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Abstract. The position of a slow atom passing through 
a standing-wave light field in an ultrahigh-finesse optical 
resonator can be measured by observing either the inten- 
sity of the light transmitted through the cavity or its 
phase. Apart from the periodicity of the standing wave, 
both techniques allow to determine the position of the 
particle with a resolution much better than the standard 
classical diffraction limit Ax > 2/2. Position measure- 
ments with uncertainty < 2/20 seem to be possible with 
all-optical techniques. 

PACS: 07.60.Pb; 32.80.Pj; 42.50.Vk 

High-resolution position measurements of neutral atoms 
with optical techniques are of considerable interest both 
from a theoretical as well as from a practical point of view. 
This is due to recent experimental progress in using light 
forces to manipulate the motion of atoms [1]. For example, 
channeling of atoms at the nodes of a standing-wave light 
field was demonstrated I-2] and sub-optical structures 
were produced by atomic deposition (atom lithography) 
[3]. However, while these techniques were used to create 
sub-micron spatial distributions of many atoms N>>I, 
optical methods tor measuring the position of a single 
individual free atom N = 1 with a resolution better than 
the wavelength of light are being explored only recently. 

For example, a novel scheme for the observation of the 
position of free atoms was demonstrated recently by Gar- 
dner et al. [4]. This method employs light-shift-induced 
Raman transitions in which an inhomogeneous light 
intensity causes a spatially varying atomic level shift 
which correlates an atomic resonance frequency with the 
atomic position. A different scheme has been suggested by 
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Storey et al. 1,5] and, independently, by Marte and Zoller 
I-6]. In that scheme, the atom is localized by measuring the 
phase shift of the optical field in a standing-wave cavity 
due to the spatially varying atom-field coupling. A similar 
scheme to determine atomic momentum using a running 
wave in a ring cavity has been proposed by Sleator and 
Wilkens [7]. However, these proposals did not take into 
account the decay of the cavity field which is necessary to 
actually get information on the atom's position. This 
disadvantage was pointed out by Kunze et al. I-8] who 
proposed to use long-lived atomic states to store and read 
the position information in a Ramsey-type experiment. 
Only recently, a quantum Monte-Carlo technique includ- 
ing spontaneous emission and cavity losses was used to 
simulate a quantum trajectory of this open atom-cavity 
system [9]. Within this context, the following short notes 
are intended to give an intuitive discussion of the problem 
and outline some avenues which make possible to con- 
tinuously observe the position of a single free atom. More- 
over, some attempts to achieve an analytical order-of- 
magnitude estimation for the resolution Ax of the position 
measurement are made. 

Before discussing the general case, it is instructive to 
review first the Heisenberg microscope 1-10], which is the 
prototype of an all-optical measuring device. Here, the 
particle is irradiated by light and its position is inferred 
from the scattered light. The resolving power of this par- 
ticular measurement scheme is limited by the Heisenberg 
uncertainty relation AxAp >_ h/2, which results if the ran- 
dom momentum exchange between the particle and the 
radiation field is taken into account. Because only one 
photon is scattered by the particle, the change of its 
momentum p is limited to Ap _< hk. Here, k = 2rc/2 with 
2 denoting the light wavelength. As a result, the precision 
of this position measurement is limited by the size of the 
optical wavelength, i.e., Ax > h/2Ap > 1/(2k) = (2/2rc)/2, 
which corresponds to the classical diffraction limit. Note 
that this discussion suggests to decrease Ax by allowing 
for a larger momentum transfer Ap, which can be accomp- 
lished by exchanging many photons between the particle 
and the measurement apparatus (i.e., the light field). Spon- 
taneous emission events (with Ap _< hk), which randomly 
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disturb the phase of the atomic dipole, can be eliminated 
by, e.g., detuning the light field from the atomic transition 
frequency. However, due to the small electric-dipole coup- 
ling, the presence of a single atom is difficult to detect 
when observing a high-intensity laser-light beam. But, 
note that the effect of a single atom on the light field 
increases in a small cavity made of high-reflectivity mir- 
rors (and is largely proportional to the finesse of the 
resonator, as discussed now). 

To be specific, consider a two-level atom in a high- 
finesse optical cavity which is driven by an external field. 
The effects to be discussed can most easily be understood 
by considering the Maxwell-Bloch equations [11] for the 
(dimensionless) mean intracavity field c~, the atomic polar- 
ization p and inversion w (in a rotating frame) 

--- " " ~ T (x) 

Fig. 1. Cavity geometry and relevant symbols; T(x): transmission; 
qS(x): phase, BS: beam splitter 

d~ = - ~c(a - / 3 )  - gp, 

,6 = - gc~w - 7'(1 + iS)p ,  

= 2g(c~p* + e 'p)  - 7(w + 1), (1) 

where/3 (taken to be real) is the intracavity field strength 
in the absence of an atomic medium, ~c the cavity-field 
decay rate, 7 and 7' the longitudinal and transverse decay 
rates of the atomic inversion and polarization, respectiv- 
ely, 5 is the normalized detuning 5 = (coa - col)/7' between 
the atomic transition frequency COa and the light frequency 
col (assumed to be resonant with the empty-cavity 
frequency), and 9 is the atom-field coupling constant, 
which, for a Gaussian standing-wave cavity mode 
O(x, y, z) = cos(kx) exp E - (y2 _1_ z2)/coo 2 ] with beam waist 
COo, length L and mode volume V = ~O2dV = ~CO2L/4, 
can be written as 

g(r) =/~ O(r). (2) 

Here, # is the dipole-matrix element of the atomic 
transition considered. For a purely radiatively broadened 
atom 7 = 27', and 7 equals the free-space spontaneous- 
emission rate for an atom in a cavity with a small solid 
angle (as is considered here). 

In the limit of sufficiently weak excitation/3 (see the 
discussion below) the probability of finding the atom in 
the upper level can be neglected. Setting the inversion 
w = - 1 constant and solving for the steady-state solu- 
tions of (1), the intracavity field is 

/3 
c~(r) = gZ(r) , (3) 

1 +  
~7'(1 + i5) 

which depends on the position of the atom. Note 
that c~ and/3 refer to intracavity fields with and without 
atom, respectively. Since both the incident field and 
the output field are related to the intracavity fields by 
the same factor which is the mirror transmission coef- 
ficient, the ratio 1~12//~ 2 determines the cavity transmis- 
sion. For a further discussion of (3) it is interesting 
to consider first exact resonance ~ = 0 and then large 
detuning [61 >> 1. 

Case 6 = 0 

In this case, ~ is purely real. Obviously, the position 
information is stored in the coupling constant 9(r) which 
should be made as large as possible. This can be achieved 
in a cavity with small volume (g 2 oc 1 / V )  and high-reflec- 
tivity mirrors (small ~c, i.e., high finesse F -- 7zc/2tcL). Note 
that the condition g > (to, 7') corresponds to the limit of an 
atom strongly coupled to a single cavity mode, a require- 
ment which was realized for the first time in experiments 
performed with the one-atom maser in the microwave 
domain [12]. Now, consider a symmetric Gaussian re- 
sonator mode between two identical concave optical mir- 
rors (with a radius of curvature R larger than the mirror 
diameter D). The smallest cavity volume possible is given 
by "contacting" the mirrors (with only a small and there- 
fore negligible spacing between them for the atoms to go 
through, see Fig. 1). Using o92 = (2 /Tz) (RL/2)  1/2 for the 
beam waist of a Gaussian resonator mode with R >> L and 
(RL)  1/2 = D/2  (which can be deduced from a straightfor- 
ward geometrical consideration), (3) gives for the mean 
intensity-transmission coefficient through the cavity 

1 1 

T ( r ) -  (1 + ~ ( r ) )  2~c7,  / [1 + @2~---~202(r)] 2' 
(4)  

where gZ(r) = 7(3c22)/(2rc2co~L) ~2( r )  w a s  used. Obvious- 
ly, the position information is encoded in the intensity of 
the transmitted light field. Note that, apart from the res- 
onance condition 6 = 0 and the specific value of Z, (4) 
depends on mirror parameters only. Therefore, different 
atoms can be studied with the same optical system, which 
is a necessary requirement for a useful device. Mirrors 
with losses of 1.6 ppm at the wavelength of the cesium 
D2-resonance line at 2 = 852 nm were demonstrated [13]. 
Two of these mirrors form an interferometer with a finesse 
F > 106 over a bandwidth larger than 40nm. Choosing 
F = 106, it follows that, with D = 1 cm diameter mirrors, 
the cavity transmission for an atom at an antinode 
[-~(r) = 1] drops more than 10%fold below the empty- 
cavity transmission [O(r )=  0]. This large effect can 
be explained by a shift of the normal-mode eigenfrequen- 
cies of the strongly coupled atom-cavity system with 
respect to the frequency of the incoming light. It can be 
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understood intuitively by noting that the external driving 
field polarizes the atom, which, in turn, radiates into 
the cavity mode with a resulting phase shift of - 180 °. 
Therefore, fl and the atom's polarization field interfere 
destructively giving rise to the ultralow transmission. 

A drawback of the present device is that the transmit- 
ted intensity drops to a very small value and it is difficult 
to achieve an accurate position measurement with a rea- 
sonably large signal-to-noise ratio. This is due to the fact 
that, to avoid spontaneous emission, the atom was as- 
sumed to stay in the ground state. This limits the useful 
intensity, which scales proportional to the saturation 
photon number n~ = 77'/492 [as can be calculated from (1) 
for w = - 1/2], In the regime of strong coupling, n~ is 
much smaller than one. In addition, note that quantum 
fluctuations of the transmitted light field can be quite 
significant for a high-finesse cavity [-14]. This effect was 
not taken into account when starting from the semiclassi- 
cal Maxwell-Bloch equations. 

Case 161>>1 

In this case, and for g2/~:7>> 1 (which is a reasonable 
assumption for a high-finesse cavity, as was discussed 
above), the presence of a single atom leads to a posi- 
tion-dependent change of the cavity transmission 
T = 1~12/fl 2 

1 t 

- 1+\~c7, 8/ l+k ~2 D A~2(r) 
where A = 7'6 = c o , -  o9~ and where the same assump- 
tions were made as in the derivation of (4). With F = 106, 
2 = 1 l, tm and D = 1 cm, the transmission decreases by as 
much as 50% even for a detuning as large as A = 1007. 
But, note that, in contrast to the case of exact resonance, 
(5) is not independent of atomic parameters and that the 
effect of a single atom increases with the transition 
strength 7. However, an atom with large 7 shows stronger 
absorption so that the intensity of the field has to be 
decreased to avoid spontaneous emission. A more careful 
analysis, therefore, requires a discussion of the signal-to- 
noise ratio which limits the resolution length of the posi- 
tion-measurement scheme. As the transmission depends 
on q/2, it is obvious that best resolution can be achieved 
for an atom which is localized halfway between a node 
and an antinode. The following order-of-magnitude es- 
timation, therefore, concentrates on the one-dimensional 
case with ~(r) = ~(x)  = cos(kx) oc 1/21/2 only. 

In part, the accuracy of the position measurement is 
determined by the fluctuations AN associated with the 
total number N of photons counted during the observa- 
tion time ~ (which will be specified below when discussing 
the motion of the atom). Neglecting technical noise sour- 
ces, AN is given by the standard shot-noise limit, i.e., 
A N  = N 1/2. Obviously, the best signal-to-noise ratio is 
achieved with a high-power signal beam, i.e., large excita- 
tion ft. However, the maximum possible number of pho- 
tons is given by the requirement that no spontaneous- 
emission events occur during the observation time z. The 

inversion can be calculated from the steady-state solution 
of (1) with the result (w + 1)/( - w) = 2(g/A) 2 ]0{12. It fol- 
lows the condition that ( g / A )  21~127 _< 1/'C in the limit of 
small inversion w oc - 1. For  given (z, A ), this establishes 
an upper limit for the intracavity photon number l~[2. 
Using N oc ]cqzz/~ .... with Zc,v = 1/2~: as the photon stor- 
age time of the cavity, the maximum number of photons 
that can be detected is N .... = (A/g) z (2~/7). Note that in 
this case (w + 1)/( - w) = 2/7z, so that for given 7, the limit 
w oc - 1  is approached only for an observation time 
z>>7-1. Assuming N = N m a  x (which can be realized ex- 
perimentally by adjusting the driving-field strength), the 
resolution length Ax = AN/IdN/dx]  is 

2/27r 
Ax oc (6) 

2T (r) (6~222 ~ ) 3 / 2  ~ 

It follows that Ax = ()]2rc)/16 = 2/100 = 10 nm (with 
T = 0.8 and N m a  x = 400) for F = 106, 2 = 1 gin, 
D = l cm and A = 100y. Note that, for moderate 
atom-field detuning A (but with [6]>> 1), the cavity trans- 
mission T (r) is proportional to A 2 so that Ax decreases for 
increasing A. However, T oc 1 for large A and Ax increases 
linearly with A. 

To discuss a second but related measurement scheme, 
note that, for l a I>> 1, the transmitted-field amplitude ~ is 
complex with respect to the empty-cavity field fi, i.e., it 
accquires a phase shift q5 with 

tan qS(r)-  92(r~) - 6,,/2 F2 y @2(r), (7) 
tc7'6 r~ 2 D A 

which is valid for sufficiently large detuning 6z>>ge/Ky '. 
This phase shift qS(r) is due to the off-resonance refractive 
index of the atom which depends on the spatially varying 
atom-field coupling constant 9(r) and, therefore, on the 
position of the atom. It follows that a single atom behaves 
as a polarizable medium producing a phase shift as large 
as ~b(r = 0)oc 1 for F = 106, 2 = 1 gm, D = 1 cm and 
a detuning A = 1007. 

To determine the resolution length, let us suppose that 
the phase measurement is performed using a Mach-Zeh- 
nder interferometer with the atom-cavity system placed in 
one arm (homodyne phase detection). For  equal inten- 
sities in both output ports, Ax can be taken as 
Ax = AO/[d~)/dx[, where Aq5 is the uncertainty of an 
interferometric phase measurement, which can be approx- 
imated by the standard shot-noise limit Aq5 = 1/N 1/2. It 
follows that the resolution length is given by 

Ax = 2/2~ 
i/ 6x/~ F.~,1/2. (8) 

2T( r )~  7~ g )  

For  an atom halfway between a node and an antinode, 
Ax = ()~/2~)/16 = 10 nm for F = 106, 2 = 1 btm, D = 1 cm 
and A = 1007, which equals the result of the intensity 
measurement for this particular set of parameters. Note, 
however, that for T(r) oc 1 (i.e., large A) and in contrast to 
(6), the resolution achieved in the homodyne measurement 
is largely independent from atomic parameters and the 
atom-field detuning (if the factor 2-1/2 is neglected and as 
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long as 161>> 1). It follows that, for large A, the homodyne 
scheme has a smaller resolution length than the scheme 
based on measuring the intensity of the transmitted light 
(where Ax increases linearly with A). 

In a realistic experiment both the intensity of the light 
transmitted and its phase will change simultaneously. 
Therefore, the decrease in cavity transmission can be used 
to enhance the position resolution of the homodyne 
measurement, if the phase shift from an atom moving 
towards an antinode also decreases the magnitude of the 
homodyne signal. This condition can be achieved by ad- 
justing the phase of the reference beam in the Mach- 
Zehnder interferometer. 

To discuss the observation time ~ not yet specified, 
note that the steady-state solutions of (1) were used in the 
derivation of (4-8), which is strictly valid only for an atom 
at rest (with infinite mass). However, slow atoms can be 
used for which 9(r) does not change significantly on a time 
scale determined by ~c-1 and 7'-1. For  example, cesium 
atoms with a wavelength 2 = 852 nm for the resonance 
transition, mass m - -2 .2  x 10 .25 kg and speed 20 times 
the recoil velocity hk/m = 3.5 mm/s move a distance of 
2/20 in 600 ns, which is longer than the natural lifetime 
7nat = 7 -  1 = 32 ns and the cavity lifetime z~,v = 100 ns for 
F = 106 and L = 100 gin. 

To consider the effect of atomic motion in more detail, 
note that, even for an atom at rest initially, the 
wavepacket produced by the observation starts to move 
due to the mechanical force exerted on the particle by the 
off-resonant optical potential (i.e., light shift) h(g2/A )1 ~. ]2, 
This force vanishes both at the nodes and antinodes of the 
standing wave and is largest halfway between them. In this 
region, the particle is accelerated and moves a distance 
As oc (hk/m)(qZ/A)1~]2272 ~ (hk/m)(A/7)z during the ob- 
servation time r. For  the measurement scheme to be 
useful, we require that the particle moves less than one 
resolution length within -c, i.e., As < Ax. A sufficient condi- 
tion is (A/7)7 _% Ax/(hk/m) which establishes an upper 
limit for (A/7)7. Note that z > 7~,v is needed to use the 
results of the steady-state calculation, and z >> 7n,t = 1/7 is 
necessary to achieve w oc - 1. These are lower limits for r. 
Hence, it follows from A/7 < (Ax/r)/(hk/m) that, for given 
7 > ( 7  .... Z.at), a moderate detuning A is required to 
achieve a small resolution length Ax. Choosing z = 300 ns 
(which corresponds to oc 37 . . . .  as in the example above, 
and oc 10~n,t for cesium), then A/7 <_ 10 for Ax- -  
(2/2rc)/16 = 2/100 = 10nm. The mean velocity for an 
atom starting from rest is then Ax/v oc 10 hk/m = 3.5 cm/s 
which is achievable with present state-of-the-art laser- 
cooling technology. The intracavity photon number is 
Ic~l 2 oc 1 (for F = 106, 2 = 1 gm, D = 1 cm and ~ 2  = 1/2) 
and the atomic inversion w = - 0.83, which is reasonably 
close to w oc - 1. Note that, in this example, all control 
parameters are optimized to achieve the smallest resolu- 
tion length Ax = (2/2~)/16. Otherwise, Ax increases be- 
cause the intracavity photons impart excess momentum to 
the atom. For  example, the back-action effect of the 
measurement-light field effectively limits the resolution to 
about Axoc2/20 for A = 507, I~[ 2OC 30 and identical 
parameters otherwise. This is larger than the limits stated 
in (6) and (8) but is still one order of magnitude smaller 
than the standard diffraction limit. 

The discussion also shows that the natural spreading 
of the atomic wave packet does not limit the resolution 
length. For  example, a cesium atom localized to within 
Ax = )]20 propagates for a time t oc 2m(Ax)Z/h = 8 gs, 
before the wave packet doubles in size. This time is much 
longer than the typical time scale associated with the 
acceleration of the atom, as was discussed above. 

Finally, note that the relation N m a  x = (A/g)2(2tc/7) 
depends on the position of the atom [due to 9 = g(r)]. 
Therefore, the condition N = Nm,x for the number of 
photons detected (which was assumed throughout the 
discussion) implies that the largest allowed signal can only 
be achieved if the position of the atom is already known. 
Although N = Nm,x can be realized experimentally by 
adjusting the incident field strength during the measure- 
ment, it is more realistic to assume that the system's 
excitation is constant and that the position of the atom is 
not known a-priori. Therefore (and to suppress spontan- 
eous emission), the driving-field strength must comply 
with the requirement that N _< Nmax for any position. 
Using N -- NoT, where No is the number of transmitted 
photons detected in the case the cavity is empty, together 
with (5) for the transmission coefficient T, it is straightfor- 
ward to calculate that No <_ 4A/7 gives a sufficient condi- 
tion to achieve N < Nmax. The equal-sign N = Nmax is 
valid for A/7 = 92/~c7. This condition determines the opti- 
mum detuning for a given value of the coupling constant 
9, i.e., a given position, For  example, A/7 = 50 for F = 106, 
2 = 1 ~tm, D = 1 cm and an atom halfway between a node 
and an antinode with ~ 2 =  1/2. With No = 200 and 
T = 0.5, one finds N =- NoT = 100 = Nm,x. Note that, for 
an atom at a different position (close to an antinode, for 
example, with T = 0.2), the same incident intensity (i.e., 
No = 200) gives N = 40, which is not too different from 
Nmax = 50. This justifies the assumption N oc Nmax for any 
position. The resolution length amounts to Ax oc )]20, as 
calculated above. 

To conclude, we found that the continuous observa- 
tion performed on the field enables a continuous position 
measurement, which makes possible to trace the atomic 
motion while the particle moves through the intracavity 
light field (and possibly oscillates in the potential wells 
produced by the standing wave for A = (Oa - (.o I > 0) with 
a resolution about one order of magnitude more accurate 
than the standard diffraction limit. Note, however, that 
unless some other position-measurement scheme is used 
in addition to the cavity field (e.g., a mechanical slit), only 
a relative localization is possible due to the periodicity of 
the standing wave. 

To mention an interesting application, the cavity sys- 
tem can be used to perform joint measurements on the 
position and momentum of a single quantum particle. 
When this traverses the resonator with a velocity which is 
large perpendicular to the cavity axis, then the phase shift 
observed on the optical field serves to determine the 
position while the far-field diffraction pattern can be used 
to measure the momentum uncertainty introduced by 
a measurement process. As has recently been pointed out 
by several authors [15 ], an initial minimum uncertainty 
wave packet with AxAp = h/2 broadens (e.g., diffracts) 
more rapidly due to the joint measurement, an effect 
which can be described by a modified uncertainty relation 
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AxAp > h (with the p roduc t  of s t a n d a r d  devia t ions  for the 
measu remen t  ou tcomes  at  least  twice as large as the lower  
b o u n d  impl ied  by  the usual  uncer ta in ty  principle).  
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