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As shown in [i], the formula X V Y is derivable in the intuitionist propositional cal- 
culus Int if and only if at least one of its disjunctive terms is derivable in Int. This is 
the fundamental difference between the intuitionist disjunction and the classical disjunc- 
tion, since any formula X V ]Y is derivable in the classical calculus CI. Attempts to clarify 
why the disjunctive property occurs in Int but not in CI have led to the investigation of this 
property in superintuitionist logics, intermediate between Int and CI. 

The study of simple superintuitionist logics gave rise to the conjecture [2] that no 
proper consistent extension of Int possesses the disjunctive property. Soon, however, ex- 
amples were devised of superintuitionist logics both with and without the disjunctive prop- 
erty (see, e.g., [3, 4]). Maksimova [4] presented an algebraic equivalent to the disjunctive 
property. As yet, however, no syntactic characterization of logics having the property has 
been proposed. 

Our aim is to establish syntactic necessary conditions for a logic to possess the dis- 
junctive property (DP). Specifically: we shall show that if a consistent superintuitionist 
logic L has the DP, and X is a formula derivable in L and containing no occurrences of V, 
then X is derivable in Int; This result solves problem 19 of [3]. 

Along.with the class ~ of superintuitionist logics, we shall consider the class ~ of 
normal modal logics that contain Lewis' system $4. We shall say that a logic L~J{ pos- 
sesses the disjunctive property if [-]XV[[]Y~L implies ~X~L or ~Y~-L. S4 has the 
disjunctive property [I]. In addition, the largest modal twin of every logic in ~, having 
the property will also have the DP [5]. 

i. We shall use the relational semantics of logics in J{. Let K be a preordered set, 
or, briefly, a scale. The preorder relation on K will always be denoted by the letter R; 
if the letter K has some index, the same index will be attached to the letter R. K c will 
denote the skeleton of a scale K, i.e., the quotient set K/~ modulo the equivalence ~ - ~  

(~R~) & (~R~) with the partial order relation Re: ~Rr where a c and ~c are the equiv- 
alence classes generated by elements a and ~, called clots. An element ~ K  is said to 
be R-least if ~c is a least element of K c. For every G ~ K, we put 

IG = {~ 

(G]R 

G [ ( V ~ K ) ( = R ~ G ) } ,  

A model structure (MS) for $4 is a pair U = <K, S>, where K is a scale, S a system of 
subsets of K containing ~and K and closed under union, intersection and the operation I. 
Under these conditions the algebra A~ = <S; N, U, --, I, ~, K> is a topological Boolean algebra 
with an interior operation I (~ and K are the zero and identity elements of this algebra), 
and any topological Boolean algebra is isomorphic to the algebra A u of some MS U [6]. It is 
known [7] that every finite topological Boolean algebra is isomorphic to the algebra A u of 
some finite MS ~ = <K, P(K)>, where P(K) = {GIG~_.K}. We may therefore assume that every 
finite MS is of the form <K, P (K)>. 

Let Var denote a set of propositional variables {P0, Pl,---}. Formulas are constructed 
from these variables by means of connectives ~_D, &,V,D and the constant f - "falsehood." 
The valuation function F: Var >< K-~{0, I} is defined on the MS U = <K, S> in the usual way; 
it is only required that {~K IF (p~, =) = i}~-S for any i~ ~. Validity of a formula U on 

is denoted by ~ ~ U. Rational semantics is clearly adequate for all logics in ~. 
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We shall say that a 
exists a regular partial 

~ - -  ~. 

Let u = <K!, $I> be a MS and K a scale. A partial mapping ~ from K I onto K is called a 
partial ~-morphism if ~ satisfies the conditions: 

(V~, ~ ~ ~-~ (K)) (aR~ ~ ~ (~) R~ (~)); 
(V6, ? ~ K) (6R? ~ (Va ~ ~-* (6)) (3~ ~ ~-* (7)) (aRI~)), 

The mapping ~ i s  s a i d  t o  be r e g u l a r  i f  ~ - l ( a ) ~ S ,  f o r  any =~_-K.  I f  u i s  a f i n i t e  MS, t h e n ,  
obviously, every partial p-morphism from K l onto K is regular. 

2. In [8] we defined canonical formulas of class J~ and showed that any logic in .~ 
is axiomatizable by means of canonical formulas. As these formulas will play an important 
role in the sequel, we shall recall all the necessary definitions and propositions of [8]. 
Formulas of the type 

W~ D (W, ~ . .  �9 D (~% D X)~. . . )  

will be written in the abbreviated form 

W~ D .  W ,  D . . . .  D .  W~ _-) X 

or F~X, where F = {W I, W2 ..... Wn}. 

Let K be a finite scale with R-least element. Let us assume that a certain element 
is designated in each clot ~r called a representative of ac. Sequences of elements of 
K c will be denoted by ~c and ~c. 

Let us assume that the sequences ~c and ~c are nonempty and consist of elements no two 
of which are comparable in KC; I E=I~2, the relation aCRCSC does not hold for any ac~c, 
~ ~c and (~%,c ~ K~) ((~ ~ ~c) (~cac) ~. ( ~  ~c) (~ac~c)). In that case, a pair of sets 

(~c ~c) will be called a d-region of K. Let D be some (possibly empty) set of d-regions of K, 
and a0 ..... =n all different elements of K. Given K and D, a formula Y(K, D, f) is constructed 
as follows. 

If a~ is a least element of K c and ai the representative of ai, then the conclusion of 
Y(K, D, ~) will be the variable Pi" With every two distinct elements =~, ~ K ,  such that 
either ~i = ~ or a~ is an immediate predecessor of ~ in K c and el, aj are the representatives 

c c 
of ai, aj, respectively, we associate the formula W~-r~ (~p~ ~p~). In addition, with 

every a~ ~ K we associate the formula Wi ~ [] ((r~ ~~ ~ ~ p~) ~ p~), where r~ = {[~pl ] -~ ~=~}, 
~ = {p, ..... p,} ~ {p~}. Finally, with every d-region d = (a=,~ ~) ~ D we associate the formula 

V d "~" ~ C p  ~, ~ . . . .  ~ .  ~ p  ~ ~ (U]~,, V . . . V ~ ~, ) ), 

where ~c {aT, . .  c ~e ~ r = , ., ~%,}, = {~ ...... ~9~} and the elements ~s are the representatives of the 

clots s~{i~ ..... im,], ..... ]~}. 

The premises of Y(D, K, f) will be the formulas Wij, W i, and V d for all possible values 

of the parameters i, j, and d, as well as the formula Z-~-[~]([~]Po~_.... ~_.[~]P~]). Formulas 
of type Y(K, D, f) are called canonical formulas of class .~. As shown in [8], every logic 
in ~ can be obtained by adding to $4 a certain set of canonical formulas {Y (K~, Di,])}~r as 
new axioms; the logic $4 + {Y (K~. D~, /)}i~T will henceforth be denoted by [Y (K~, D~, ])]~eT. 

MS ~ = <K~, S~> is admissible for a formula Y(K, D, f) if there 
p-morphism ~ from K~ onto K, satisfying the following conditions: 

~(~-* (K)]~, and a ~  ((?]a,) for all ~c~ac, then ~ ((?]~,) for some 

2) I f  ?~ (~ - I (K) IR , ,  t h e n  ?~[~-*(K))R,.  

THEOREM 1 [8]"  ~W=Y (K,D,]) i f  and o n l y  i f  t h e  MS U i s  a d m i s s i b l e  f o r  t h e  f o r m u l a  
Y(K, D,f). 

Canonical formulas for class ~ are constructed in [8, 9] along lines analogous to the 
construction of formulas Y(K, D, f). They are denoted by X(K, D, f) and are based on a par- 
tially ordered scale K. Every logic Ll~ may be expressed in the form 

L 1 = Int + {X (Ki, Di,])}i~r~-[X (K~, D i , ] ) h e r -  

A l o g i c  L ~ . N  i s  c a l l e d  a modal tw in  o f  a l o g i c  L ~  i f  L1 c o n s i s t s  o f  a l l  f o r m u l a s  
whose M c K i n s e y - T a r s k i  t r a n s l a t i o n s  [ i ]  a r e  d e r i v a b l e  in  L. 
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THEOREM 2 [8]. A logic L E~N is a twin of a logic L I = [X(Ki, Di,])]~er if and only if 
it may be expressed in the form L = [Y (Ks, Di, I), Y (Ks, D~,/)imTjmQ, where each of the scales 
Kj,/EQ, has at least one nontrivial clot (i.e., a clot containing at least two elements). 

3. As follows from Theorem l, the simplest structure is that of countermodels of for- 
mules Y(K,~,/). Let .~i denote the class of logics in J~ that are axiomatizable by means of 
formulas of this type only. Note that the class ~ (~, [) of logics in ~ that are axiomat- 
izable by means of formlas X(K, ~, f) consists precisely of those superintuitionist logics 
that can be obtained by adding axioms not containing occurrences of [9]. 

THEOREM 3. Let L = [Y(Ki, ~, f)]ieT. Then Y(K, D, /)EL if and only if the MS U = <K, 
P (K)> is admissible for at least one of the formulas Y(Ki, Q,/), i~_. T. 

Proof. Assume that U is admissible for a formula Y(Ki, ~, f) for some lET. Then 
there exists a partial p-morphism ~: K-~K~ such that ~(~-*(KI)]R implies ~=-_[e-1(Ki))a. 
Now suppose that Ul = <KI, $I> and Ul = Y(K, D, f). We then have a regular partial p-mor- 
phism ~: K I + K, for which ~E(~-*(K)]R, implies ~E[$-*(K))R,. Since K is finite, the partial 

mapping ~$: KI-+Ki is a regular partial p-morphism and, in addition, it is easy to see that 

E (~-*~-I (K~)]R, implies ~ E [~-,~-i (Ki))Rc Hence ~i W = Y (Ks, ~, ~) and Y (K, D, /) E [Y (Ki, ~, f)]. 

The converse follows from Theorem i. 

COROLLARY i. All logics of class J~, are finitely approximable. 

Proof. Let L E J f I,, U~L and [U] = [Y(K I, D l, f) ..... Y(Kn, Dn, f)]. By Theorem 3, 
this is possible only if the MS ~ = <Ki, P(Ki)> is a model of L. But since U ~ Y(Ki, Di, f), 
it follows that ~ ~ U. 

In exactly the same way it can be proved that 10gics of class ~ (~,[) are finis ap- 
proximable - a well-known result of McKay .[10]. 

4. We shall call a formula Y(K, ~, f) singular if the scale K satisfies the following 
conditions: 

3) A clot generating an R-least element of K is trivial. 

4) There exists an element =EK such that (~]~ = {~}. 

THEOREM 4. Let L E~{, and assume that L is axiomatizable by means of nonsingular for- 
mulas alone. Then L possesses the DP. 

Proof. Suppose the contrary. Then there is a formula _[_-]_~_.X\/[-~YEL such that ~X~L 
and ~]'~=L. The logic L is finitely approximable, and so there exist finite MS's ~ = <K~, 
P (K,)> and ~ = <K~, P (K:)> such that ~, b L, pu ~ L but ~X,~zW=~Y. We may clearly as- 
sume that the scale K~ has an R~-least element =~ and K: an R~-least element a~. Now let 

K' = {a~, ~} L) K~ij K=; let R' be the transitive closure of the relation {(do, a,),(ao, ~),(~, ~), 
(~0, ~,), (~0, a=)} L! R~ ~] R~ and let ~ = <K', P (K')>. It is readily seen that ~X~/~-)'. To 
complete the proof, we must show that U is a model of L. 

If not, then U refutes at least one of the axioms of L, say a nonsingular formula Y(K, 
>C~, f) . We thus have a partial p-morphism ~: K'--> K such that =E(~-~(K)]~r implies ~ 
[~-~(K))~.. Note that a,~-*(K), for otherwise, by Theorem i, either ~,~Y(K,~,/) or ~= = 
Y(K, ~, f), or the formula Y(K, ~, f) is refuted on the one-element scale, which is impos- 
sible (the third case would imply that L is contradictory). Hence, in particular, it fol- 
lows that K' = [~-~(K))~. and ~E~-~(K). 

The scale K cannot satisfy both conditions 3 and 4. If a least clot ~c in K c is non- 
trivial, then there exists ?EK, ~?, =~? , and yRa. Obviously, ~ (=0)~=; to fix ideas, 
suppose that ~ (~0) = a. But then (B6EK')(~ (6) = ~) and (BsEK')(5~'e & ~ (~) = =), whence it 

follows that e~K~ or ~ E K=. Consider the scale K~ = (e] R, and the mapping ~', the re- 
striction of ~ to K~. It is readily verified by a direct check that ~' is a partial p-mor- 
phism from K~ onto K, and so one of the HS's U~ or U= is admissible for Y(K, ~Z, f), which is 
impossible. 

Now suppose that condition 4 is violated, and consider the element ~ (~)~K. By the 
definition of a p-morphism, (~?EK) (~ (~)~?~ , whence it follows that ~ (~) = 7) (~ (~)]~= 
{~ (~)}. Contradiction. 
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5. Given a scale K and one of its elements =, let us define a new scale K a = (a]R with 
a relation R a, the restriction of R to K s. A singular formula Y(K,~, f) will be called a 
minimal formula of a logic L~.~ if it is derivable in L, but Y(K=, ~,/)~L if ~--~_K and 
K a = K. 

It is by no means true that every logic has a minimal formula. For example, such for- 
mulas do not exist for logics in ~I that are axiomatizable by means of nonsingular formulas 
(this follows from Theorem 5 below). However, all other logics in ~I have minimal formulas. 
In fact, let L be one of these logics. For each of its axioms Y(K, ~, f), choose an element 

a~K, such that Y (K%~,f)~L but Y (K~, ~), ])6~L if ~ K  = and K==/=K ~. Since Y (K,O, 

])~[Y (K=, ~,, ])], it follows that L can be defined by means of formulas Y (K =, ~,]), and at 

least one of these is singular. There are also minimal formulas for any logic L=[Y(K, ~, 
]), Y(Ki, Di,/)I~aT with a partially ordered scale K. 

THEOREM 5. If a consistent logic L~J[ has a minimal formula, then L does not possess 
the DP. 

Proof. Let Y(K, ~, f) be a minimal formula of L, a 0, al,...,~ m, am+ I ..... a n all ele- 
ments of K, where ~0 is the unique R-least element of K, (~n]R = {C~n}, and the elements 
al ..... am are the representatives of clots a~ ..... ~ which are immediate successors of a~ 
in K c. Starting from K, we construct a formula U(K). Put 

E ---- {W~j[i, / ~ { l , . . . ,  n) &~,R~j} U {W, . . . . .  W~} 

and V i ~ r i ~ .  Ai~ .E_- -3 .  Z ~ P i  f o r  e v e r y  i ~  {i . . . . .  m} [ t h e  f o r m u l a s  Wi j ,  Wi and s e t s  Fi  and 
a i  were d e f i n e d  in  Sec .  2,  and Z ."v-uc'~([-']pl~ . . . .  ~ . ~ p , , ~ / ) ] .  I f  m = 1, we l e t  U(K)'-r" 

Po V [ ]  V~; o t h e r w i s e ,  U (g) -~ [ ]  g~ k/ ...... k / [ ]  Vm. 

LEMMA. U (K) ~ [Y (K, ~ , .  1)1. 

Proof. It will suffice to show that if ~ = <K~, P(KI)> is a finite MS and u W=U(K), then 
W=/=Y(K, ~, f). Fix a valuation function F on u such that F(U(K), a) = 0 for some a~K1, 
and mark certain elements of K l with letters P0,-..,Pn- Specifically: the letter P0 will 
mark all elements ~K~ for which F(U(K), ~) = 0; but if F(X, 8) = 1 for any formula 

X~F~ ~ ~ ~ Z ~ {Z},F(Pi, 8) = 0 (i > 0), then 8 is marked with the letter Pi" Put ~ (~) = 
a i if 8 is marked with pi o We shall show that ~ is a partial p-morphism from K~ onto K. 

Let ~K, be marked with Pi and aiRaj. We claim that there is an element ~(=]~, 

marked with the letter pj. If i ~ 0, then j ~ 0 and Wi~. Since F(Wij, ~) = i, while 

F(Pi , a) = 0, it follows that F (~]p/, =) = O. Consequently, there exists ~ ---~- (a]a~, F (p/, ~) = 
0. Obviously, F(X, $) = 1 for any formula X--~_ Z iJ {Z}, whence, in particular, we obtain 

F(Wj, $) = i. Together with F(pj, ~) = 0, this last equality yields F(X, ~) = 1 for every 

formula X--F~U A~ Now let i = 0. There exists l--~_{! ..... m} such that at~=i. Hence, 

in view of what has been proved, we need only find an element ?~(~]~ marked with the letter 

ps But this follows immediately from F {~V~, ~) = 0. 

Let ~, ~K~ be elements marked with letters Pi and pj, respectively, such that aR~. 
We claim that RiR~j. If i = 0, then ~0R~j for any ]~ {0 ..... n). Suppose now that i ~ 0 and 

-]~Ra/. Then [-]p~---Fi, and so F (~p/, a) = I. If j ~ 0, then F(pj, ~) = 0, whence f (~_~Pi, 
a) = 0, which is impossible. Let j = 0. If m = I, then F(~p,, ~) = 0$ contradicting ~P0~ 

F i (since a~ = {a0}) and F ([]P0, =) = i. But if m > i, then there exists an element ~s such 

that - ~ l  and i~ ~<m, and since =0~=t, there is an element y~(~]~, marked with the 

letter ps so we have again arrived at a contradiction. Hence, in particular, it follows 
that each element of K~ can be marked with at most one letter. 

We have thus shown that q is a partial p-morphism from K z onto K. However, it need 
not satisfy condition 2o We must therefore "adjust" ~ slightly. Namely: let ~K~ be an 
element such that 

5) ~c is a maximal element of the scale K~; 

6) there exists an element ~[~)~, marked with the letter P0; 

7) if an element y~-_[~)~, is marked with a letter Pi, then i = 0. We now put ~ (~) = ~,~. 
It is obvious that this "adjusted" mapping ~ is still a partial p-morphism from K~ onto K. 
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Let ?~-_(~-*(K)]n,. Choose an element ~---(?]R,, satisfying condition 5. If there is an 

element 6~[~)a, marked with the letter Pi, i ~ 0, then F(Z, 6) = F(Z, 8) = i. Consequently, 

there exist an element e~(~]R, and a number ]~{i ..... n}, such that F(pj, e) = 0 and, as 

already shown, ~ is marked with the letter pj. But if there is no such element 5, then there 

exists an element a~[~)a, marked with P0, whence it follows that 8 is marked with the letter 

Pn- Thus, 7~[~-*(K)) m. We have shown that the MS u is admissible for the formula Y(K, ~, 
f), and so p~Y(K, ~, f). This completes the proof of the lemma. 

We can now complete the proof of Theorem 5 by showing that Y (K%, ~', /)~[Vi], t < i <  
m. Since Y (K ~i, ~>j, /)~L [because the formula Y(K, -~, f) is minimal for L], it will follow 

from these inclusions that [_]Vi~_L; and since L is consistent, it is also true that ~p0~5 

L. This implies that L does not possess the DP. 

Let ~<K', S>, ~ ,~=Y(K ~, k~, /) and let F be a valuation function on U such that F(Y • 
(K =i, ~, f), ~) = 0 for some ~K'. If =f~(~i]R, then the variable pj has no occurrences 

in Y(K=~,~,/). We may therefore assume that F(pj, 8) = 1 for all ~K'. It follows from 

this assumption that F(X, ~) = 1 for any premise X of the formula Vi. Moreover, F(Pi, a) = 
0. Hence F(Vi, ~) = 0. This completes the proof of Theorem 5. 

COROLLARY 2. If alogic L,~ is consistent, U~L,, U~ln~ and the formula U contains 
no occurrences of V, then L l does not possess the DP. 

Proof. Let [U] = [X (KI, ~, /) ..... X (Kn, ~, /)], n~1 [9]. Then L I can be represented 

in the form L I = [X (K,, C ~, /), X (K~, D~, /)]ier, and its largest twin [8] is L = [Y(K,, ~'./). 
Y(Kj. Dj,/)]jeu. As marked above, L has a minimal formula (K I is partially ordered). There- 
fore L does not have the DP. But since the disjunctive property is preserved by transition 
to the modal twin [5], the same conclusion holds true for L I. 

One consequence of this corollary is that no logic in the class ~ (_-D j), other than Int 
and the contradictory logic, possesses the DP. 

Applying the law of contraposition to this last statement, we obtain 

COROLLARY 3. Let L ~  be a consistent logic possessing the DP and let U be a formula 
with no occurrences of V. Then U~_L if and only if U~Int. 
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