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JACOBI-TYPE CONDITIONS FOR THE PROBLEM OF BOLZA WITH INEQUALITIES 

A. V. Dmitruk 

I. We consider the following problem of optimal control: 

~o (Xo) - ~ m i n ,  p (xo) = O~ (1) 

~ ( X o )  ~ 0, i = t ~ . . . , %  (2) 

= f ( x , u , t ) ,  x ( l ) = x l ,  g (x, u, t) = 0. (3) 

Here  t ~ [0, i] ,  x 0 = x (0), x i s  an  a b s o l u t e l y  c o n t i n u o u s ,  u i s  a m e a s u r a b Z e  b o u n d e d  f u n c t i o n ,  
t h e  d i m e n s i o n s  o f  t h e  f u n c t i o n s  x ,  u ,  p ,  g a r e  e q u a l  t o  n ,  r ,  d ,  s ,  r e s p e c t i v e l y ,  x l  i s  a 
f •  v e c t o r  i n  R n, i . e . ,  t h e  r i g h t - h a n d  end o f  t h e  t r a j e c t o r y  i s  f i x e d .  

T h i s  i s  t h e  c l a s s i c a l  L a g r a n g e - - M a y e r - - B o l z a  p r o b l e m  o f  t h e  c a l c u l u s  o f  v a r i a t i o n s  [1 ,  
S e c .  69] w i t h  a d d i t i o n a l  c o n s t r a i n t s  i n  t h e  f o r m  o f  t h e  end i n e q u a l i t i e s  ( 2 ) .  (The p r o b l e m  
w i t h  c o n s t r a i n t s  i n  t h e  f o r m  o f  i n t e g r a l  e q u a l i t i e s  and i n e q u a l i t i e s  r e d u c e s  t o  t h e  c o n s i d -  
e r e d  one  a f t e r  i n t r o d u c i n g  a d d i t i o n a l  p h a s e  v a r i a b l e s . )  Here  we c o n s i d e r  c o n d i t i o n s  o f  t h e  
J a c o b i  t y p e  o f  weak minimum, i . e . ,  t h e  minimum i n  t h e  norm Ilxll~ + liutl~. 

We i n t r o d u c e  t h e  r e q u i r e d  n o t a t i o n s  ( s e e  d e t a i l s  in  [2 ,  S e c .  1 3 ] ) .  L e t  (x ~ u ~ be t h e  
r e q u i r e d  t r a j e c t o r y .  As u s u a l ,  we a s sume  t h a t  t h e  m a t r i x  g~(x~ u~ h a s  a b o u n d e d  r i g h t  
i n v e r s e .  We d e n o t e  by  A0 t h e  s e t  o f  a l l  c o l l e c t i o n s  o f  L a g r a n g e  m u l t i p l i e r s  1 = ( a ,  Ca @, 
m) (where  ~ = ( a 0 , . . . , a ~ ) ~ 0 ,  c ~ R  ~, t h e  f u n c t i o n  ~ i s  L i p s c h i t z ,  m ~ L ~ ) ) ,  e n s u r i n g  t h a t  
t h e  E u l e r  e q u a t i o n  h o l d s  f o r  t h e  t r a j e c t o r y  (x ~ u ~) w i t h  some n o r m a l i z a t i o n  [l~lt = ~. The 
s e t  A0 i s  a f i n i t e - d i m e n s i o n a l  compac tum.  We s h a l l  a s sume  t h a t  i t  i s  n o n e m p t y  s i n c e  o t h e r -  
w i s e  t h e r e  i s  no weak minimum in  (x ~ u ~  The f a c t  t h a t  A0 c o n t a i n s ,  i n  g e n e r a l ,  more  
t h a n  one  e l e m e n t ,  i s  e x p l a i n e d  b a s i c a l l y  by  t h e  p r e s e n c e  o f  t h e  i n e q u a l i t i e s  ( 2 ) .  W h i l e  i n  
t h e  c a s e  o f  t h e i r  a b s e n c e  we c a n  s t i l l  make more  o r  l e s s  r e a s o n a b l e  a s s u m p t i o n s  r e g a r d i n g  
t h e  p r o b l e m  o f  t h e  j o i n t  n o n d e g e n e r a e y  o f  t h e  e q u a l i t y  c o n s t r a i n t s  (when A0 c o n s i s t s  o f  a 
s i n g l e  e l e m e n t ) ,  f o r  t h e  p r o b l e m  w i t h  i n e q u a l i t i e s  t h i s  c a n n o t  be  done  a n y m o r e .  Fo r  e a c h  
A we set 

V 

l [q  (Xo) = E~=o ~ (Xo) + (c, p (Xo)), 

/Z [~] (z, u, t) = (~ (t), / (z, u, t)) - (m (t), g (x, u, t)). 

We introduce the Lagrange function 

@[s u) = l[s (Xo) + ~ ((~, x) - - H [ s  u, t))dt,  

and we denote its second variation with respect to (x, u) at the point (x~ u ~ for a fixed 
by 

[~3 (r ~) ---- (l" [A] r r - -  f~o ((H.~ [A] r r + 2 (Hu~ [~] r u) 9. T,(Huu' [s ~, 0)) dt. (4) 
I 

Ue define the functional J(~, ~) ---- max ~ [~] (~, ~). (Since ~[A] depends linearly on I, in the 

last formula the maximum can be taken over the convex hull of A 0 .) 

We denote by $g' the cone of the critical variations. It is defined by the linearization 
of the constraints (1)-(3) at the point (x ~ u~ 

qOo~o ~ O, p'.% = O, 
~ o < 0  ~f ~(x0 ~ 
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g=x § g ~  = o. (5) 

In [2, Sec. 13], for problem (i)-(3), under certain general assumptions (regarding the 
smoothness of the functions ~, p, ~, g) one gives the following conditions for a weak minimum 

of the second order (for the problems without the inequalities (2) and A~ consisting of a 
single point they can be found in [I]): 

necessary condition: 

J(~, ~) ~ 0 for all (x, ~) ~, (6) 

sufficient condition: there exists ~ > 0 such that 

J (~, a) ~ 61 (a, ~) dt for all (~, a) ~ JF. (7) 

Thus, there arises the problem of the investigation of the functional J for nonnega- 
tivity and for positive definiteness on a certain cone Js of variations, in the same way as 

in the classical calculus of variations there arises the problem of the investigation of the 
quadratic functional on some subspace of variations. The conditions (6), (7) differ from 
the classical ones by: a) the functional J is not quadratic but it is the maximum of quad- 
ratic ones; b) 3F is a cone and not a subspace.* 

In the present paper we give a Jacobi-type condition, equivalent to inequality (7), 
and a necessary Jacobi-type condition for inequality (6). As in the classical calculus of 
variations, we shall vary the upper integration limit in (4) and we shall watch when in- 
equalities (6), (7) are satisfied. 

2. The problem of the investigation of inequalities (6), (7) will be considered at 
once in the following abstract formulation. Let ${ be a Hilbert space, let {Kt, a-~ t ~ b} 
be a family of convex closed cones in it, increasing and continuous in the sense that K t ~ K~ 
for t~s, Kt = N Ks, K~ ~ U Kt. The cone K b will be denoted by El. In the space ~ there 

s>t t<s 

is defined the functional 

J (x) - -  max ~ = 1  cr (x), (8) 
a ~ Z  

where Z is an arbitrary convex compactum in R ~ and fJi (x)~ (Q~x, x) are quadratic functionals, 
defined by arbitrary bounded symmetric operators Qi" 

One has to determine for which t is J ~ 0 on K t and for which ones is positive on K t, 
i.e., J > 0 on any nonzero element of K t. (For an important class of functionals, from 
positivity there follows positive-definiteness; this will be considered later.) 

Remark I. Usually, the family {Kt} is generated by one convex closed cone Js namely: 
K t = Js ~ Et, where {Et, a ~ t ~ b} is a family of subspaces in ${, increasing and continuous 
in the above-mentioned sense, and such that E b = ~. Moreover, if, for example, the initial 
cone is finite-faced (i.e., it is the intersection of a finite number of closed halfspaces), 

then the generated family {Kt} is always continuous. (Obviously, in general, this is not so.) 

Remark 2. For problem (i)-(3) the generating cone ~f is the cone of critical variations, 
ET ---- {u ~ L--'~T[0, T]: E~(x~ u~ t)~(t) = 0 el_most everywhere}, T~[0, i]. In the space ~=E I 
the cone ,~s is finite-faced. The component u, orthogonal to Ker gu, can be expressed lin- 
early in terms of x from the equality (5). 

Remark 3. The scheme for the investigation of (6), (7), presented here, can be applied 
also to the problem with unfastened endpoints: 

q)o (Xo, xl) --)" rain, (Pi (xo, xl) ~ 0, 
p ( x 0 ,  x O = O ,  x = /(x,  u, t), g(x,  u, t) = O, 

for which one does not have the equality x(1) = 0. In this case, instead of varying the 
upper integration limit in (4), one has to vary only the support [0, T], T ~ I, the components 

*We note that there exist also other classes of problems leading to the conditions~(6), (7), 
for example, strange as it may seem at the first view, the problem (i)-(3) in which f, g 
are linear with respect to u (see [3]). 
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of u belonging to Ker gu, and to consider x and the integral itself all the time on [0, i]. 

3. In order to solve the formulated problem we shall follow [4], where one has consid- 
ered the case when the set Z consists of a single point. (In this case we shall write 

Z = {.}.) In that paper we introduced the concepts of table and focal segment.* We recall 
their definitions. We shall assume that on K a we have J ~ 0 (otherwise the investigation 

is concluded since then on any K t, J takes negative values too). 

If J is not positive on all ~ ,  then by a table we mean a segment [to, t 1] C [a, b] defined 
descriptively: to is the sup of all t for which J is positive on K t (the sup over the empty 

set is assumed to be equal to ~), while tl is the max of all t for which J~0 onK t. If, 
however, J is positive on Jr, then we shall say that the table is absent. Obviously, in Order 
to solve the above-formulated problem it is necessary to find a table or to establish its 

absence. In [4] there are examples which show that there exist tables which do not degen- 
erate to a point. Here we give only the following (isoperimetric). 

b 

= = ~ u 2 d t ,  2 = u ,  x ( b )  = E x a m p l e  1. ET L ~ [ O , T ] , T ~ [ O , b ] , b ~ I , Z  { '} '  d ( u ) : - - x ~ ( O ) +  o O. 

The cone J{ is given by the equality 

f: X[1, sl (t) u (t) d t =  O, 

S ~  [t,  b]. H e r e  t h e  t a b l e  i s  e q u a l  t o  [1 ,  S ] .  

The f o c a l  s e g m e n t  [T0, %] ~ [a, b] i s  d e f i n e d  w i t h  t h e  a i d  o f  t h e  E u l e r - - J a c o b i  e q u a t i o n  ( so  
a s  t o  s a y ,  c o n s t r u c t i v e l y )  i n  t h e  f o l l o w i n g  m a n n e r .  Assume t h a t  f o r  some t ~ [a, b], t h e  e l e -  
men t  2 ~ K t is a nontrivial solution of the Euler--Jacobi equation for J on K t, i.e., x is a 

nonzero stationary point in the problem ] (x)-~ min, z ~ K t. (The condition of stationarity 
of the point x in this problem consists in the fact that there exists ~ ~ K* such that (~, 

2)-----0 and ~a]'(@, .), i.e., ~ =~Qi(~), where ~ ~Z,~&iQi(~) ~J(~) =0. ) We set ~=min 
{s: 2 ~ Ks}, and ~ is equal to the maximum of all s~ t for which x is a solution of the 

Euler--Jacobi equation for J on K s . (That g, ~ are well defined follows from the continuity 
of the family {Ks}.) The segment [~, ~] obtained in this manner is said to be a prefocal seg- 
ment. (For ~ = ~ it degenerates into a point.) Thus, each nontrivial solution of the Euler-- 
Jacobi equation generates some prefocal segment. Considering all t ~ [a, b] and for each t 
considering the set of all nontrivial solutions of the Euler--Jacobi equation for J on Kt, 
we obtain the set of all prefocal segments {[~, ~]}. Let {~} and {~} be the sets of their 
left-hand and right-hand endpoints, respectively. Then T 0 ---- inf {~} and ~ ---- inf {~}. The 
natural character of this definition is explained in [4]. 

If there exists no prefocal interval at all (i.e., the Euler--Jacobi equation does not 

have nontrivial solutions for any t), then we shall say that the focal segment is absent. 

We intend to find the position of the table, knowing the position of the focal segment. 
To this end we study their mutual position. 

LEMMA i. If x ~  K t is a solution of the Euler--Jacobi equation for J on K t, then J(x) = 
0. 

Proof. For rE 11 we set f(r) = J(rx). Obviously, for a stationary x we have f' (i) = 0~ 

By Euler's formula for homogeneous functionals, J(x) = f(1) = i/2f' (i) = 0. 

With the aid of this lemma it is easy to show that if there exists a focal segment, 
then there exists also a table and for all ~, ~, t o ~  ~, t l ~ N ,  and, therefore, t o ~ .  T0, tl ~ T1. 
Both these inequalities are entirely trivial and, basically, they give little information on 
the position of the table. (For example, it may happen that a table exists and consists of 
a single point t 0 = t~ ~ (a, b), but we do not detect it since the focal segment is absent.) 

The consideration of the focal segment becomes more meaningful if the following property 
holds. First we note that, by virtue of the continuity of the family {Kt} , from the defini- 
tion of a table there follows that $~ 0 on Kt0. 

Definition [4]. Under the presence of a table, we shall say that J passes through the 

value zero if J is not positive on Kt0 (i.e., if there exists a nonzero element x 0~ Kto such 
that J(x~) = 0). 

*In the case when Z = {.} and ~F is a subspace, the concept of focal segment has been basical- 
ly used in [5, 6]. 
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THEOREM I. If a table exists and J passes through zero, then the set of prefocal seg- 
ments is not empty, inf {~} is attained, and to = To. 

Proof. We take any nonzero x o ~ Kto such that J(x0) = 0. Since J~ 0 on Kt0, it follows 
that x0 is a point of (absolute) minimum of J on Kto and, consequently, satisfies the neces- 
sary condition for a minimum, namely Euler's equation. Then x0 generates some prefocal seg- 
ment [~0, N0], ~0~ to. Thus, the set of prefocal segments is not empty. We assert that for any 

of them one has ~ ~ t o . Indeed, otherwise one has ~ < to, and the element x ~ K~, generating 
the segment [~, ~]. But then, by Lemma i, J(x) = O, which contradicts the positivity of J 
on K~, existing by the definition of to. Thus, any ~ ~ t o and, recalling that $0 ~ to, we 

obtain to = TO. 

4. In order to make use of Theorem I, we indicate a condition which ensures that J 

passes through zero. We recall that a quadratic functional ~(x) is said to be Legendre [6] 
W 

if it is weakly lower semicontinuous and from xn--+ xo,~ o)(xn)--+ (o (Xo) there follows that x~ ~ x 0. 
(The arrow ~ denotes convergence in norm.) Now we give the following 

Definition. The functional J is said to be O-Legendre if it is weakly lower semicon- 
w 

tinuous and from xn--~ 0 2 .f (xn).-~0 there follows that xn~ O. 

For a quadratic functional (i.e., in the case Z ----{.}) theLegendre and the 0-Legendre 
properties are equivalent. 

THEOREM 2. Under the presence of a table, every O-Legendre functional passes through 
zero. 

Proof. Assume that there exists a table. The case to = b is trivial. If to < b, then, 

by the definition of to, for any n there exists xn~_ Kto+i/n such that llxnl I = i and J(xn)~0. 
Taking, if necessary, a subsequence and making use of the weak closedness of the cones Kto+iln 

W 

and of the continuity of the family {Kt} ~ we assume that xn--> x o ~ Kto. Since J is weakly 
lower semicontinuous and J~ 0 on Kto ~ we have ] (x0)= lira J (xn)= 0. If x 0 = O, then by vir- 
tue of the 0-Legendre property of J, we obtain that xn~O, which contradicts the equality 
Hx~[l = I. Therefore, x0~0 ~ i,e., J passes through zero. 

Remark 4. From Theorems i, 2 and Lemma 1 it follows easily that for a 0-Legendre func- 
tional J, the absence of the focal segment is equivalent to the absence of a table, i.e., 
to the positivity of J on all ~'. 

THEOREM 3. Every O-Legendre functional J, positive on a closed convex cone K, is posi- 
tive-definite on it (i.e., J(x)~6Hx[l ~ onK for some ~ > 0). 

Proof______ a. We assume the opposite. Then there exists a sequence x~ ~ K such that [[ xn[ [ ~-i~ 
W 

xn--exo~K and .f(xn)--~O. Since J(xo)-~lim.f(xn) ~ O, and J is positive on K, we have 
x0 -- 0. From here, by virtue of the O-Legendre property of J we have x n ~ 0 and this con- 

tradicts the equality [I Xnll = i. 

Now we give a criterion for the O-Legendre property. We introduce the notations: 

THEOREM 4. Assume that for each ~ ~ Z the functional (~, g) is lower weakly semicon- 

tinuous. Then the O-Legendre property of J is equivalent to the fact that there exists 
~0~ Z such that the quadratic functional (a ~ ~) is Legendre. 

W 
Proof. The weak semicontinuity of J is obvious. Now, let x n --> 0 and lira II xn[l ~ O. 

Then tim (=0 ~ (xT~)) ~ 0 and thus, so much more, lira Y (x~) ~ 0. 

For 0 we take any point from the relative interior of Z. Obviously, for all ~ ~ % 

one has the representation 

~o = p ~  + (1 - -  p) a ' ,  ( 9 )  

where ~ ' ~ Z  and p ~ [ p o ,  t], p o > O .  

w 
We consider now an arbitrary sequence xn -+ 0, [I x~ ][ = I. For each n let ~n ~ Z be such 

that ] (xn)= (o~, ~ (xn)). From the 0-Legendre property of J it follows that for large n one 
has 
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(a~, ~ (x~)) > 6  > o. ( l o )  

By virtue of (9), s ~ : pnsn ~ !i --pn) a~, where s~ ~Z and Pn~ [P0, i] and, therefore 

(co, ~ (x~)) : p~ ( ~ ,  ~ (x~)) § (l - -  p,) ( ~ ,  ~ @n)). (11)  

From the weak lower semicontinuity of the functionals (a, ~) there follows easily that lim 
(~, ~ (xn)) ~ 0 and then from (II), taking into account (I0), we obtain that lira (a ~ ~ (xn)) 
p~6~0. Thus, the functional (s ~ ~) is 0-Legendre. 

5. The following theorem shows that if the cone K on which one considers J is finite- 
faced, then one can always consider that the conditions of Theorem 4 is satisfied. 

We denote by Z 0 the set of all s~Z for which the functional (e, ~) is weakly lower 
semicontinuous. Clearly, Z 0 is convex and closed (the latter follows from the fact that for 
lower semicontinuous functions, the uniform limit on every compactum is a lower semicontin- 
uous function). 

THEOREM 5. The nonnegativity (positive-definiteness) of J on a finite-faced cone K is 
equivalent to the fact that Z 0 is nonempty and the functional 

Jo (x) = max (a, ~ (x)) 
~ Z o  

is nonnegative (positive definite) on K. 

Proof.* First we show that from the nonnegativity of J on K there follows the nonempti- 
hess of Z 0 and the nonnegativity of J0 on K (the converse statement is obvious). 

w 
a) Let ~ R  TM be the set of all vectors J for which there exists a sequence xn'-+O such 

that ~ (xn)-+~. It is easy to see that ~ is a cone, moreover, convex. Indeed, let xn ~--+0, 
W 

Q (x~) --~, yn---> O, ~ (Yn) --~P" Then, for some sequence of indices k n § ~, for all i = ! ..... 
m we have (Q~xn, y~n) --~0 and, therefore, 

(x~ + ~ )  = e (x~) + ~ (y~ )  + o ( i )  ~ ~ + ~,. 

b) We show that the conjugate cone ~* consists of all those and only those a~R ~ for 
which the functional (a, ~) is weakly lower semicontinuous. Indeed, if s~*, then for any 

w w 
sequence x n -+ 0 we have lira (s, ~ (xn))~0 (since, otherwise, for some subsequence xn~--> 0 one 
has ~(xn~)--~g~ and (a, ~)<0, contradiction) and, therefore, the functional (a, ~) is 
weakly lower semicontinuous. Conversely, if (a, ~) is weakly lower semicontinuous, then 

w 
for any g~ ~ and a corresponding sequence x n->O, ~ (xn) -~q we have (=, ~) : lim(s, ~ (xn)) ~ 0, 
i.e., ~ * .  Thus, the assertion b) is proved. 

that 

Prom it we obtain, in particular, that ~* ~ Z = Z 0. 

c) We show that for all g~K, for all g ~ ,  there exists a sequence x~K such 

(x;~) ~ ~ (~) + (~. 

Let xn W--+O,f~(Xn)--~c;. Then, obviously, ~(ZUcxn) -~(~) j- g, but in this case, in general, 
the sequence ~ + x n does not lie in K. By assumption, the cone K is finite-faced, i.e., it 
is defined by inequalities (li, x) ~. 0, i ---- I, . .., 8, where l~ ~ $(. Since for all i we have 
(/i, z) ~ 0 and (l~, x~) --~0, it follows that (li, Z ~- xn) ~ o (1) and then, by Hoffman's lemma 
(see [2, Sec. I], [7]), there exists a sequence Xn~ K such that [Ix~--(~ ~-xn)l]--~0. By 
virtue of the Lipschitz property of ~, on any bounded set we have 

(x;~) = ~ (~ + z~) + o (1) ~ ~ (2) + a. 

d) Prom the proved assertion c) and from the nonnegativity of J on K it follows that 
for all ~ K  and for all ~ one has max (s, ~ (~)+ ~)~0 and, therefore, for all 
z ~ K  ~ z  

inf max (a, Q (z) + o )  ~ O. 
~ ~ Z 

*For functionals of form (15) in the space L 2 • R ~ the proof is given in [3]. 
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Since ~ and Z are convex and Z is compact, applying the well-known Neumann--Kneser theorem 
on the minimax (see, for example, [8]), we obtain :that the set ~* ~ Z = Z0 is nonempty and 
for all ~ K  one has 

m a x  (a,  ~ ( 2 ) ) ~ 0 7  
~ * N Z  

this means that J o ~  0 on K. 

Assume now that for some 6 > 0 we have 

J (x) >~ 8 (x, x) for all x ~ K.  (12)  

We show that the same inequality is satisfied also :for J0. To this end, we introduce the 
set ~ ---- Z X {--i} C R m+1 with elements ~ = (~, ~m+1), ~ ~ Z, ~m+1 --~ --i and the extended collec- 
tion of functionals 

(x) = ( ~  (x), . . . ,  ~,~ (x), 8_r (x)), 
z (:~) = (x, :~). 

From (12) there follows that for all x~K we have 

,~ (x) = m a x  (6~, ~ (x)) > 0<,~ 

and then, according to what has been already proved, 

~0 (x) = max (a~ f~ (x)) ~ O. (13) 

Assume that Z 6 is the set of all those a ~ Z for which the functional (a,~ (x))- 61 (x) is 
weakly lower semicontinuous. Then ~0 = Z~ X {--i} and (13) is equivalent to the fact that 

J~ (x) = max  (a ,  ~ (x)) ~.~ 8I  (x) on K; 
~_Z 6 

f r o m  h e r e ,  by  v i r t u e  o f  t h e  o b v i o u s  i n c l u s i o n  Z6 ~ Z0 , we o b t a i n  t h a t  J0 (x) ~ 61 (x) on K. 
The theorem is proved. 

We note that Theorem 5 can be also obtained from the following stronger theorem, due to 
A. A. Milyutin. We denote by Z+ the set of all r ~ Z for which the functional (~, (~) (x)) • 0 

on some subspace I~ C ~ of finite codimension. 

THEOREM 6 (Milyutin [9]). Let J >11 0 on a finite-faced cone K. Then Z+ is nonempty and 

J+(x)  = m a x  ((z, ~ ( x ) ) / >  0 on K. 

Since any quadratic functional, nonnegative on some subspace of finite codimension, is 

weakly lower semicontinuous, we have %+ ~ Z 0 and, therefore, from Theorem 6 there follows 
Theorem 5. 

For the application of Theorems 4, 5, the following theorem is useful [6]. 

THEOREM 7. The quadratic functional ~(x) = (Qx, x) is weakly lower semicontinuous 
(Legendre) if and only if the operator Q admits a representation Q = S + R, where the oper- 
ator S is completely continuous and R is nonnegative definite (resp. positive definite). 
(The operators Q, S, R are symmetric and bounded.) In particular, for the quadratic func- 
tionals of the calculus af variations 

~T 
(u) = 1o ((P (t) x, x) + 2 (c (t) x, ~) + (n (t) u, ~)) at: L~-+ H, 

= A ( t )  x + B ( t ) u ,  x ( T ) = 0 ,  

weak lower semicontinuity is equivalent to the Legendre necessary condition: R ( t ) ~ O  and 
the Legendre property is equivalent to the strong Legendre condition: R (t) ~const~0. 

Thus, Theorem 5 is a generalization of the classical necessary Legendre condition and 
the requirement of the existence of a~ for which the functional (~0, ~) is Legendre is 
the generalization of the classical strong Legendre condition. 

6. We write down the Euler--Jacobi equation for the case which covers the problems of 
form (i)-(3) and the problems that are linear with respect to control, from [3]. 
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Assume that on the segment [0, T], x, u are connected by the equations 

~----Ax-i-Bu, x(T)----O, F x J - G u = O ,  (14) 

w h e r e  G ( t )  i s  a m e a s u r a b l e  b o u n d e d  s • r m a t r i x  h a v i n g  a b o u n d e d  r i g h t  i n v e r s e .  We d e n o t e  
L ( t )  = { u ~ R r :  G( t )  u---- 0} and  we s h a l l  a s s u m e  t h a t  u = u '  + u " ,  w h e r e  u ' ( t )  ~ L ( t )  and  u " ( t ) _ ~  
L ( t )  L e t  ~T---- {u' ~ L~)':[0,: T]: u '  ( t ) ~  L (t) a l m o s t  e v e r y w h e r e } .  C l e a r l y ,  i f  u '  ~ 5~T i s  g i v e n ,  
then u", x are uniquely and completely continuously expressed in terms of u' from (14) o On 
the space ET ---- ~T X R~ with elements (u' , h) we consider the functionals 

T 

~i (u', h) = q~ (xo, h) + ~.~o ((P~x, x) + 2 (Cix, ll) + 1s dt, (~5) 

where qi are quadratic forms of the (n + ~)-dimensional vector (x0, h); all the matrices in 
(14), (15) are measurable and bounded, Pi, Ri are symmetric, i = I, ., m. According to 
Theorems 4, 5, 7, a functional J of the form (8) will be 0-Legendre if for all a ~ Z the 
functional (~, ~) satisfies the weak Legendre condition, i.e. , almost everywhere ~ailrli (t) >/0 
on L(t) and there exists a0 ~Z, for which (~0, ~) satisfies the strong Legendre condition, 
i.e. , almost everywhere ~,ai/{ ~ (t) ~ const ~ 0 on L(t). 

In the case when Z : {.}, i.e., the functional J is quadratic, we obtain that, for the 
applicability of the above presented results, J has to satisfy the strong Legendre condi- 
tion on L(t) which is always assumed in the classical calculus of variations. 

Assume that a finite-faced cone KT ~ ET is defined by the constraints: 

[ < O, i : t . . . . .  ~; 
(~, Xo) + (~,  h) 

= 0 ,  ] : v + i  . . . . .  v + d .  

The point (u', h)~ KT is a solution of the Euler--Jacobi equation for J on K T if and only 
if [i0] there exist: an element ~Z, an absolutely continuous function ~(t), a function 

~ L~ s) [0, T] and numbers ~j, ]---- 1 ..... v ~- d, from which ~j~ 0 for ] : I, . .., w, such that 

a) max  (a,  ~ (u ' ,  h)) : (~, ~ (u ' ,  h)) = 0, 

b) ~j((vj, x 0 ) + ( w j ,  h ) ) = 0 ,  i = t  . . . . .  v 

c)  ~ (Cix + R~u) = B*~ - -  G*q~, 

(the complementing nonrigidity conditions), 

tl < 

d) ~i (Pix ~- Ciu) = ip + A*~ -- F*% 

e) J~ (0) = ~kjvj ~- (I/2) (~, q~) (the transversality condition) , 

f )  ~,~su~s + (I/2) (~, q~) = 0. 

7. It has been established above that for a 0-Legendre functional one has to = To and 
TI~ We given an example showing that, in general, the equality tl = Tl does not hold. 

Example 2. KT=ET:L~ [0, T], ]:max (~i, ~), 

fh (u) --~ I[ (-- x~ + u2) dt, 

~,  ( u ) =  - -  f :  Z[T*, oo,x 2 dr, 

Y * > ~ / 2 ,  ~ = u ,  x ( T ) = O ,  

the endpoint x(0) is free. 

Since a table for ~I is equal to {v/2}, and ~2(K~/2) = 0, it follows that the left-hand 
endpoint of the table is to = ~/2. 

LEMMA 2. tl = T*. 

Proof. Inequality t I /> T* follows from the fact that J(KT,)/> ~ (KT*)= 0. Let T > T*. 
We select an arbitrary U~ET for which ~1(u)< 0 (such a u exists since T > #/2). For 
t < 0 we set u(t) = 0. Assume that to x there corresponds u and that S = max supp x. Shift- 
ing x, u to the right by T -- S, we obtain x', u'. Obviously, ~1(u') ~i (u) <0 and, since 
x' ~0 on [T*, T], we have ~22 (u') < 0 and, consequently, J(u f) < 0. 
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Thus, the table is [v/2, T*]. Now we find all the prefocal segments. The Euler--Jacobi 
equation for J on K T has the form (in our case A = 0, B ---- E,F ---- G---- 0, L(t) :-- R, qL~ ---- 0, 

Cl,~ = 0,  R 1 ---- t ,  R 2 ---- 0,  t~ 1 ---- - - 1 ,  P2 ---- --%[T*,o~), v i = O, w I = 0): 

~1~ ---- ~,  x (r)  = 0, / 
---- - -  ( a l  -~ a2X[T*, ~1) x ,  ~ (0) = 0,  / ( 1 6 )  

a l ~ 0 ,  a 2 ~ 0 ,  ~ 1 §  1, a l ~ l ( u ) = 0 ,  

~ (u) = 0. 

L e t  U ~ K T ,  a n d  J ( u )  = O. Two c a s e s  a r e  p o s s i b l e :  a )  ~ l ( u ) < 0 , ~ 2 ( u )  = 0  and  b )  ~ l ( u )  
---- ~ (u) ---- 0. We n o t e  t h a t  i n  b o t h  c a s e s  s y s t e m  (16)  i s  o b v i o u s l y  s a t i s f i e d  f o r  a l  ---- 0, a2 - -  1, 

--= 0 on [0, T*]. 

We select now any T > T* and we extend u, x, } by zero on [T*, T]. We can see that, as 
before, the system (16) is satisfied (with the same al, ~2, ~). Thus, any stationary point J 
on KT, generates a prefocal semiinterval [T' , ~), where T' ~ max supp x ~ T* (all T' ~ [~/2, 
T*] are realized). 

Assume now that T > T* and that u is a stationary point of J on K T. By Lemma 1 we have 
J(u) = O. If ~2(U) ~0, then x ~ 0 on [T*, T], and we return to the case u~KT,, whichhas 
just been considered; therefore, we shall assume that ~ (u)< 0, ~i (u)----0. Then a~ = 0~ 
~I = i and x satisfies the equation 

= - - x ~  x ( r )  = 0 ,  ~ (0 )  = 0 .  (17)  

From h e r e  x = a c o s  t a n d ,  c o n s e q u e n t l y ,  T c a n  t a k e  o n l y  t h e  d i s c r e t e  v a l u e s  T~ = ~/2 ~ - ~ k .  
I t  i s  e a s y  t o  s e e  t h a t  h e r e ,  e x t e n d i n g  x b y  z e r o  t o  t h e  r i g h t  o f  T, t h e  e q u a t i o n s  (17)  a r e  
n o t  s a t i s f i e d  a n d ,  t h e r e f o r e ,  t o  e a c h  o f  t h e s e  v a l u e s  o f  T k t h e r e  c o r r e s p o n d s  a d e g e n e r a t e  
p r e f o c a l  s e g m e n t  {Tk}.  

Thus, there exist in all two series of prefocal segments: the continual series [T', oo], 
T ~ ~ [~/2, T*], and the discrete series {T~}, T~ = ~/2 ~- ~k ~ T* (k is an integer). Clearly, 

~1---- min  {T~: T k ~ T*} ~ T* ---- t 1. 

In the given example, the fact that the table and the focal segment do not coincide 
is due to the fact that the functional J is not quadratic but it is the maximum of two quad- 
ratic functionals. Another example, in which J is a Legendre quadratic functional, but, on 
the other hand, it is generating a cone K which is not finite-faced, is given in [4]. 

8. Assume now that Z ----- {.}, J is a Legendre quadratic functional, and the family {K t} 
is generated by a finite-faced cone ~. 

THEOREM 8 [7]. In the indicated case we have t~ = ~i, i.e., the table coincides with 
the focal segment. 

Thus, in this case, as in the classical calculus of variations, the position of the 
table is entirely determined by the solutions of the Euler--Jacobi equation. 

The author expresses his gratitude to A. A. Milyutin for his constant interest and 
help and also to N. P. Osmolovskii for useful discussions. 
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EXTENDABLE AND NONEXTENDABLE SOLUTIONS OF A NONLINEAR DIFFERENTIAL 

EQUATION OF ARBITRARY ORDER 

N. A. Izobov 

We will consider the equation 

u(~) = p ( t )  ] u  ]~sgnu ,  E >  1, t / > O ,  (1)  

o f  n - t h  o r d e r  w i t h  p i e c e w i s e - c o n t i n u o u s *  f u n c t i o n s  p (t)>~ O. The main  r e s u l t s  i n  t h e  i n v e s -  
t i g a t i o n  of the asymptotic properties of the solutions of this equation are due to Kiguradze 
[I-4]. In colloboration with Kvinikadze, he [i, 4] has established that under the condition 

~ I ~ p (J ~(~-~)~ aT < + oc (2) 
0 

Eq. (I) has an n-parameter family of regular (infinitely extensible to the right) solutions 
u (t) ~ 0 with the initial conditions# 

u(~) (to) > 0 (o~ u(~) (to) < 0), 
t o>~ O, i = O, t . . . . .  n - -  l ,  (3)  

and has posed the problem [3, Problem 2.4; see also the detailed bibliography there] about 
the elucidation of the necessity of the condition (2) for the existence of regular solutions 
of Eq. (i). 

In the present note, we investigate the problem of existence or absence of an n-param- 
eter family of regular solutions (including also those with an additional differential prop- 
erty) of Eq. (I) under the condition 

f4 
-~, 

Jr [9 (J] ~ I p' (j ~ (T) d~ ----- ~- oo (4) 

with different positive constants ~ and positive functions 9(t) > 0. In particular, we prove 
that Eq. (I) does not have regular solutions under the condition 

ar~ b(,~-~)~+~'-q = + c o ,  v < ~ ~ (0, t in) (5) 

(and therefore the convergence of the integral J, [~(n-1)~v+~-1] for v < ~ ~ (0, I/n) is a neces- 
sary condition for the existence of regular solutions of Eq. (i) and establish the sharpness 
of this condition: For arbitrary number ~i~ I/n and function ~ (t) > 0 a function p (t) ~ 0, 
satisfying the condition (4), can be constructed such that Eq. (i) has an n-parameter family 

*All the functions used in the sequel will be assumed to be piecewise-continuous for t~0 
and this will not be stated further. 
#We will consider solutions only with these initial conditions, and therefore, as a rule, 
we will not indicate this in the sequel. 
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