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In recent years, extensive investigations devoted to the problem of pulsations in piping were performed in our 
country and abroad. The theoretical [1] and experimental [2, 3] investigations of the causes and consequences of 
pulsations made it possible to develop new methods for controlling this phenomenon. 

The problems in determining the spectrum of natural frequencies of gas oscillations are especially important. 
The knowledge of this spectrum would provide a better basis for devising measures for pulsation preventiom 

The spectrum of natural frequencies is calculated by means of the equations derived for relatively simple pip-  
ing systems. An equation of the spectrum of natural frequencies without an allowance for the hydraulic losses for 
systems containing different loads z I and z3 was derived in [1]: 
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where l ,  Zt, and 12 are the spacings between the loads in the piping system, c the velocity of sound in gas, and w the 
angular frequency. 

The general form of the solution of Eq. (1) is rather complex. In certain particular cases, the solution can 
readily be obtained by analytical means. 

a) Assume that a pipe with a mounted chamber,  whose elastic resistance is 

is first loaded with a purely reactive resistance 
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while its end is open (here, Po is the gas density and i = fZ i ) .  The load for the open end tends to zero at iow fie.- 
quencies (z3-*0). Then, after the substitution of the zz, z2, and za values in Eq. (1) and suitable simplificattom, we 
obtain the resonance condition for a system consisting of two chambers with volumes V l and V2, wt-Ach are spaced at 
distances l z and 12: 
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where f is the cross-sectional area of the pipe. 

b) If  one end of the pipe is open (z3= 0) and a volume V i is connected to its other end, the dimensionsof this 
volume are small in comparison with the pipe length I and the wavelength k, Then, it can be considered that 
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The absence of the V z chamber means that z z =oo. In tlgs case, on the basis of the general Eq. (1), the reso- 
nance condition for the above system will be 
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After substituting z I, z2, and zs, we obtain 

whence, 
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In order to find the roots of this equation, it is necessary to plot a family of tangent curves as function of w l / c  

and the hyperbola f l [ ( w l / c ) V x ]  -1. Then, the points of intersection between the hyperbola and the tangent curves 

will correspond to the roots of the equation for the natural frequencies. If the pipe is short, the first root will be much 

smaller than the others, and we can write approximately 

to l o~ l f l  . 
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whence, 
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Equation (2) constitutes the well-known relationship for the Helmholtz resonator�9 

c) For a pipe without a chamber which is open at the far end and closed at the other, zl = ~, z2 = 0% and 

z3 = 0; then, from Eq. (1), it follows that 

o l  
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From Eq. (3), we obtain 
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After the wavelength is taken into account, Eq. (4) will assume the following form: 

l = ( 2 n - - 1 )  2=c _(2n_l)__.X. 4~ 4 
Thus, resonance will set in when the pipe length is equal to an odd number,  mult ipl ied by a quarter of the 

wavelength. T I ~  fact is also well known in acoustics. 

d) For a system consisting of a pipe, a chamber, and a secondary pipe, the loads will have the following 
values: zt= oo; zz= poc2/iwVz (the elastic resistance of the chamber)and z3 = p c / f  = z0 (the piping load beyond which 

there is an inf ini te- length pipe). 
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L R After substituting the z 1, z2, and za values in gq. (1), we obtain 

the following expression for ca lcula t ing  the naturai  frequencies of gas 

osci l la t ion:  

~ f  
Fig. 1. Circuit  of a ce l l  of the e lec t r ic  cot - -  = - -  

analog simulator,  c 

~v~ 
fc 

o~ 11 co lo 
tan - -  c o t ~  + 1 

r c 

Thus, Eq. (1) constitutes a general  equation; a l l  the par t icular  solutions can be obtained from it. This equation 
makes i t  possible to ca lcu la te  the spectrum of natural  frequencies for a system containing different loads i f  the values 

of the la t ter  are known. 

In the case of more complex piping systems, the ca lcula t ion  of the frequency spectrum becomes more c o m -  
p l ica ted  and requires a r t i f ic ia l  division of the system into a number of s imple sections. Calculat ions provide the 
possibil i ty of determining the approximate range of gas osci l la t ion frequencies in the entire system, which is an 
approximate  result that  does not make  it possible to es t imate  the mutual  effect  of individual  sections. Moreover,  

this method is exceedingly  cumbersome,  while, in cer tain cases, it  may  present an insoluble probtem. 

The e lec t r ic  analogy method,  based on the ma thema t i ca l  s imi lar i ty  between gas pressure fluctuations in piping 
and vokage  oscillations in e lec t r ic  circuits,  is a more promising method for investigating co mplex  branched piping 

systems. This makes it possible to apply the basic s imulat ion principles to the invest igat ion of the dyn'amic processes 
occurring in complex  piping systems and to develop new ana ly t i ca l  design methods on this basis. 

Mater ia l  on investigations of the spectrum of natural  frequencies of piping systems, based on the analogy method 
and the use of the e lectroacoust ic  analog [4-6],  is ava i lab le  in the l i terature .  

Tlae authors have developed an e lec t r ic  analog simulator for investigating natural  frequency spectra in piping 

systems of compressor stations. Among the advantages of this s imulator  are the s impl ic i ty  with which any complex 
system can be assembled,  the possibil i ty of varying the gas-dynamics  parameters ,  the convenience and accuracy of 
e lec t r ic  measurements ,  oscil loscope recording of the processes in t ime ,  etc.  

The piping unit s imulator  (Fig. 1) consisted of a number of ser ies-connected e lec t r ic  fi l ter cei ls  with an in-  
ductance L ,  a capac i tance  C, and a resistance R, ca lcu la ted  per unit length of conductor.  

As is known, the inductance,  the capac i t ance ,  and the resistance of a conductor are related by the following 
equations: 

_ _  1 1 t' u = Lel  d i  . l~ ~ - - -  q ~ i d  ~; u . . . .  R i ,  
d ,c ' Cel ~ e l  ,~ (5) 

where u is the voltage,  q the charge,  i the current intensity,  and "r the t ime~ 

Fig. 2. Assembly panel .  
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~ASChKh-I 

System under 
l investigation [ 

Fig. 3. Connection of the ASChKh-1 
device to the line. 

The following analogous equations hold in acoustics: 

p =  M a  a v f  . x ," = -~_, p- -  Ca p rafv, (6) 

where p is the pressure, M A the acoustic mass, v the velocity, x the 
displaced volume, C A the acoustic capacitance,  r A the acoustic re-  
sistance, and f the cross-sectional area of the pipe. 

For cases of practical interest, the M A, CA, and r A values have 
been calculated and can be considered as known in most cases. 

tt ~ t2 

Fig. 4. Circuit diagram of the simulator 
for a pipe with a diaphragm at its end. 

Relationships (5) and (6) are referred to as "electroacoustic 
analogies;" they justify the application of Kirchhoff laws, which con-  
stitute the boundary and the nodal conditions, and of the d'Alembert 
principle in acoustics as a consequence of the equality of action and 
reaction. 

In order to apply the method of electroacoustic analogies to 
piston devices, Jt is necessary to define the elements of which an 
ordinary acoustic system is composed (a piping system with the 

equipment is contemplated) and to determine their combinations. Since the basic parameters of acoustic systems 
correspond to the basic elements L, R, and C of a quadripole, they can be termed acoustic quadripoles. 

Any acoustic system constitutes a combination of expansion chambers which are connected to each other by 
communicat ion pipes. In expansion, a gas is characterized by elastic reaction, and its electric analog is the capac-  
itance. Thus, the expansion chamber 's  volume plays the role of the acoustic elasticity of gas, which is expressed by 

V 
C A - -  % c ~ 

In constriction elements, a gas produces an inertial reaction, characterized by the mass, and its electric ana-  
log is the inductance. Thus, gas in a connecting pipe plays the role of the acoustic mass, which is expressed by the 

equation 

M = % t .  
f 

By means of conversion coefficients, which relate the inductance, the capaci tance,  and the resistance to the 
corresponding parameters of the piping (the acoustic mass, the acoustic capacitance,  and the hydraulic resistance), 
we can simulate piping sections with a certain given length and diameter. We investigated piping sections of rela- 
tively small extent and with low hydraulic resistance (communicating piping systems of piston compressors). There-  
fore, the problem of determining the spectrum of natural frequencies was solved without taking into account friction. 
The individual elements included in the piping system (chambers, coolers, oil and moisture separators, diaphragms, 
etc.) were simulated by means of various electric elements and devices. 

Figure 2 shows the assembly panel, where each of the ten cells simulates a pipe section with a length 8 m. A 
voltage whose frequency can be varied from 0 to 20 kc is supplied to the input of the assembled simulator. Since 
the simulator operates on an artificial t ime scale, a change in frequency from 0 to 20 kc corresponds to the actual 

operating frequencies of piston compressors. 

If  the frequency supplied to the input of the system under investigation coincides with the natural oscillation 
frequency, voltage resonance will arise in the system. Consequently, each value of the input signal frequency cor-  
responds to a strictly defined amplitude of the output voltage, i.e., the amplitudes at the system's output will peri-  
odically change in correspondence with its frequency characteristic. Thus, the spectrum of natural frequencies of 

thesys tem under investigation can be obtained. 

The variable frequency can be most conveniently supplied to the simulator by means of a device designed for 
investigating the frequency characteristics of electric quadripoles, for instance, an ASChKh-1 device (Fig. 3). In 
investigating the frequency characteristic of the simulated piping system, a luminous figure, whose upper envelope 
periodically repeats the system's frequency characteristic, appears on the screen of the electron-beam tube of the 

ASChKh-1 device. 
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Fig. 5. Frequency characteris t ics  of a system consisting of a pipe  with a 
length of 6 m and a d iameter  of 62.5 ram. a) Without diaphragm; b to 

d) with diaphragms having diameters  of 20, 15, and 3ram,  respect ively.  
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Fig. 6. Electric circui t  of the simulator  for a pipe which has a diaphragm 
instal led at the middle  and is connected to a l a rge -vo lume  chamber .  

Investigations of systems whose spectra are well known, for instance,  a pipe whose one end is closed while the 

other is open and a pipe with two closed ends, have shown that the accuracy of ~westigations based on the e lec t r ic  
analog simulator  attains 2.5%, which is ent i re ly  acceptab le  in solving technologica l  problems. 

By using the e lec t r ic  analog simulator,  we succeeded in determining the natural  frequency spectra of a num-  
ber of systems whose analy t ica l  determinat ion is difficult  and sometimes impossible because of the lack  of a n a l y t i -  
cal  expressions. 

We shall  now give the results of the s imulat ion of some piping systems. 

P i p e  w i t h  a d i a p h r a g m  i n s t a l l e d  a t  t h e  e n d .  The cei ls  s imulating a pipe of a cer ta in  given 
length were mounted on the assembly panel .  The diaphragm was s imulated by an inductance L~, which was con -  
nected in series to the circuit .  The open end beyond the diaphragm was simulated by means of a suff iciently large 
e lec t r ic  capac i tance  C 2 (Fig. 4). 

Figure 5 shows the frequency characterist ics  of this system, obtained on the screen of the ASChKh| device .  

It is obvious that the connection of a diaphragm at the open end of the pipe affects the natural  frequency spectrum, 
causing a shift of the resonance frequencies. The shift is l imi ted  on the high-frequency side by the resonance f re-  
quency of a pipe whose one end is open and the other is closed, while,  on the low-frequency side, the shift is l i m -  
ited by the resonance frequency of a pipe with both ends closed. 

P i p e  w i t h  a d i a p h r a g m  i n s t a l l e d  a t  t h e  m i d d l e  a n d  c o n n e c t e d  t o  a l a r g e - v o l u m e  
c ha  m b  e r .  The simulator circui t  is shown in Fig. 6. Here L l, L a, C 1, C 2, R I, and R 2 are the respect ive inductances,  
capaci tances ,  a M  resistances simulating the pipe,  L 2 the inductance simulating the diaphragm, and C 3 the capac i to r  
simulating the chamber 's  volume.  

Figure 7 shows the frequency characterist ics obtained on the screen of the ASChKh-1 device  for the given sys- 
tem. It is obvious from the characteris t ics  shown that the instal la t ion of diaphragms affects the natural  frequency 
spectrum. The investigation results indicate  the fa l lacy  of the opinion [3] that loca l  lumped resistances do not affect  
the natural  osci l lat ion frequency and, consequently,  the position of resonance frequencies.  
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Fig. 7. Frequency characteristics of a system consisting of a pipe with a length 
of 27 m which is connected to a 5-m a chamber, a) Without diaphragm; b to 
d) with diaphragms having diameters of 20, 15, and 3 mm, respectively, in-  
stalled at a distance of 6 m from the front end. 

An important advantage of the proposed method is its clarity. By using the proposed simulator, one can quickly 
estimate any change introduced in the design of a piping system and choose the optimum piping system which would 
guarantee operation outside the zone of resonance conditions. 
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