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Abstract. We consider the quantum analogue of the clas- 
sical Jones calculus for passive linear optical systems. 
Those points of the theory where quantum features have 
to be manifestly included are discussed. The use of differ- 
ent quasidistribution functions and their restrictions to 
the observable variables only is presented. The consist- 
ency of the theory and its usefulness are discussed. 

PACS: 42.50.-p; 42.50.Lc; 03.65.Bz 

The present paper is devoted to the discussion of the 
differences between the classical Jones calculus and its 
quantum counterpart. In principle, the results are all tri- 
vial, but they are not necessarily self-evident, and provide 
an interesting illustration of the intricate ways in which 
quantum features enter even extremely simple systems like 
those treated in the present work. 

1 Passive networks in quantum optics 

Quantum optics has proved one of the most fertile and 
rapidly progressing fields of modern physics. It has pro- 
duced devices where both the atomic constituents and the 
interacting fields contribute at the level of one single 
quantum unit or less. Such systems have made it possible 
to investigate fundamental questions related to quantum 
coherence and measurement theory in a regime never 
before reached. On the other hand, it has also produced 
new technology revolutionizing optical communications, 
superhigh-resolution measurements and optical data pro- 
cessing. In all these fields, the inclusion of quantum fluctu- 
ations has been an essential feature. In short, quantum 
optics has been both challenging, rewarding and produc- 
tive; it has played a central role in the development of 
modern atomic and molecular physics. 
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Classical optics has long served a similar function in 
technology and fundamental physical research. Here, the 
theory is well developed, the technology is mature and the 
industrial applications have a well-established position. 
Optical imaging, information processing and data transfer 
are often based on passive linear devices that transform 
and distribute the incoming signals to various outputs. In 
all these cases, there exists a linear relationship between 
the input and output signals, which has been the basis of 
an optical design procedure called the Jones calculus [1]. 
This enables the scientist to combine networks by defining 
the transfer functions of the components used and their 
interconnectious. For the classification of optical instru- 
ments and the design and analysis of complex systems, the 
Jones calculus is an invaluable tool. 

With the advent of high-precision quantum-optics sys- 
tems, even the passive linear networks have been dis- 
cussed as quantum devices [2-41. The quantum noise at 
the input ports becomes redistributed and mixed, and 
using the technology of squeezed states one can attempt to 
optimize the performance of measuring devices and data 
communication systems. In order to systematize this ac- 
tivity and bring it to the level of the classical Jones calcu- 
lus, the present author formulated a general theory for 
linear passive networks in [5]; see also [6] for an earlier 
use of a similar formalism. In our later work we have 
applied this tool to the analysis of the operation of an 
interferometer [7] and an optical-field measurement [8]. 

The idea of a linear network implies that the output is 
a linear function of the input fields. If the system is genui- 
nely passive, there is no mixing between annihilation and 
creation operators, and the transfer function is unitary; no 
energy is gained or lost in the transmission. A phase conjuga- 
tor violates the first condition and amplifiers and attenuators 
violate the second. In this paper, we exclude such devices. 

Formally, the theory appears to be very similar to the 
classical one. Thus, I consider it to be of some interest to 
pinpoint those features where quantum effects are mani- 
fest. It is the purpose of this paper to carry out such an 
investigation in some detail. 

The first quantum feature enters the theory in the 
choice of initial state of the incoming fields. These cannot 
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be described by probability distributions but only with the 
aid of so called quasiprobability distributions [9, 10]. 
These allow nonclassical features like negative values for 
regions of phase space; such distributions have no classi- 
cal counterparts. On the other hand, all classically al- 
lowed distributions cannot be realized in the quantum 
theory; e.g., the uncertainty relations must be obeyed. 

Quantum measurements are aimed at operators that 
do not always commute. Thus, the ordering of the observ- 
ables becomes essential. The literature defines various 
quasidistribution functions corresponding to different or- 
derings; the ordinary photodetector gives normal order 
(Glauber-Sudarshan distribution) but various mixing de- 
tection schemes can record other orderings, e.g., the sym- 
metric one (Wigner distribution). Ekert and Knight [11] 
have pointed out that the use of such functions may create 
confusion even in the linear regime of a quantum device. 
In Sect. 2, I show that, with the present definition of 
a linear passive network, these problems do not arise, and 
we can apply the techniques developed in [5] for any of 
the ordinary quasidistribution functions. 

Another quantum feature that is unavoidable is the 
non-commutativity between the two quadrature compo- 
nents of an optical output. This implies that we can access 
only half of the potential information at a quantum out- 
put in contrast to the classical situation. This is the quan- 
tum optics manifestation of the complementarity aspect 
between position and momentum in quantum theory. 

As a consequence, we have to select which component 
we measure at each output of an optical device, and only 
the marginal distribution reduced to the corresponding 
phase-space variables carries observational meaning. In 
our case, this applies to the quasiprobability distribution 
functions chosen to represent the outputs. For  a general 
input state of the fields, the ensuing reduced quasidistribu- 
tion function may become rather unwieldy. In order to 
simplify the treatment, we look at input Gaussian distri- 
butions in Sect. 3. Of course, these form an extremely 
restricted subset of all allowed distributions [12] but, as 
long as we are mainly interested in the transfer of the first 
two moments, they provide adequate illustrations of the 
main ideas. They also include the important coherent and 
squeezed states as special cases. In Sect. 3, the reduced 
quasidistribution function depending only on the access- 
ible information is derived in a general case using the 
formalism developed in [5]. The noise characteristics of 
the system are obtained from the second moments of such 
a distribution. Another equivalent method to obtain the 
same information is to Fourier transform the full quasidis- 
tribution, which gives the moment-generating character- 
istic function. Its derivatives with respect to the Fourier 
variables gives the moments as in classical probability 
theory. The reduction to the accessible information can be 
achieved directly from this by setting the Fourier variables 
corresponding to the unobserved components equal to 
zero. This gives another expression for the correlation 
functions between the observed outputs. 

In Sect. 4, l go through a formal proof that the two 
methods discussed do indeed give exactly the same results. 
Physical considerations demand this to be the case, and 
the proof is, in fact, but a trivial verification of the consist- 
ency of the formalism. 

In Sect. 5, I conclude the paper by a brief summary of 
the theory and make a few comments on its use and 
significance. 

2 The quasidistribution functions 

The linear networks we are going to discuss have a 
set of M inputs described by the photon annihilation 
operators {a~[i = 1, . . . ,  M} and M outputs, respectively, 
{bi[ i = 1, . . . ,  M}. These are taken to be column vectors 
according to 

a2 

a= l 
b = b2 . (1) 

The main characteristic of a linear passive network is that 
it does not mix creation and annihilation variables, and 
hence its transfer function between inputs and outputs can 
be written 

b = 5 0 a ,  (2) 

where 5 ° is a unitary transformation. 
In quantum optics, the use of generating functions for 

operator moments have found widespread use. If we de- 
fine a complex column vector 4, we can introduce the 
generating function labelled by a in the following way 

Z~(~) = Tr {pexp[i(a*.~ + ~ . a )  + ~ * - ~ ] } .  (3) 

For G = 1, this gives the normally ordered expectation 
values, and for a = 0 the symmetrically ordered ones. The 
Hermitian conjugation sign ? changes column vectors to 
row vectors and takes the Hermitian conjugation (for a) 
and the complex conjugation (for {). 

Fourier transforming the moment generating functions, 
we obtain the quasidistribution functions according to 

W~(z) = 1 [" A2M" ;~ e-i(~*, z+z,.~) Zo(g ) 

1 fd2MYe-i(C.z+z~.¢) 
- -  ( 2 ~  J 

x Tr{pexp[ i (a* .  ~ + ~*.a) + ~ * - ~ ] } .  (4) 

For ~ = 1 this gives the Glauber-Sudarshan function, and 
for a = 0 we obtain the Wigner function; a = - 1 gives 
the Q-function, a special case of the Husimi function [13]. 
Ekert and Knight [11] point out the special advantages of 
using the Wigner function for an arbitrary linear trans- 
formation. For  our passive networks, we show that no 
complications arise. 

We first introduce a new integration variable in (4) 
according to 

= y ~ .  (5) 

Because 5 ° is unitary, the integration domain is not changed; 
the other terms in the exponent are transformed as follows 

~t. ~ = (50,~),. 50,~/= t/*. 

~*. a = (50*rt)* • a --- r/*. 50a 

~*. z = (50'r/)* • z = 17" 50z, (6) 

and their conjugate relations. 



245 

If we now introduce the relation (2) between the input 
and output variables into the relation (4) we obtain the 
result 

W o - ( Z  ) : ~(2¢r)zM j t~ f d2M*~ ~ -  i (t/* ' ~ '  ' z + (5%)* ' r t ) , t  ~ 

x Tr {p exp[i(bY-r/+ r/*. b) + ~r/~ • r/J}. (7) 

The function given by the trace expression clearly gene- 
rates the moments of the output variables b in the o- 
ordered form. If we introduce the new complex variables 

w = 5ez, (8) 

the function in (7) is the quasidistribution function of the 
outgoing variables in terms of the density matrix of the 
incoming states. We can thus write the general in- 
put-output  relationship 

W ff~t (w) = W~ i" (Af*w). (9) 

This result corresponds to the result (7) in our earlier 
publication [5], which has now been shown to be valid for 
an arbitrarily ordered quasidistribution function. Thus, 
the problems mentioned by Ekert and Knight do not 
affect the passive optical network. 

3 Extraction of observable entities 

Following our work [5], we now separate real and imagi- 
nary parts of the input and output operators according to 

1 
ai = ~ ( x 2 i - 1  + ix2i)  

(i = 1, 2, . . . ,  M).  (10) 
bi 1 = ~ ( Y 2 i - t  + iyzi)  

From these we construct new 2M-dimensional column 
vectors x and y. The linear relationship (2) induces a linear 
relationship L between these input and output quantities; 
we write 

y = Lx,  (11) 

where L now is a real orthogonal transformation of di- 
mension 2M x 2M. 

We are prevented from measuring all the output ob- 
servables by their quantum-mechanical character. In fact, 
only half of the output variables can be observed simulta- 
neously because we have 

[Xzi  1,X2i] = i ,  
(12) 

[ Y 2 i -  1, Y2i] = i. 

We now assume that we observe the odd components 
of the column vector y and rearrange the vector according 
to this 

Y= Y e '  

where the components Yo, Ye are M-dimensional vectors. If 
we choose to observe some combination of odd and even 
components, we rearrange the vector accordingly; the 
index o may then mean "observed" and e "eliminated". 

If we, for simplicity, assume a Gaussian input distribu- 
tion of the form 

w i n ( x )  = N exp( -- ½xrAx), (14) 

we find the output to be of the form 

W°Ut(y) = g e x p (  - gy~ rK-'y), (15) 

where according to (9) 

K = LAL r. (16) 

All variables are chosen real here, and the superscript 
T denotes the transpose. In (14, 15), the averages are 
subtracted off the variables to simplify the notation. 

Because we can access only the components Yo, we 
derive a reduced distribution function for these variables 
only by integrating over the unobserved conjugate vari- 
ables Ye 

( l r r [ K°° 
g~u~(yo) = NSd~tyeexp - 2 [ Y o  Ye] Keo 

<L,ol) 
Ke~J ye 

(17) 

The quadratic form in the exponent can be expanded as 

T T T T yoKooYo + yoKo~y~ + y~KeoYo + y~K~ye 

= yro(Koo - -  KoeKGlK~o)yo 
T - 1  + (yf + yo KoeKe¢ )Kce(Ye + KGiKeoyo). (18) 

The second term is integrated out in (17), and calculating 
the output correlation functions with the reduced distri- 
bution we obtain the result 

(yaoybo) = [(Koo -- KoeK~K~o) - ~]ab, (19) 

according to the algebra of Gaussian distribution func- 
tions. 

There is, however, another way to obtain these same 
correlations. We calculate the moment generating func- 
tion by inverting the Fourier transform (7) 

Z(Z) = ~ d2Mye ix~yW out(y). (20) 

When we set to zero all variables 2~ corresponding to the 
unobserved quantities, we obtain the simple function 

Z(Z) N e x p ( -  1 T = ~ 20 Coo2o). (21) 

The correlation functions are now directly the compo- 
nents of the observed correlation matrix Coo. This can be 
calculated directly from 

[ C ° e ] = K - I = L A - i L r ,  (22) C = Coo 
Ceo C~e 

as follows from (16). This is, of course, the simplest way to 
obtain the correlations, but the physical process of para- 
meter elimination was elucidated by the previous method. 
In the following section, I will show that these two 
methods lead to identical results, as they necessarily must. 

4 Proof of consistency 

The result (22) is shown to be equivalent with the result 
(19) by inversion of the matrix (16) in partitioned form 

: (23) 
Keo Kee 
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Without going into the calculations, I give the result as 
follows 

C = K - 1  

= ~(Koo - Ko~K~IK~o) -1 (K~o - Ke~K~elKoo)- l]  

L(Koe - KooKfolK~)  -1 (Kee KeoK~olKoe) - l j  " 

(24) 
The inverses of the off-diagonal square matrices are de- 
fined as 

KjolKeo = 1; K~IKo~ = 1. (25) 

Using the easily proved matrix identities 

1 _ 1 KeoK~o 1 
Ko~ - KooKjolK~e K e e  - -  K~oKfoaKoe ' 

1 1 

Keo - Ke~K~lKoo = - Koo - KoeK~lK~o K ° e K ~ I '  (26) 

one verifies directly that the result (24) is correct. 
From (24), we can directly see that the correlation 

matrix between the observed quantities in (27) is given 
by 

1 

Coo Koo - KoeKee Keo 
= -1 , (27) 

as derived differently in (19). The equivalence between the 
two methods has hence been proved conclusively. The 
result (24) also gives expressions for the correlations be- 
tween variables not subject to measurements in the chosen 
scheme. 

5 Conclusions 

In this paper, I have discussed the quantum equivalent of 
the optical Jones calculus for passive linear systems. I have 
considered especially those points where quantum effects 
have to be taken explicitly into account. They affect the 
formulation of the theory in ways discussed in this paper. 

There are mainly three points where quantum consi- 
derations are inevitable. Firstly, the initial states of the 
incoming fields must conform to the requirements of 
quantum theory. This excludes certain classically possible 
distributions but allows cases without any classical 
counterparts. Secondly, the measurement of operator 
quantities assumes certain ordering rules because of the 
non-commutability of the observables. These features en- 
ter the theory in the forms of quasidistribution functions 

defined on the quantum analogue of classical phase space. 
For  the linear passive networks considered here, it has 
been shown that we can choose to use any distribution 
function we like. All standard orderings are thus allowed 
in the formalism. Finally quantum requirements restrict 
the possible observables to a set of commuting variables; 
only half of the classically accessible information can be 
extracted from a quantum system. 

This third point motivates the introduction of reduced 
quasidistribution functions defined only on the observa- 
tionally accessible part of the full phase space. These 
functions contain all the information obtainable about the 
averages (which we have not discussed in this paper) and 
the noise and correlation properties between the observed 
outputs. These reduced functions have been derived in 
two different ways, and in Sect. 4, I have shown that these 
two methods are equivalent. The proof is, in fact, only 
a verification of consistency, but gives an explicit expres- 
sion (27) for the observable correlations. 

The result (27) gives the correlations in terms of the 
parameters of the Gaussian describing the output of the 
system. If, e.g., Koe is zero, the elimination of the unobser- 
ved degrees-of-freedom introduces no additional correla- 
tions; all observed ones are given simply by K~o 1, in other 
cases the influence of Koe can be determined directly. This 
may be useful if one wants to manipulate or modify the 
correlation and noise properties of the system. We are not 
discussing the detailed applications of the formalism in 
this paper, but we will return to this in connection with 
considerations of physically interesting cases. 
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