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Abstract. We give a prescription for the measurement of 
the quantum phase distribution of a single-mode radiation 
field. The phase probability distribution is defined as the 
squared modulus of the photon wave function in the phase 
representation. The measurement involves all moments of 
the signal from the balanced homodyne detection. 

PACS: 42.50.Bs; 42.50.Dv 

Our definition of the phase probability distribution is based 
on the notion of the photon wave function in the phase rep- 
resentation. Such a phase representation has already been 
anticipated a long time ago by London [1], and used ex- 
tensively by us in the description of intense photon beams 
[2-5]. The wave function ¢(~) in the phase representation 
is defined in terms of the expansion coefficients ~n of the 
state vector 1¢), 

oo 

n=0 

(1) 

into the photon number state vectors I k) through the formula 

oo 

1 2 Cn exp(inqg). (2) 

It is clear that there is a one-to-one correspondence between 
the state vectors of a single-mode radiation field and the 
wave functions (2). The squared modulus of the wave func- 
tion I¢(~o)i 2 gives the phase probability distribution in full 
analogy with the probability distribution of the x variable 
being given in wave mechanics of massive particles by the 
squared modulus I¢(z)l 2 of the wave function in the position 
representation. 

In order to avoid dealing with non-normalizable vec- 
tors, we shall restrict ourselves at the beginning to an N- 
dimensional subspace of the Fock space, and we shall label 
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the corresponding quantities with the superscript N. For all 
state vectors belonging to this subspace, the wave function 
in the phase representation can be obtained (up to a normal- 
ization factor) by the projection of the state vector [~b), 

CN(~) = <~NI¢>, 

on a normalized phase-state vector I~pN>, 

(3) 

N - 1  1 I~ N) = ~ ~ exp(-in~)ln>, (4) 
~=0 

that has been introduced by Pegg and Barnett [6]. 
The aim of this paper is to show how to recover the phase 

probability distribution directly from experimental data using 
the method of balanced homodyne detection. A proposal to 
determine the phase probability distribution with the help of 
homodyne detection has been recently made by Vogel and 
Schleich [7]. They have shown that, under certain condi- 
tions, one can approximately determine this distribution. We 
shall show that using the same experimental data one can, 
in principle, determine the phase probability density exactly. 
The outline of this scheme has already been sketched in our 
previous publication [10] in connection with the problem of 
reconstructing the phase of the photon wave function. 

Our method is based on the observation that every op- 
erator in Fock space can be expressed as a sum of products 
of creation and annihilation operators. In particular, we can 
apply this observation to the projection operator Pff ,  

pN = I~N><~NI. (5) 

This projection operator is directly related to the problem 
at hand; its expectation value in a given state I¢> gives the 
phase probability density 

<¢IPNI¢> = IcN(qo)l 2. (6) 

In order to express the operator pN in terms of creation and 
annihilation operators, we insert into the definition (5) the 
explicit form (4) of the phase-state vector to obtain 
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L N - I  N - 1  

pN = N ~ Z e-i(k-')~ 1 atkl0){0taZ. 
k=O 1=0 

(7) 

From this representation, we can see that the projection op- 
erator is related by a Fourier transformation to the unitary 
phase operator UpB of Pegg and Barnett 

N - 2  

2-7 ¢pei~°P N = ~ lk)(k + 11 
k=O 

:- UpB - - I N  - 1)(0le iN~°, (8)  

where ~o is an arbitrary phase introduced by Pegg and Bar- 
nett. 

Using the known representation [11] of the vacuum pro- 
jection operator in terms of creation and annihilation opera- 
tors restricted to the N-dimensional subspace, 

N - 1  

Iollol = atria n, 

n=0 

(9) 

we arrive, after some rearrangements, at the following nor- 
mally ordered expression for the projection operator pN 

N - I  2 N - 2  

m=l k=0 

× (e-im~afk+ma k + eim~Pa~kak+m)], 

where the numerical coefficients dr~k have the values 

(10) 

k 
( -1)~ (11) V" dmk 

z_.., n ! , / ( k  - n)!(]~ + m - n ) !  
r~=0 

The values of these coefficients decrease rapidly with the 
increase of the indices, as is shown in Table 1. 

We can formally take the limit when N ---* oo in expres- 
sion (10) for the projection operator provided we change 
the normalization to account for the transition from the nor- 
malized to a non-normalizable state. This limit exists only 
in a weak sense, i.e., all matrix elements of the operator 
(N/27r)P~ tend to the limit given by the matrix elements 
of the operator P~, 

1 OO (3O 

:  tl+GZdmk 
m = l  k = O  

x(e-im~atk+ma k + eimVatkak+m)]. (12) 

The phase probability distribution p(cp) is for a general mixed 
state given by the trace of the projection operator P~ with 
the density operator, 

p(~) =Tr(pG). (13) 

For pure states, this trace reduces to the diagonal matrix 
element of the projection operator 

p(~) = (¢IP~ I~b). (14) 

Thus, on account of the relationships (12) and (13), we have 
reduced the problem of the measurement of the phase distri- 
bution to the problem of the measurement of the expectation 
values of all products of creation and annihilation operators. 
These expectation values can, in principle, be measured in 
the balanced homodyne-detection scheme. Descriptions of 
the basic experimental setup for the balanced homodyne de- 
tection were given in [7, 9, 10], in particular, in connection 
with squeezing phenomena. Here, we only will state briefly 
that the signal obtained from the balanced homodyne de- 
tection is formed as a difference in photocounts from two 
detectors. These two detectors record different superposi- 
tions of the single-mode radiation field under study and a 
reference field in a coherent state of the same mode. The 
measured signal can be characterized by a phase-dependent 
field operator E(¢), 

E(¢) = i(ae -i¢ -- atei¢), (15) 

where the creation and annihilation operators refer to the 
quantized radiation field under study. The phase ¢ charac- 
terizes the coherent reference field and may be varied con- 
tinuously during the experiment. 

In most experiments on squeezing only the expectation 
value of E(¢) and its second moment are determined. In 
order to determine the phase distribution, we need all mo- 
ments of E(¢). We may encode all these moments in the 
distribution function p[E(¢)], as has been done by Vogel 
and Schleich [7], but we found that combining these mo- 
ments into a generating function G(¢, A) of an auxiliary pa- 
rameter A will lead us to the desired end more quickly. Our 
generating function is defined as 

G(¢, A) = (exp(Aate i¢) exp(-Aae-i~)) 

oo ( _ X 2 )  k ( a * k a k )  

= ~ (k!)2 
k=O 

c¢ c<z / ~'~k\2k+rn 
K-% i,~¢ V "  t -  "___Z 92____ +L. f ie  fl__., kV(k+m) v (afk+mak)+c.c.], (16) 
m =  l k=O " " 

where the angle brackets denote the quantum mechanical 
expectation value. This function differs only by a factor 
exp(-Ae/2) from the characteristic function z~(r/, 0) used by 
Vogel and Risken [8] in their study of the phase quasiprob- 
ability distributions. 

With the help of the Baker-Hausdorff identity, this gen- 
erating function can be expressed in terms of the moments 
of E(¢), 

G(¢, A) = e-'~z/2(e i'xE(¢)) 

: e-X2/2 ~ [E(¢)lk) - 
E. 

k--0 

(17) 



Table 1. Numerical values of the dmk coefficients 

k=0 1 2 3 4 5 6 
m=l 1.00000 -0.29289 0.08157 -0.01846 0.00345 -0.00055 0.00008 

2 0.70711 -0.29886 0.08964 -0.02080 0.00393 -0.00063 0.00009 
3 0.40825 -0.20412 0.06455 -0.01531 0.00293 -0.00047 0.00006 
4 0.20412 -0.11284 0.03713 -0.00898 0.00173 -0.00028 0.00004 
5 0.09129 -0.05402 0.01834 -0.00451 0.00088 -0.00014 0.00002 
6 0.03727 -0.02318 0.00807 -0.00201 0.00040 -0.00006 0.00000 
7 0.01409 -0.00911 0.00324 -0.00082 0.00016 -0.00003 0.00000 
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Note that the generating function G(¢, A) and the probability 
distribution p c ( E )  = I(E(¢)l~b)l 2 of [7] are related by the 
Fourier transformation 

G(¢,A) = eA2/2 /_~dEeiAEp4~(E). (18) 

The expansion (17) of the generating function into prod- 
ucts of creation and annihilation operators leads directly to 
the following formulas for the expectation values of these 
products 

(k + m)!k! 
(a tk+mak)  - (2k + m)! 

d2k+m ( _ l ) k  f2~ 
- dOe-imCG(cp,  ),) . (19) 

X dA2k+m 27r ao ~x--o 

The formula with the reversed roles of a t and a is obtained 
by Hermitian conjugation. 

Our final result is, therefore, the following prescription 
how to reconstruct the phase probability distribution p(~) 
from balanced homodyne-detection measurements 

{ [ 1 + ~ _ j ~ d m k  e -imcp(l¢+m)!k! 
p(~p) = ~-~ 1 ( 2 k  + m ) !  

m=l k=0 

1/ dek+m (--1)k d C e - ~ m e G ( ¢ ,  +c.c. . (20) 
X dA2k+m 27r 

The determination of the phase distribution probability from 
experimental data is thus possible, but the price is high: in 
principle,one must measure a full distribution (or all mo- 
ments) of the variable E(¢) for all values of ¢. Obviously, 
in practice, we can measure only a few moments and probe 
the ¢ dependence only at several points. This should be 
sufficient if the number of relevant Fock states is not too 

high. Fortunately, the number of the relevant Fock states 
might indeed be fairly small (at least for low intensities) 
due to the fast decrease of the coefficients dmk. Moreover, 
one may hope to reduce the amount of information needed 
to recover the quantum phase probability distribution since 
(12) and (13) show that only certain linear combinations of 
the expectation values (atria m) enter the formulas for p(~p). 
Our prescription is in a sense too wasteful since it enables 
one to reconstruct not just p(~p) but the entire wave function 
~(~). 
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