  , V = 2 o n _ f x - x  - 2 p ~ t )  
"~ ' ,fO" 0 - u  

(A.10) 

The seeming complexity notwithstanding, this expression is more suitable for numerical estimates since there is no 

need to sum over n. 

A P P E N D I X  3 

We derive here Eq. (3.6). Thus, 

< ,  l , + (  + -  , :*: p, . :,,.~r ~ :,o r :,, :, r ~,. :, I~0::: = ~,P, ~ . ' % f N . , ~  :'o.~r,'_ x 
r l  F I  

/ 

X e i t F E ( n '  'p "~-E(n'P)]<n ,p l(~+(x.(~ ( x ) ~ ( x ) ( ~ ( x ) t n , p ) - d p d p ' .  

The matrix element is 

" ' p '  +( ~3 , t n ~ )  M - ,.r, I $  >") + -lyp, , : , . ; . ,  
n p  t . " " " ' 7 ,  ' " " " 

~+( x I +( x n) ' ~-~ , :,-'..~, <o 1 r :,.'I '. :,.'n ) ' qb I O:::" X " " " ~ " ' ~ F ~  n p  ~" > ' ' 1  ~ " " " ~ . . . . . . . . . .  

(A.11) 

X d>: 1 . . . d > ' n d : :  I . - �9 d •  n (A.12) 

, n ( n - l ) J ' f * , , ( x , > . - , X l  " : n  "~ ) f ( x , : : . ' , X l  "" " "" . . . d x  = ~ n n  n p  . . . . . . .  - 2  n p  . . . . .  : ' n - 2  "~ d.,. I n - 2 "  (A. 13) 

Substitution of (2.9) in (A.13) yields (we omit hereafter the symbol 3 , ,  assuming that n = n ' )  

n-2 n-2 
" ' - " lc  I ~ I::<-': 5 l - I t  I P, 2 I ' i -  H = N~-n(n-!)fe:,--'.p[i(p-p ) ~ >"J 
n j = l  j = l  I ~<i "<j ~<n-2 

- x j  I ]dx I " " " d X n -  2" (A.14) 

Since the functionfn p is symmetric, the integration is possible only in the region _oo < xl _< x2 < ... < xm _< x _< xm. 1 _< xm§ 2 _< 

... < x_2 < oo since the integrals over the other regions are obtained only by all possible permutations o fx  and x? which do not 

influence the values o f f . r  We can therefore represent (A. 14) in the form 
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where 

- �9 VII - ?  X >C }r. 

M=N-n ! e x dxm_ i t' . . . 
n ri'~=O - -  --00 

O0 O0 O0 

d>-'- I J'd>.'m+ 1 J?d• 2 -  . . f d X n _ 2 X  
x :'cm+ ! Xn-3 

n-2 m 
x .>.-p[i~p-p':, 7,-'-" +21~1 ?,:--" 

j=l j J j = l  

n - 2  

-~ ~ >,,. 
j = m + l  J 

+ 2  I c I ( n - 2 m - 2  ) •  

+ I~I 

The integration yields 

c, ein(p-p ' )x It I - ~ n - 2 >  M = N ~ n  ! 
n 

n - 2 - 1 o  

n-2 
~, ( n - 2 j - ! ) x .  ] .  

j = l  

n-2 m 
Cm!(n-2-m)~ 

m=O r = l  
[n-r+i(p-p')/Ic l] i (  

1I [ n - r - i ( p - p '  ) / I c  I ] )  

Note that the sum in (A. 16) can be writ ten in the form 

- 1  

n-2 n - i  n-2 m+l 
"-'~ I p, . . . .  ~ cT-~+,:p-p :,2/ 2~-1 g [,,, ',:~,-2-.,>,~ - I  1/ C<)-- 

m=O r -=2  m=O ) -=2  

n - t  - m  
- i ( p - p ' > / f ~  I] It r~ '+i(p-p'  :,/I~ 1], 

r=2 .  

(A. 15) 

(A.16) 

(A.17) 

n-2 m+l n-l-m n-i 
[m!(n-m)!] -! E [r-i(p-p")/Icl] E Er+i(p-p')/Ic I] = ~ m(n-m)- 

m=O r -=2  r = 2  m= 1 (A.18) 

But n - 1  
= n --i. / 6 ,  

r/a = 1 (A.19) 

We have thus, taking (2.10) into account 

12,/I;) -I o ? ein(p_ p')• -~. , o -~, _~ 
M=( ~.n . - , n . . -  I c I 1"[ [ r - ~ - + ( p - p  ) ~ / c  ~ ' ]  

�9 = 2  (A .20)  

As n ~ oo the finite product  in (A.20) becomes infinite and can in turn be represented by a hyperbol ic  sine: 

00 
c, .2,~ (A.21) % :  I I  ( l + : , - ~ / j  . = s h ~ .  

As a resul t  we have J = I 

~-I- .o .o �9 t 
< n . p '  I~+<::<> <:-')~<>-~)~<:-'; In,p:> -- E~-,-<~--1),p-p )/12~ri+ 

i n ( p - p '  )>-'. (A.22) 
+t.p-p )?~ic~] sh-l[~(p-p')/Ic I] e 

Substi tut ion of  this relat ion in (A. 11), a change to new variables of  the form (A.4), and integrat ion overP2 yield (3.6) .  

A P P E N D I X  4 

We elucidate  here the der ivat ion of  (4.6). Thus, 
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= ~',-,~',-,+-,- ; 2 g  ~p :'-~,.,+._.~p"'~,p I r  I,',+z',p:'- x 
n 

X e it[E(n'p')-E(n+2'p)] dpdp ' .  

The matrix element is 

< n , p '  I ~ ( : - ' - ' ) I n + 2 , p >  = [(n+2)(n+i'i]I/2ff ~ : .  , ( x  . . .  x .'~ X 

X - f n + 2 , p ( X l  . . . .  X n ,  >.',:,-)d>.-. 1 . . . dx n = 

Irl >C >C ~ _  O0 

= [ ( n + 2 ) ( n + l ) ]  nNr-, 2n" 2 fd:,: m ~" dx f z  dx I f dx  +. X I/2N +':Im= 0 ~ _~ m-l'''_~ • m i 

O0 O0 "r lq 

X f dxm+2_.,  f d::--', n e x p [ i 2 p x + i ( p - p '  ) ~ ::-.'j+( Ic  t / 2 )  ~, ( n - 2 j + l ) x . +  
>"m+ 1 X n -  I j = 1 .-i = 1 "~ 

m n 
§  I~ lx---'-~ Z ,:n-2j+s)::.-.+~ I~1---- Z ,,-,-2j-i:,:-, +1~ 1(~-2.,):--.-]= 

j = 1 a .i =m+ 1 J 

=[ (n+2) (n+l) ] 1/2NnNn+L ~.n ! e iX  En(p-p  ' ) + i 2 p ]  ~n I~m 
l:t~=O T - = I  

([ tc l(n-r+l)§ 

"if'l-Ill 

+i(p-p')]r} -I I] [[ [c [(n-r+!)-i(p-p')]r} -I 
r=1 

Summing in (A.24) it is possible to arrive at the form 

n n n t'ti 
"'-" "-" 2]-! . -~ , 2 . . . =  1-f ,z~--+,.:p:-p'~'-,~ ~ r,,.,:t.-.-,-.~:,!~ " 1I c~--i~.r.-p :,xt~ I] 

m=O r-= ! .re=O r= 1 
2 

" t - i - -~  /'Y 

i] [r+i(p-p )i Ic I] = (n+l)l II it- +':.p-p )~ic-]. 
r=l r=l 

Then the form 

, = " ( n + i )  ( n + 2 ) / n ] l / 2  i x E ( n + 2 ) o - n p " ]  X e 

X ~ [l+(p-p')/r2c2] -I. 
p=l 

T a k i n g t h e l i m i t a s n  ~ ~ ( a n d a c t u a l l y a t n o > > l  ) 

- ' l ( ~ ( x )  _ 2 - I  ? / 2  i x [ ( n + 2 ) p - n p '  ] �9 ~n,p In+2, P] "-- ~" ( n + l ) - [  ( n + 2 ) / n ]  I e 

z ( p - r : , ' )  x I t  I s h r , Z ( p - p '  :,,." t c l ] .  

Substitution of (A.27) in (A.23) and integration with respect to one of the variables yield (4.6) 

X 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 
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