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In recent years, extensive investigations devoted to the problem of pulsations in piping were performed in our
country and abroad. The theoretical [1] and experimental [2, 3] investigations of the causes and consequences of
pulsations made it possible to develop new methods for controlling this phenomenon.

The problems in determining the spectrum of natural frequencies of gas oscillations are especially important.
The knowledge of this spectrum would provide a better basis for devising measures for pulsation prevention.

The spectrum of natural frequencies is calculated by means of the equations derived for relatively simple pip-
ing systems. An equation of the spectrum of natural frequencies without an allowance for the hydraulic losses for
systems containing different loads z, and z; was derived in [17]:
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where 1, 1y, and I, are the spacings between the loads in the piping system, c the velocity of sound in gas, and w the
angular frequency.

The general form of the solution of Eq. (1) is rather complex. In certain particular cases, the solution can
readily be obtained by analytical means.

2) Assume that a pipe with a mounted chamber, whose elastic resistance is
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while its end is open (here, pj is the gas density and i = ¥=1). The load for the open end tends to zero at low fre~
quencies (z3-+0), Then, after the substitution of the Z3, Z3, and zz values in Eq. (1) and suitable simplifications, we
obtain the resonance condition for a system consisting of two chambers with volumes V 1 and Vy, which are spaced at
distances Iy and I,:
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where f is the cross-sectional area of the pipe.

b) 1If one end of the pipe is open (z3=0) and a volume V; is connected to its other end, the dimensionsof this
volume are small in comparison with the pipe length ! and the wavelength A. Then, it can be considered that
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The absence of the V, chamber means that z,=e. In this case, on the basis of the general Eq. (1), the reso-
nance condition for the above system will be
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After substituting zy, Z,, and zg, we obtain

! vV, ..
e cos@l o reVi el
¢ f c
whence,
tan 0)_[- B ——'—f—c——— .
c oV,

In order to find the roots of this equation, it is necessary to plot a family of tangent curves as function of wi/c
and the hyperbola fI[(wl/c)V{]™!. Then, the points of intersection between the hyperbola and the tangent curves
will correspond to the roots of the equation for the natural frequencies. If the pipe is short, the first root will be much
smaller than the others, and we can write approximately
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Equation (2) constitutes the well-known relationship for the Helmholtz resonator.
c) For a pipe without a chamber which is open at the far end and closed at the other, z;= e, ;= =, and
zg = 0; then, from Eq. (1), it follows that
cos2t =o0. ®)
¢
From Eq. (3), we obtain
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After the wavelength is taken into account, Eq. (4) will assume the following form:
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Thus, resonance will set in when the pipe length is equal to an odd number, multiplied by a quarter of the
wavelength. This fact is also well known in acoustics.

:(Qn—l)%.

d) For a system consisting of a pipe, a chamber, and a secondary pipe, the loads will have the following
values: 2y = o} 2, = pyc2/iwV, (the elastic resistance of the chamber) and z3= pc/f =z, (the piping load beyond which
there is an infinite-length pipe).
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L R After substituting the 2y, 2,, and zg values in Eq. (1), we obtain

i | the following expression for calculating the natural frequencies of gas
t? ¢/ oscillation:
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Thus, Eq. (1) constitutes a general equation; all the particular solutions can be obtained from it. This equation
makes it possible to calculate the spectrum of natural frequencies for a system containing different loads if the values
of the latter are known.

In the case of more complex piping systems, the calculation of the frequency spectrum becomes more com=
plicated and requires artificial division of the system into a number of simple sections. Calculations provide the
possibility of determining the approximate range of gas oscillation frequencies in the entire system, which is an
approximate result that does not make it possible to estimate the mutual effect of individual sections. Moreover,
this method is exceedingly cumbersome, while, in certain cases, it may present an insoluble problem.

The electric analogy method, based on the mathematical similarity between gas pressure fluctuations in piping
and voltage oscillations in electric circuits, is a more promising method for investigating complex branched piping
systems, This makes it possible to apply the basic simulation principles to the investigation of the dynamic processes
occumring in complex piping systems and to develop new analytical design methods on this basis.

Material on investigations of the spectrum of natural frequencies of piping systems, based on the analogy method
and the use of the electroacoustic analog [4-6], is available in the literature.

The authors have developed an electric analog simulator for investigating natural frequency spectra in piping
systems of compressor stations. Among the advantages of this simulator are the simplicity with which any complex
systemn can be assembled, the possibility of varying the gas~-dynamics parameters, the convenience and accuracy of
electric measurements, oscilloscope recording of the processes in time, etc.

The piping unit simulator (Fig. 1) censisted of a number of series=connected electric filter cells with an in=-
ductance L, a capacitance C, and a resistance R, calculated per unit length of conductor.

As is knowm, the inductance, the capacitance, and the resistance of a conductor are related by the following

equations:
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where u is the voltage, q the chaige, i the current intensity, and 1 the time.

Fig. 2. Assembly panel,
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O/’ASChKh‘l The following analogous equations hold in acoustics:

p=m, =L, p:—é—; p=rafo, (6)

where p is the pressure, M the acoustic mass, v velocity
System under ’ P p s My ‘ m ss, v the velocity, x the
investigation displaced volume, Cy the acoustic capacitance, rp the acoustic re-
sistance, and f the cross-sectional area of the pipe.

Fig. 3. Connection of the ASChKh-1

For cases of practical interest, the Ma, Cp, and rp values have
device to the line. A ZAs A

been calculated and can be considered as known in most cases.

L # {y Relationships (5) and (6) are referred to as "electroacoustic
analogies;™ they justify the application of Kirchhoff laws, which con-
C,/? C,/? €, stitute the boundary and the nodal conditions, and of the d*Alembert
I ‘[ I principle in acoustics as a consequence of the equality of action and

o— :
reaction.

Fig. 4. Circuit diagram of the simulator In order to apply the method of eleciroacoustic analogies to
for a pipe with a diaphragm at its end. piston devices, it is necessary to define the elements of which an
ordinary acoustic system is composed (a piping system with the
equipment is contemplated) and to determine their combinations. Since the basic parameters of acoustic systems
correspond to the basic elements L, R, and C of a quadripole, they can be termed acoustic quadripoles.

Any acoustic system constitutes a combination of expansion chambers which are connected to each other by
communication pipes. In expansion, a gas is characterized by elastic reaction, and its electric analog is the capac-
itance, Thus, the expansion chamber’s volume plays the role of the acoustic elasticity of gas, which is expressed by

C. =Y.

A 5
gy €*

In constriction elements, a gas produces an inertial reaction, characterized by the mass, and its electric ana-
log is the inductance. Thus, gas in a connecting pipe plays the role of the acoustic mass, which is expressed by the
equation

M 2l

By means of conversion coefficients, which relate the inductance, the capacitance, and the resistance to the
corresponding parameters of the piping (the acoustic mass, the acoustic capacitance, and the hydraulic resistance),
we can simulate piping sections with a certain given length and diameter. We investigated piping sections of rela-
tively small extent and with low hydraulic resistance (communicating piping systems of piston compressors). There-
fore, the problem of determining the spectrum of natural frequencies was solved without taking into account friction.
The individual elements included in the piping system (chambers, coolers, oil and moisture separators, diaphragms,
etc.) were simulated by means of various eleciric elements and devices,

Figure 2 shows the assembly panel, where each of the ten cells simulates a pipe section with a length 3 m. A
voltage whose frequency can be varied from 0 to 20 ke is supplied to the input of the assembled simulator. Since
the simulator operates on an artificial time scale, a change in frequency from 0 to 20 ke corresponds to the actual
operating frequencies of piston compressors.

If the frequency supplied to the input of the system under investigation coincides with the natural oscillation
frequency, voltage resonance will arise in the system. Consequently, each value of the input signal frequency cor-
responds to a strictly defined amplitude of the output voltage, i.e., the amplitudes at the system's output will peri-
odically change in correspondence with its frequency characteristic. Thus, the spectrum of natural frequencies of
the system under investigation can be obtained.

The variable frequency can be most conveniently supplied to the simulator by means of a device designed for
investigating the frequency characteristics of electric quadripoles, for instance, an ASChKh-1 device (Fig. 3). In
investigating the frequency characteristic of the simulated piping system, a uminous figure, whose upper envelope
periodically repeats the system’s frequency characteristic, appears on the screen of the electron-beam tube of the
ASChKh-1 device.
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Fig. 5. Frequency characteristics of a system consisting of a pipe with a
length of 6 m and a diameter of 62.5 mm. a) Without diaphragm; b to
d) with diaphragms having diameters of 20, 15, and 3mm, respectively.
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Fig. 6. Electric circuit of the simulator fora pipe whichhasa diaphragm
installed at the middle and is connected to a large-volume chamber.

Investigations of systems whose spectra are well known, for instance, a pipe whose one end is closed while the
other is open and a pipe with two closed ends, have shown that the accuracy of investigations based on the electric
analog simulator attains 2.5%, which is entirely acceptable in solving technological problems.

By using the eleetric analog simulator, we succeeded in determining the natural frequency spectra of a num-
ber of systems whose analytical determination is difficult and sometimes impossible because of the lack of analyti-
cal expressions.

We shall now give the results of the simulation of some piping systems.

Pipe with a diaphragm installed at the end. The cells simulating a pipe of a certain given
length were mounted on the assembly panel. The diaphragm was simulated by an inductance Ly, which was con-
nected in series to the circuit. The open end beyond the diaphragm was simulated by means of a sufficiently large
electric capacitance G, (Fig. 4).

Figure 5 shows the frequency characteristics of this system, obtained on the screen of the ASChKh~1 device,
It is obvious that the connection of a diaphragm at the open end of the pipe affects the natural frequency spectrum,
causing a shift of the resonance frequencies. The shift is limited on the high-frequency side by the resonance fre=
quency of a pipe whose one end is open and the other is closed, while, on the low~frequency side, the shift is lim~
ited by the resonance frequency of a pipe with both ends closed.

Pipe with a diaphragm installed atr the middle and connected to a large-volume
chamber. The simulator circuit is shown in Fig. 6. Here Ly, Lg, Cy, Cy, Ry, and R, are the respective inductances,
capacitances, and resistances simulating the pipe, L, the inductance simulating the diaphragm, and Cy the capacitor
simulating the chamber's volume.

Figure 7 shows the frequency characteristics obtained on the screen of the ASChKh-1 device for the given sys-
tem. It is obvious from the characteristics shown that the installation of diaphragms affects the natural frequency
spectrum. The investigation results indicate the fallacy of the opinion [3] that local lumped resistances do not affect
the natural oscillation frequency and, consequently, the position of resonance frequencies.
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Fig. 7. Frequency characteristics of a system consisting of a pipe with a length
of 27 m which is connected to a 5-m® chamber, a) Without diaphragm; b to
d) with diaphragms having diameters of 20, 15, and 3 mm, respectively, in-
stalled at a distance of 6 m from the front end.

An important advantage of the proposed method is its clarity., By using the proposed simulator, one canquickly
estimate any change introduced in the design of a piping system and choose the optimum piping system which would
guarantee operation outside the zone of resonance conditions.
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