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Abstract. Two-level atoms bouncing in a stable gravita- 
tional cavity are considered, where the atomic mirror at the 
bottom of the bounces is an evanescent wave caused by an 
internally reflected intense Gaussian-mode laser beam. We 
consider the broadening mechanisms of the atoms from their 
initially tightly spaced position distribution, using a phe- 
nomenological semi-classical model, which includes spon- 
taneous emission. A fully quantum model, which neglects 
spontaneous emission, is derived, and the broadening of the 
atomic wave function in the quantum model is compared 
with the broadening of the atomic distribution in an anal- 
ogous classical Simulation where spontaneous emission is 
similarly neglected. We find that the broadening is correctly 
described by the classical simulations in the horizontal di- 
rections, while it significantly underestimates the broadening 
in the vertical direction. 

PACS: 32.80.Pj 

Progress in atomic optics has been rapid since the first 
demonstrations of atomic interference several years ago [ 1- 
4]. One current goal of atomic optics is to achieve a Fabry- 
Perot-type interferometer for atomic de Broglie waves [5- 
7]. As a first step towards the Fabry-Perot interferometer, 
a gravitational cavity has been considered. This involves 
bouncing atoms vertically on a curved mirror formed from 
an evanescent wave. The curvature of the mirror ensures 
that the classical trajectories close to the vertical axis are 
stable. Several experimental groups have reported successful 
demonstrations of atoms in this "trampoline" configuration 
[8-10]. The most successful experiment has been that re- 
cently reported by Aminoff et al. [10]. In their experiment, 
a cold cloud of cesium atoms was dropped onto the mirror 
and up to ten successive bounces were observed. 

In this paper, we present an analysis of atoms bounc- 
ing in such a gravitational cavity. We first present a semi- 
classical simulation where the momentum and position of the 
atom are well defined. The effects due to spontaneous emis- 
sion when the atom interacts with the evanescent wave are 
included using a Monte-Carlo calculation. We calculate the 
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spreading of the initial position distribution of the atoms due 
to the initial velocity distribution and the effects of sponta- 
neous emission. In particular, we observe the effect of state 
changes between the two dressed energy eigenstates. This 
broadening mechanism was observed experimentally and an- 
alyzed theoretically by Seifert et al. [11], for argon atoms 
reflecting off an evanescent wave at a glancing incidence. We 
further give a fully quantum analysis of the atom bouncing 
in the gravitational cavity by direct calculation of the time- 
dependent Schrtdinger equation. Spontaneous emission is 
neglected in the quantum calculations. The spreading of the 
atomic position distribution is calculated and is compared 
with analogous classical simulations where the spontaneous 
emissions are similarly neglected. We find that, while the 
classical simulations adequately describe the spreading in 
the x and y (horizontal) directions, it greatly underestimates 
the spreading in the z- (vertical) direction. 

1 Configuration 
/ 

The configuration we consider consists of an intense Gaussian- 
mode laser beam totally internally reflected off a prism of 
glass, with a concave spherical region having been polished 
into its top surface. This creates an evanescent wave extend- 
ing from the glass surface into the vacuum above it, and the 
electric field of this wave, if positively detuned with respect 
to the atomic-transition frequency, causes a quasi-potential 
which is used as the mirror for the bouncing atoms. Two- 
level atoms from a trap are dropped onto the evanescent 
wave, and bounce repeatedly inside the stable configuration 
(Fig. 1). Using a classical field, we can write the Hamiltonian 
as 

H = HA + V + H ~  , (1) 

where 
p2 

HA = ~ + h~obtb , (2) 

H c  = m g z  , (3) 

V = - d .  [btE*(R, t) + bE(R, t)] , (4) 

and HA is the Hamiltonian term referring to the energy of 
the atom, V refers to the interaction with the classical light 
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Fig. 1. Schematic diagram of the configuration for the stable gravitational 
cavity 

field, and HG is due to gravity. For the interaction term, d 
is the dipole moment  of  the atom, E is the electric field due 
to the laser, and R is the position operator. For the atomic 
term in the Hamiltonian, m is the mass of the atom, w0 is 
the atomic transition frequency, and b = 19)(el, where 19) 
and [e) refer to the ground and excited states of  the two 
level atom. In H e ,  9 is the gravitational constant, and z is 
the position operator in the z-direction. 

Converting to the interaction picture removes the sim- 
ple evolution due to H0 = liwLbtb, where col = COo + 6, co L 
being the frequency of the laser, and (5 the detuning from 
the atomic-transition frequency. Diagonalizing the Hamilto- 
nian, while excluding the kinetic-energy term, we find two 
dressed states [+} and [ - ) ,  

1+} = sin O(R)19) + cos O(R)Ie ) , (5) 

1-) = cos 8(R)Ig)  - sin O(R) le ) ,  (6) 

where 

h 
d - E ( R )  = ~ c o l ( R )  (7) 

and 

- 6  col (R) 
cos 2 0 ( R )  - a'2(R) ' sin 269(R) - O(R) ' (8) 

f2(R) = V/6 2 + col (R) 2- (9) 

We find the energy eigenfunctions of the I +) and I - )  states 
to be 

E+(R)  ~5 ~ ( R )  m 
" - ~ -  2 -t- 2 +-~9z. (10) 

If we were using a plane crystal, then the electric field due 
to the evanescent wave would have the form 

X Y e ik~x (11) E(R) = E0 exp -c~z - - , 

where wx, wu are the waist dimensions of the beam at the 
crystal in the zp-plane, a is the decay constant in the z- 
direction, E0 is the maximum electric field, and kx is the 
wave number in the z-direction, where the xz-plane is the 
plane of incidence of the laser. Due to the fact that we are 

using a concave crystal, with radius of curvature R, z must 
be replaced by z t, where 

z t 

1 2 z - ~--/~(x + p2) (12) 

for (x 2 + y2) << R2, where the approximation is exact if we 
replace the spherical curvature with a quadratic curvature. 
Hence, we can write 

E(R) = Eo exp - o l z  + a~ 

+ y2 eik.  ac 

!1 

and we obtain wl in the form 

0dl(a) = colrnax exp - a z  + 2R  co~ 

c~ 1 
• 

(13) 

(14) 

2 Semi-classical model 

For our semi-classical simulation, we make several approx- 
imations. First, we assume that the momentum and position 
of the atom are both well defined at all times. Second, we 
assume that the atom is traveling slowly enough that the 
adiabatic approximation is valid, so that, if the atom enters 
the evanescent wave in a 1+) state, it will stay in a 1+) state, 
feeling a repulsive force due to the positively detuned light 
field. If  a spontaneous emission occurs, we know the atom 
must be in the ground state, which we can write as a su- 
perposition of 1+) and 1-)  states. Our last assumption is to 
neglect the coherences between these [+) and I - )  states, by 
probabilistically choosing one of these states at each spon- 
taneous emission, and resolving the atom to be in either the 
1+) or I - )  state. 

In the region where the evanescent wave is negligible, 
the evolution of the atom is exactly the same as for Galilean 
kinematics, and in the evanescent wave, the force on the 
atom is F = -Yz(E±) ,  depending on whether the atom is in 
the I+) or 1-) state. We determine whether a spontaneous 
emission has occurred by evolving the atom over a short 
time dr, and then comparing the probability of  a sponta- 
neous emission in that time period with a random number 
between 0 and 1. If PeFdt is greater than the chosen ran- 
dom number, where Pe is the probability the atom is in the 
excited state, and F is the rate of  spontaneous emissions, 
then a spontaneous emission occurs. At the time when this 
happens, the atom gets a kick in momentum that can be de- 
termined from the momentum direction of the spontaneously 
emitted photon, which is chosen randomly, with weighting 

3 (1 +cos  20) dI2 (15) Pr(emission into dS'2) = 

for a circularly polarized light field, where 0 is the angle 
between the direction of the spontaneously emitted photon 
and the incident radiation, and 
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Pr(emission into dO) = 3/87r sin2p dO (16) 

for a linearly polarized light field, where p is the angle be- 
tween the polarization direction of the light field and the 
wave vector of the emitted light. These weightings have an 
overall negligible effect as compared to an unweighted dis- 
tribution, where the photon is spontaneously emitted with 
equal probability in all directions. 

We then resolve the atom to be in the [+) or t - )  state, 
as mentioned above, and continue the evolution. The only 
way an atom can be lost is if in the course of its evolution 
it reaches a point which is below the surface of the crystal. 

Our initial position dislxibution of ground-state atoms is 
chosen to be a spherically symmetric Gaussian, characterized 
by mean position r and standard deviation (r(r). The velocity 
distribution is a Maxwell-Boltzmann distribution character- 
ized by a temperature T. The Monte-Carlo type simulation 
proceeds by randomly choosing a position and a velocity 
according to the initial distributions, computing the evolu- 
tion of the atom for a time period approximately equivalent 
to ten bounces, whilst recording the position of the atom at 
regular time steps. This procedure is repeated many times to 
obtain the overall effect. 

We consider three effects that have a tendency to broaden 
the position distribution from its initial tightly spaced con- 
figuration. The first is simply the initial velocity distribution. 
If we neglect spontaneous emission, so that the atom starts 
and always remains in the [+) state, then two atoms inci- 
dent upon the evanescent wave with the same position and 
velocity will always rebound in precisely the same manner. 
The only spreading is due to the initial variance in the ve- 
locity distribution, and the fact that atoms fall on different 
positions of the spherically shaped crystal. Secondly, the mo- 
mentum kicks due to photons being spontaneously emitted 
results in a change of velocity of the atom and hence tends 
to spread the distribution. The dotted curve in Fig. 2 shows 
a possible resultant change in the position of an atom due 
to a single spontaneous emission, where the atom always 
remains in the [+) state. Lastly, the effects of a change in 
state of the atom can cause the position distribution for the 
atoms to be significantly broadened, and more of the atoms 
to be lost. If an atom undergoes a spontaneous emission, 
and is randomly chosen to undergo a state change to the J- )  
state, then it can be seen from (10) that the sign of the force 
the atom feels due to the interaction with the light field is 
reversed, and hence, instead of being repelled by the evanes- 
cent wave, it is attracted to regions of higher intensity. If no 
further spontaneous emissions occur, it will accelerate into 
the concave crystal and hence be lost from the simulation. If 
however, another spontaneous emission occurs, and the atom 
changes back to a [+) state, it may be re-ejected into the area 
above the evanescent wave, but significantly perturbed from 
its original path. If the potential changed while the atom 
was falling towards the crystal, it will be ejected from the 
evanescent wave with significantly more kinetic energy than 
it entered with, and if the potential changed while the atom 
was moving away from the crystal, then the atom would be 
significantly retarded or slowed down [11]. The solid curves 
in Fig. 2 plot a possible perturbation in the trajectory of 
an atom from its original path (dashed curve) for an atom 
undergoing a state change while both approaching (upper 
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Fig. 2. Plot of some possible trajectories for an atom doing one bounce on 
the evanescent wave, where no spontaneous emissions occur (dashed line), 
one spontaneous emission occurs (dotted line) and a state change to a I-) 
state both approaching (upper solid curve) and leaving (lower solid curve) 
the crystal occurs 

solid curve) and leaving (lower solid curve) the crystal. The 
oscillating curves in Fig. 3 show the number of atoms with 
z-positions between 2.3 and 3.3 mm above the crystal, for 
no spontaneous emission (dashed curve), spontaneous emis- 
sion with no state changes (dotted curve), and with both 
spontaneous emission and state changes (solid curve). The 
plots underneath show the number of atoms lost in the re- 
spective simulations. The major broadening effect is clearly 
due to the influence of spontaneous emission, causing both 
an increased spread in the distribution of the particles, and 
an increased loss of particles. The added effect of the state 
changes is only slight, due mainly to the fact that the number 
of state change events is much less than the number of spon- 
taneous emissions, especially if the atom has a small total 
energy compared to the detuning. Even if the atom does un- 
dergo a state change, the j - )  state has the excited state as its 
major component, so the probability of another spontaneous 
emission becomes very large, and the atom rapidly returns 
to the I+) state. Hence, if the state change does occur, the 
overall effect is only slight as it feels the attractive force for 
such a short time, and the resultant change in velocity in the 
z-direction is small. Clearly the magnitude of all of these 
broadening mechanisms depends largely on the parameters 
chosen, and in particular on the total energy of the atom, the 
detuning and the spontaneous emission rate. 

3 Quantum model 

If we neglect spontaneous emission, so that the atom always 
remains in the I+) state, but do not use the classical approxi- 
mation that the position and momentum of the atom are pre- 
cisely defined, we must then consider the Time-dependent 
Schr6dinger Equation (TDSE) 

H~P(r, t) = ih 0k~(r' t) (17) 

where the Hamiltonian H is defined by 
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Fig. 3. The oscillatory plots show the number of atoms with z-positions 
between 2.3 and 3.3 mm, where there is no spontaneous emission (dashed 
line), spontaneous emission with no state changes (dotted line) and includ- 
ing state changes (solid line). The bottom lines show the total number of 
atoms lost. Note that no atoms are lost for the case when there is no sponta- 
neous emission. Initial conditions were a spherically symmetric position dis- 
tribution characterized by a mean position r = 2.91 mm, a standard devia- 
tion a(r) = 0.4 mm, and a Maxwell-Boltzmann distribution in velocity char- 
acterized by a temperature T = 0.5 × 10-6K. Atomic parameters were those 
of cesium, having a spontaneous emission r a t e / "  = 3.1 × 107s -1 ,  a mass 
m / h  = 209.3 × 107kg/Js, with atomic transition frequency w0 = 852 nm. 
The evanescent wave was characterized by a characteristic distance 1/or 
where ~ = 4.76 × 106 m - l ,  waists in the x- and y-directions wx = 1 mm, 
w~ = 1.i ram, a detuning 6 = 1.9 × 109s - ] ,  and W[ma~ = 5.68 × 109s -1.  
The crystal has a radius of  curvature R = 2 cm, and the gravitational con- 
stant 9 = 9.8 m / s  2 

p2  

H = ~ + E÷(r) .  (18) 

The most immediate problem is the choice of the coordi- 
nate system. Wallis et al. [6], considered an infinite po- 
tential rather than the actual rapidly exponentially decay- 
ing potential caused by the evanescent wave. The quantized 
energy eigenstates were calculated using a transformation 
to parabolic coordinates, which causes both the solution of 
the time-independent Schr6dinger equation and the bound- 
ary conditions to be separable. If the exponentially decaying 
nature of the potential is included, then the boundary condi- 
tions are no longer separable and as such the transformation 
to parabolic coordinates is not useful. We note that if the 
Gaussian beam waists in the x- and y-directions (w= and 
Wy) are different, then, even using the parabolic coordinate 
system, the loss of rotational symmetry around the verti- 
cal axis causes the boundary conditions to be inseparable. 
This problem, however, could be solved by a simple scaling 
of the x- and y-coordinates. A more fundamental problem 
with the use of the parabolic coordinate system for the sta- 
ble gravitational cavity can be seen by considering the foci 
of the surfaces of constant potential, which a classical atom 
would be expected to just strike. Ignoring gravitational ef- 
fects, and assuming the evanescent wave has the same waist 
in both horizontal directions, the surfaces of constant energy 
are paraboloids described by 

(' 
z - f ( E )  = 2-R v~w 2 (x2 + y2) , (19) 

where 

f ( E )  = -~ \ 2  

In contrast to Wallis et al. [6], where the foci of the 
paraboloid reflecting surfaces at the bottom of the bounce 
remained in the same position for all energies, the foci of 
these paraboloids have z-value 

1 
z = f ( E )  + z ~  (21) 

R o~co~ 

which depends non-trivially on the energy. Even in this clas- 
sical situation then, the boundary conditions that apply for 
the motion of the atom cannot be separated using a trans- 
formation to parabolic coordinates, when the exponentially 
decaying nature of the potential is taken into account. We 
hence choose to retain a Cartesian coordinate system. 

3.1 Methodology 

In this paper, we wish to obtain the time-dependent be- 
haviour of a wave packet which occupies a narrow range 
of energies and which remains reasonably well confined in 
space throughout the motion. The well-known technique for 
solving the TDSE for systems such as the one we are consid- 
ering, is to solve the Time Independent SchrSdinger Equation 
(TISE) to obtain the quantized energy eigenstates Cn(r), and 
sum these together multiplied by a weighting Cn determined 
from the initial conditions, and a time-dependent phase fac- 
tor 

~P(r, t) = ~ CnCn(r)e -iE~t/h . (22) 
n 

Due to the nature of this problem, and in particular its in- 
trinsic time dependence, we have chosen to use a different 
technique, which allows us to obtain a simple physical in- 
terpretation in terms of wave function parts traveling in dif- 
ferent directions, and also avoids the need to calculate the 
modes. This subsection describes the method by consider- 
ing a general one dimensional case, demonstrates its equiv- 
alence with the previously mentioned technique involving 
energy eigenstates, and discusses the added complications 
that occur when we extend to three dimensions. 

We wish to solve the TDSE 

h 2 02k~ ihO~P 
2 m  Ox ~ + V(x)fft = O~ (23) 

for a potential V ( x )  which diverges to positive infinity as 
x ~ +o<z, and so has a countable number of energy eigen- 
states. We shall suppose that the energies of interest cor- 
respond to high-order modes of the trap so that the wave 
function undergoes many oscillations between the classical 
turning points and the particle remains largely confined to 
the region between these classical turning points. 

To introduce the notation used, we shall first describe 
the well-known "eigenstate" method of solving the TDSE. 
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Choosing two arbitrary points - o o  < xl < x2 <~ oo divides 
the x-axis into three regions, and in the central region xl < 
x < x2, solving the TISE gives two linearly independent 
solutions UE(X) and u*E(x) for each energy which, without 
loss of generality, can be chosen to be complex conjugates. 
Any general solution in this range can be written as a linear 
combination of these two solutions 

gtE(X) = a+( E)u +E(x) + a_ u~(x) . (24) 

For the ranges x < xl and x > x2, the solutions [bwE(x) 
and cvE(x), respectively] must satisfy the additional con- 
straint that they cannot diverge as x -4 -t-oo, and so we 
are restricted to one linearly independent solution, which is 
chosen to be real. Matching the values and derivatives of 
the solutions at Xl and x2, we find the condition 

( A(E) B(E) ~ ( a+(E) ", 
C(E) D(E) ] a_(E) ] = 0  (25) 

must be satisfied for an energy eigenstate, where A and B 
depend on the energy and are determined at the right-hand 
classical turning point 

A B* ' ' ---- =- --  UE(X2)VE(X2  ) (26) U E ( X 2 ) V E ( X 2 )  

with C and D similarly determined at the left. For energies 
Rm, where condition (25) is fulfilled, that is, when the de- 
terminant of the coefficient matrix is zero, and so a+(E) and 
a_ (E)  have non-trivial solutions, we can define the energy 
eigenstate as 

{ cmw,~(x) , x < xl 
qgm(X ) "= a+raUrn(X ) -t" a _ r r U m ( Z  ) , X 1 < Z < X 2 (27) 

b,~vm(X), x > x 2 . 

Using this set of eigenstates, we can write the general time- 
dependent solution at any time t as 

~](X, ~) = Z C m ~ p m ( X ) e - i E m t / h  ' (28) 
m 

where g'(x, 0) = ~ , ~  Cm¢,~(x) is the initial-position wave 
function. 

To describe the technique used in the following subsec- 
tions, we must first note that the solutions uE(x) and u*z(x ) 
can be chosen such that the phase of uE(x) is increasing in 
the positive x-direction, and that of u*E(x) is increasing in 
the negative x-direction. This is particularly clear when the 
WKB approximation is valid, and we can write 

[ i ;  ] ¢(x) = Ak(x)-I  exp 5:~ k(x)dx , (29) 

where 

k(x) = {2m[E - V(x)]}½ (30) 

We physically interpret uz(x) and u*E(x) as wave functions 
traveling to the right or the left direction, as when multiplied 
by a time-dependent phase factor e -lEt~h, the constant phase 
moves to the right or the left for uE(x) and u*E(x ), respec- 
tively. Further, as we only require the time-dependent solu- 
tion for positions between xl and x2, we can allow uE(x) 
to take any form outside these points, as long as they can be 
linearly superposed inside this range to give an arbitrary gen- 
eral eigenstate (not constricted by the boundary conditions). 

In particular, it allows us to choose them to be delta-function 
normalizable, so the expansion of the initial condition is sim- 
ple. Rather than solving for the modes of the entire system, 
the essence of the chosen technique lies in a consideration 
of the problem as two one-wall bouncing problems. Because 
only one boundary condition is considered at any point in 
the calculation, we retain a continuum of energies. Giv6n 
the initial wave packet is predominantly moving in only one 
direction (say to the right), we expand our initial conditions 
in terms of the us(x) only. Considering this as a one-wall 
reflection problem, we can determine the wave packet that 
will be reflected from the right-hand boundary. Similarly for 
this leftwards moving reflected wave packet, we consider it 
approaching the left wall as a one-wall reflection problem, 
and calculate the reflected wave packet, which is now travel- 
ing to the right. To solve the TDSE, we simply sum together 
all the infinite number of reflections from the sides. 

We will now show that this is equivalent to the previous 
energy-eigenstate technique. If we consider an initial con- 
dition k~(x, 0) which is predominantly moving towards the 
right, then we can neglect the overlap with the states moving 
to the left u*E(x ), and we write 

/7 gO(x, O) = W(E)UE(x)dE . (31) 

For the wave function traveling in its initial course to the 
right, we write the time-dependent solution as 

/7 gq (x, t) = W(E)uE(x)e-iEt/hdE . (32) 

We can interpret the A and B terms above as reflection 
coefficients, so if we have a wave us(x) "traveling" to the 
right, then the wave "traveling" to the left caused by the 
reflection of the first wave is simply [a_(E)/a+(E)lu*E(x), 
where a+(E) and a_ (E)  are constricted by the boundary 
condition that their superposition must match a decaying 
wave as x -+ +oo. We know A(E)a+(E)+B(E)a_(E) = O, 
so the reflection of a wave uE(x) "traveling" to the right is 
thus simply a wave -[A(E)/B(E)]u*E(x ) traveling to the 
left. After one bounce then, the wave function traveling to 
the left is 

t//2(X, i ) =  - [°°W(E)A!E~!u*E(x)e-iEt/hdE. (33) 
J0 

Calculating the sum of all the reflections will give 

A(E) . , ,] e_iEt/hd E X UE(X) -- ~ -~UEtX)  ] (34) 

We show in the Appendix that the term in the square brack- 
ets formally approaches a sum of delta functions in a distri- 
butional sense, with peaks at the eigenenergies. Intuitively, 
knowing that the modulus of A D / B C  must be unity, we 
can see that this sum will only diverge if A D / B C  actually 
equals one. Using the result from Appendix, 

oo (A(E)D(E)~ i  
y "  \ ~ 2  = ~ la+,~ 12e(E - E,-,-o) (35) 
{=0 ra 
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then between xl and x2, we can write 

fo E gSi(x, t) = W(E)  la+~ [2 5(E - Era) 
i=l 

x L IuE(x) _ -ff(-~ . . . ]  e_iEt/hd E 

= ~_W(E.~)Ia+,,~I 2 
7"17, 

X [?/,m(X) B ~ m  am~, ) ] A ( E m ) ° *  [x~]  e _ i E . ~ t / h  

= E W(E'Oa+,~ em(x)e-iE'~t/h " (36) 
m 

Note that, when the continuum description changed to a 
mode description, the subscripts E changed to m, so, for ex- 
ample, urn(x) is simply UE(X) evaluated at the m-th eigenen- 
ergy of the system. Given that the UE functions are orthogo- 
nal, (the Appendix uses the WKB approximation to specify 
a set of orthogonal UE functions) and the initial wave packet 
lies between xl and x2, 

fj '  W(Em) = ¢(x,  O)u~(x)dx , (37) 
1 

and further, if we assume as previously that the atomic wave 
function is initially traveling predominantly to the right, 

con = ¢(x,  0)¢~(z)dx 
1 

= Ib(x, O)[a:mu~(x) + a*_mUm(X)]dx 
1 

fj' a* ¢(x, O)um(z)dx +m 
l 

= a* W(E.~)  (38) +m 
By substituting (38) into (36), we find that the infinite sum 
of the reflected waves gives the same result for the time- 
dependent solution as the energy-eigenstate technique, as in 
(22). 

When we consider the three-dimensional case, the prob- 
lem becomes significantly more complicated. The major 
differences occur with the reflections, as unlike the one- 
dimensional case, where the reflection coefficients stayed 
constant, in three dimensions the coefficients are a function 
of the position of the bounce. Physically, this means the 
reflected wave depends on the position the atom bounced 
on the evanescent wave. The procedure we follow is pre- 
cisely the same as for one dimension. First, in Sect. 3.2, we 
solve the TISE ignoring the boundary conditions, between 
two surfaces, (which are the analogue of the points xl and 
z2 in the one-dimensional situation). We specifically choose 
these surfaces so that they are sufficiently far away from the 
classical turning points for the range of energies with which 
we are concerned, so that we can use a WKB-type approxi- 
mation throughout the region between the surfaces. Second, 
in Sect. 3.3, we calculate the reflection conditions imposed 
by the boundaries at both the top and the bottom of the 
bounce, which corresponds to finding the A,B,C and D co- 
efficients in the one-dimensional case. Finally, in Sect. 3.4, 
we combine all of the terms in the infinite sum, and calculate 

the time-dependent solution. In this section we introduce the 
time-dependent phase factor, and note that because of this, 
given the solution is narrowband in energy, only one of the 
traveling solutions, (i.e., the group of energies with solu- 
tions traveling to the left or the right after a given number 
of bounces) is going to contribute significantly. It is because 
of this simple interpretation of the stationary (i.e., constant 
energy, even though they may not satisfy the boundary con- 
ditions) wave functions as "traveling" that the technique used 
is so much more transparent than that using the energy eigen- 
states. 

3.2 Distinguishable directions 

In the regions which are sufficiently distant in the z-direction 
from the classical turning points, we can clearly distinguish 
between the atomic wave function traveling upwards and 
the one traveling downwards. In this region, we can use 
an approach analogous to Gaussian-wave optics, and hence 
write 

+ . - -  ~ ~ .,~--i f k ( z )dz  ¢(r)  = ez(x, y)e i f k(z)dz + q~z I.:~, glc , (39) 

where ¢~ are slowly varying in z, and k(z) is the de Broglie 
wave number of the atom in the z-direction, so if (x0, Y0) 
and (Kz, Ky) are the mean position and wave number of 
the wave function in the xy-plane for the wave function at 
position z, then 

h2 [k(z) 2 + K~ + K2y] + V(xo, Yo, z) = E. (40) 
2m 

As in Gaussian-wave propagation, using the paraxial approx- 
imation, we ignore the second z derivative of the slowly 
varying functions ¢~, and hence obtain a differential equa- 
tion 

2-}- 24-  0 ez .Ok ± 0 ez + ± 2ik + K2¢~  + Ky2¢z ± ox----r +l ¢z 
2m 

= h2 [V(x, y, z) - V(z0, Y0, z)] ez ~ . (41) 

In the region where the evanescent wave is negligible, the 
right-hand side evaluates to zero, so transforming to the 
Fourier domain (kx, ky) of (x, y), and solving 

= V 
x exp -t-i dz :~ k ' 

o 

where 

k(z) = V/Cz(zoo - z) , (43) 

2mZg 
c z -  h2 , (44) 

and zoo is the classical turning point at the top of the bounce. 
Due to the fact that the second factor in (42) does not de- 
pend on kx or ky, and the third is merely a phase factor, 
we conclude that while the atomic wave function is evolv- 
ing in gravity alone, the mean wave number in the x- and 
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y-directions, Ks  and K u, must remain constant. It is then 
possible to solve the integral in the third factor, as all of the 
terms in the numerator do not depend on z. The wave func- 
tion is hence a simple multiplication by a Gaussian in the 
momentum representation, or a convolution with a Gaussian 
in the position representation. If we assume the wave func- 
tion at position zo to be a Gaussian form which is written 
as 

= A~(z)Au(z)  ~ ( z )  ¢~z 

×exp[-C(z)(x C~z))2-O(z)(y OTz))2]  , 

(45) 

where each of the functions of z : As ,  A v, C, D, C2, D2, 
are assigned values at z0, then we find that the solution has 
exactly the same form as above, with the functions of z 
being 

A~,y(z) = Ax,y(zo) 
"1 

x exp / ± i  K$ 'y  (v/7  - zo - (46) 

4i 
C ( z ) - '  : C(zo)- '  :t: ~ ( v / ~ -  Zo - ~ )  , (47) 

4i 
D(z)  - I  = D(zo) - '  ± ~ z  (vlT~ - Zo - z~x/7-~Z7- z) , (48) 

C2(z) = C2(zo) , (49) 

D2(z) = D2(Zo) • (50) 

We note here the analogy with Gaussian-wave optics, and 
in particular propagation through a homogeneous medium, 
which would have given an equation of the form 

C(z)  -1 = C(Zo) -1 + i const (z - z0). (51) 

The square-root functions that we obtain for the bouncing 
atom, as opposed to the linear functions obtained in the ho- 
mogeneous medium, are directly the result of the dependence 
of the wave number k on z. 

In the region where the evanescent wave is non-negligible, 
the right-hand side does not evaluate to zero. If we assume 
the spread of the wave function is small compared to the 
characteristic length of the change of the Rabi frequency in 
the x- and y- directions, then for any position (x, y, z) where 
the wave function has non-negligible values, 

w~(r) - w~(xo, Yo, z) < <  5 2  + w~(xo, Vo, z ) ,  

x 2 _ Xo 2 << 

y2 '3 
- va << - -  

C~ 

we can write 

V(x ,  y, z) - V(xo,  yo, zo) 

1 

Oe 1 

1 

1 

= ~  + w ~ ( r ) -  6 2+w2o(z) + m g ( z - z o )  

4 7 / ~  + W2o(Z) + m g ( z -  Zo), 

(52) 

(53) 

(54) 

(55) 

(56) 

where 

~10(z) = ~l(x0, y0, z ) .  (57) 

Here, x0 and Y0 are functions of z. Further using (53) and 
(54), we obtain the right-hand side of (41) as 

2m 
- ~  [V(x, y, z) - V(xo, yo, z)] 

Gx(x  2 - x~) + Gy(y 2 - y~) , (58) 

where 

Gs,v = 2hd~52 2R w27,. " (59) 
I 

Equation (41) is analytically intractable in this region, and 
so we substitute the form of (45) into it, thus obtaining a 
set of six coupled differential equations, which we solve nu- 
merically, using a Runge-Kutta algorithm. Due to the sharp 
decrease in the amplitude of the Rabi frequency, and hence 
the quasi-potential in the z-direction, the numerical integra- 
tion can be completed in an extremely short time, and the 
atomic wave function in the x- and y-directions does not 
change significantly. 

3.3 Indistinguishable directions 

For z-positions sufficiently close to the classical turning 
points, at the top and the bottom of the bounce, it is impos- 
sible to distinguish the part of the wave function traveling 
upwards from that traveling downwards, and so we cannot 
use the Gaussian-optics approach considered in the previ- 
ous section. Rather, we must solve the entire Schr6dinger 
equation, identify the part of it with the wave traveling up 
and the part with the wave traveling down, and hence obtain 
the reflection coefficients. We shall consider the top and the 
bottom of the bounce in turn. 

3.3.1 The top of  the bounce. At the top of the bounce, the 
evanescent wave is negligible, and the potential felt by the 
atomic wave function is entirely due to gravity, 

V(r) = m g z .  (60) 

The Schr6dinger equation, 

h2 (o2  0% 
2m \ Ox 2 + ~ + Oz 2 ] = (E  - m9z)ff) (61) 

can be solved using separation of variables, giving complex 
exponential functions in the x- and y-directions, and Airy 
functions in the z-direction. The general solution can be 
written as 

# f • (r) = dkz dky eik~Xe ikyy 
OO O(3 

x [A(kx, ky)Ai(u) + B(k~,  ku)Bi(u)] , (62) 

where 
! 

u = C~ (z - zoo) , (63) 

1 E 
zoo = - k=  - ) (64) 
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When u is large and negative, we are once again sufficiently 
distant from the classical turning point to distinguish be- 
tween the waves traveling up or down, and we can approx- 
imate the Airy functions as 

(234) Ai(u) ~ v f  ~ ~ / ~  cos I~1 ~ - , (65) 

Bi(u) ~ ~ sin lul ~ - . (66) 

We can identify A i ( u ) +  iBi(u) as the wave traveling up- 
wards and Ai(u) - iBi(u) as the wave traveling downwards. 
The (kx, ky) values can be interpreted here as wave numbers 
in the x- and y-directions, and as such we can expect the 
coefficients A(kx, ky) and B(kz, ky) to have non-negligible 
values only for a range of kz and k v values centered around 
the mean wave numbers K~ and K v. Given this, for z suf- 
ficiently below the classical turning point, we can write, 

( A(k2)+A(k~))  (67) 
u= C} z -  z?)o + Cz ' 

3 V ' 7 ~ -  z [A (k~) + A (k~)] (68) 
2 

where 

l { 2m E 2 K 2) (69) 

k2 2 2 
: - ( 7 0 )  

and hence, the wave traveling upwards can be written as 

f ?  /?dkyeik~xeik'~YA+(kx, ky ) ~+(r) = dkx 
(2<3 OO 

x [Ai(u) + iBi(u)] (71) 

/7oo dk~ f_'°dkveik~xeik"vA+(kx'ku)oo v/-~l 
( 2 i  

x exp ISV'Cz (zoo - z) 3 

-iV/-~--~--Z [A(k:)+A(k~)] - 4 }  (72) 

We use the approximation that ~ - [  ~ ~ ,  where ~2 = 
_1 

C2 (z - zoo), as the function is slowly varying over the range 
of kx and ky values for which A+(kz, ky) is non-negligible. 
Note that the first term in the exponential in (72) corre- 
sponds exactly to the upwards traveling wave phase factor 

e i f  k(z)dz in (39), w i th the  possible discrepancy of a mul- 
tiplicative constant. Because of this correspondence, (72) 
gives a quantitative understanding of what until now has 
been a qualitative distinction between indistinguishable and 
distinguishable directions, or z-positions sufficiently close to 
the classical turning points. I f  we are at a position z where 
we can approximate the wave function as in (72), then we 
know for all positions z below this the Gaussian-wave optics 
approach is valid, as the first term in the exponential cor- 

responds to the e i f k(z)dz, and the remainder corresponds to 

¢+~(x, y) and is in comparison to the first term, slowly vary- 
ing in z. Hence, our criterion for the validity of  the Gaussian- 
wave optics approach is the same as for (68). For all values 
of  k~, ky, where A+(kz, ky) is non-negligible (physically, for 
all non-negligible momentum components of  the wave func- 
tion) and a position z, the Gaussian-wave optics approach is 
valid if 

<< Zoo - z. (73) 

We match this solution for the upwards-traveling wave with 
the solution obtained using the Gaussian-optics technique, 

/_-,o f__OOdkyeik~zeik,,yA+(kx, kv ) 

xexp~-iv/-~--~-Z[A(k2)+A(k2u)]-4}[. ~ (74) 

= Ax(z)Au(z) ,,/C(z)D(z) 

x e x p - C ( z ) ( x  C~z) ) 2 - D(z) (y - - -  

(75) 

and using the orthogonality of the complex exponentials, we 
solve for A+(kx, ku). For u large and positive, which corre- 
sponds to the positions above the classical turning point, the 
Airy functions can be approximated as 

Ai(u) ~ ~ ~ exp , (76) 

Bi(u) ~ - - -  exp . (77) 

We wish to superpose onto the solution for the wave travel- 
ing upwards a wave function which fulfills two conditions. 
First, sufficiently below the classical turning point it should 
only be traveling downwards, and second, when superposed 
with the portion of the wave function traveling up, it should 
cancel the exponentially increasing component of  the wave 
function above the classical turning point. It can be seen that 
this solution will have the same coefficients A+(kx, kv) as the 
upwards traveling wave, and have the form Ai(u) - iBi(u), 
for the z-section of the separated variables solution. 

f_~cdkx /?  eik~xeik~yA+(kz, kv) gi- (r) = dk v 
O O  

× [Ai(u) - iBi(u)] . (78) 

Finally, we can evaluate the part of the wave function travel- 
ing down at position z (where z is once again sufficiently far 
from the classical turning point) as a function of the wave- 
function part traveling up. If  we write both parts of the wave 
function in the form given in (45), with the functions of z 
referring to the wave traveling upwards characterized by the 
superscript + and referring to those traveling down with su- 
perscript - ,  then we obtain, 

m~'Y(z) = Z+~'Y(z)exp ( -2i v/~=~ - z K~'y + 4 , (79) 



8iv g- z 
U - ( z )  -1 = C + ( z )  - I  + (80) , 

8i /7 - z 
D - ( z )  -1 = D+(z) -1 + (81) , 

C2 (z) : C~(zo) , (82) 

D2 (z) = D~(zo) . (83) 

It is noted here that the method used is almost entirely 
analogous to the connection formulae used in the WKB- 
approximation scheme in one dimension, however, we have 
obtained the solution in three dimensions, by considering 
only the Airy function in the z-direction. 

02¢5 
- -  + 

Ox 2 

where 

G z -  

3.3.2 The bottom of  the bounce. While the analysis of the 
change in the wave function at the bottom of the bounce 
is conceptually similar to that at the top, mathematically 
and physically it is significantly more complex, due to the 
x and y dependence of the potential felt by the atom. We 
first evolve the wave function using Gaussian-wave optics to 
a z-position sufficiently close to the classical turning point 
that the potential can be expanded linearly in z, and suf- 
ficiently far away that the Gaussian-wave optics approach 
is still valid. Using a similar expansion to that used in (52- 
59), but also expanding linearly in the z-direction around the 
classical turning point (xo, Yo, zo), we obtain the Schr6dinger 
equation as 

02~ 02~ 

+ Oz--- f 

[G~(x 2 _ x 2) + Gy(y2 _ y2) _ Gz(z  - z0)] ~ ,  (84) 

m,.z2oo~ 2m29 

Gx~y - 
mW2o o~ 1 

col o = wl(Xo, Yo, Zo) • 

(85) 

(86) 

(87) 

Before we consider the general solution, we shall consider 
a simple approximation which is valid in many situations. 

If we assume that the wave function in the position 
representation does not change significantly in the x- and 
y-directions, for the evolution through the bottom of the 
bounce (i.e., from the initial z-position on the way down- 
wards to the same position on the way up) then this is equiv- 
alent to assuming that the second derivative of the wave 
function with respect to x- and y- can be neglected in the 
analysis. Hence, we obtain a simple second-order differential 
equation in z which has the Airy functions as its solution. 

02~ 
OZ 2 :- - G  z [z - zo(x , y)] ~ , (88) 

where 

1 [Cx(x2 x02) + zo(x, y) = Zo + ~ _ Cv(Y2 _ y2)] (89) 

and so ~5(r) = A(x ,  y)Ai(u)+  B(x ,  y)Bi(u), where u = 
1 

- C 2  [z - zo(x, y)]. Identifying ¢ - ( r )  = A - ( x ,  y)[Ai(u) - 
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iBi(u)] as the wave traveling down, approximating the Airy 
functions as above, equating the general solution with that 
obtained for the wave traveling downwards using the Gaussian- 
optics approach, we can solve for A - ( x ,  y). Using the same 
arguments as we used at the top of the bounce, we substitute 
A - ( x ,  y) into ~5+(r) = A - ( x ,  y)[Ai(u) + iBi(u)], and obtain 

C+(z) = C - ( z )  + 2i G ~ / z -  z° (90) 
' 

D+(z) = D - ( z )  + 2i Gvx/z- Zo 
, (91) 

C~(z)- C~(z)C-(z) 
C+(z ) , (92) 

D~(z) = D 2 ( z ) D - ( z )  
D+(z ) , (93) 

2i Gx ~/z  - z0 x~ 
A+(z) = A~-(z)exp ( v@-7 

C+(z )C~ ( z )  2 iff ) 
+ 4 , (94) 

A~(z) = A~-(z) exp (2i  Gv'/-~ - ZOy2 
\ 

D+(z)D~(z)2 4 )  (95) 
+ ,4 

where once again the superscript + refers to the part of the 
wave function traveling up, and - refers to that part travel- 
ing down. We note that, in this situation, we can show that 
the change of the mean wave number in the x-direction, 
for example, is linearly dependent on the x-position of the 
bounce 

K+~(z) = K ; ( z )  4Gzx/~ - z0 x0 • (96) 

This is precisely the sort of relation we would expect for a 
lossless system where a point mass is bouncing on a hard sur- 
face which has been polished into a concave surface where 
the x- and y-position of the surface depend quadratically on 
Z. 

For the general solution, we must once again use sep- 
aration of variables. Writing the atomic wave function as 

= X ( x ) Y ( y ) Z ( z ) ,  so that we obtain the separated differ- 
ential equations as 

- G,:x 2 X n ( x )  = ( - G x x  2 - a n )  Xn(x), (97) 

( _ <,y2)  y,,,(y)_- ( -c , ,y : , -  b,,,) Y,,,(y) (98) 
\ OY 2 _ 

oZznm(Z) 
OZ 2 - [ - -Gz(Z  -- ZO) + an + bm] Znm(Z)  . (99) 

These equations have solutions which are parabolic cylinder 
functions in the x- and y-directions, and Airy functions in 
the z-direction. The fact, however, that the solution must be 
normalizable, and cannot have diverging values as x- or y- 
approaches positive or negative infinity, imposes a physical 
restriction on the X ( x )  and Y(y )  functions that can be cho- 
sen, namely, those parabolic cylinder functions which are 
normalizable. These functions are the well-known energy 
eigenstates of the harmonic oscillator 
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Xn (x) = N(nX)e- ½ a~ z 2 Hn (ax x) ,  (100) 
I cx2 2 

Ym(Y) = N~)e 2 ~y Hm(ayy) , (101) 

Znm = AnmAi(unm) + BnmBi(unm) , (102) 

where 

N(p~,V)= ~/ c~x,u (103) 2Pp!v,'-~ 

andc~,y 4 Gv/-G~x,y, Unm -~-~[(z-&)+A(an)+A(b,~)],  
where Zo = Zo + (~ + b)/G~, 5 = an + A(an) and b =bm + 
A(bm). We can further write an = c~(2n + 1) - G~x 2 and 
bm = cflu(2m+ 1 ) - G v y  ~ due to the restriction on the possible 
eigenvalues of (97) and (98). Hn refers to the n-th Hermite 
polynomial, and n and m are non-negative integers. The 
general solution for the wave traveling downwards is 

o o  
X 1 0:2 X 2 1 2 2 

• - ( r ) =  E ( ) -7  ~ (Y) --~avY AnmN~ e Hn(o~zx)N~ e 
n~m---O 

xHr,(~uY)[Ai(unm) - iBi(unm)]. (104) 

Following the now familiar procedure, and using the Gauss 
transform of a Hermite polynomial [12], 

where 

l f f  ~ ( (x -y )2"~  (106) a~[F(y)] = ~ F(y)exp ~p- ) , 

and Mehler's formula [12] 

~ - 2 ~ H n ( x )  Hm(y) 
n=O 

1 (2xy(x  2 + y2)z2 "~ 
- ~ exp \ T2_-~T ) , (107) 

we obtain the solution for the part of the upcoming wave 
function as a function of the downwards-going wave func- 
tion. These solutions are rather bulky and are not reproduced 
here. 

We note that there are two intermediate approximations 
between these two solutions, which involve removing the 
constant momenta in the x- and y-directions by creating 
a new function ~,y(Z) = ~(r)e -iK~z-iK~y, and ignoring 
first all derivatives, and second~ only the second derivative 
in z. These approximations would be particularly useful in 
glancing-incidence problems off the evanescent wave. 

3.4 Time dependence 

To this point in our discussion of the quantum model, we 
have been obtaining stationary solutions in the region be- 
tween the classical turning points, and reflection coefficients 
at the boundaries. While we have described part of the wave 
function as traveling upwards, and the other part as traveling 
downwards, we cannot characterize the wave as "traveling" 
in any time-dependent sense. What is in fact meant by these 
statements is that, for the upwards traveling part of the wave 
function, the phase at some position z is greater than the 

phase at position z0, where z > zo, and similarly, for the 
part of the wave function traveling downwards, the phase 
is greater for lower z-positions. Following further the line 
of reasoning in Sect. 3.1, we shall construct an infinite sum 
of wave functions multiplied by their time-dependent phase 
functions. Our first assumption is that the solution is narrow- 
band, and only depends on a small range of energies. Math- 
ematically, this is assuming that F(u) has non-negligible 
values for only a small range of frequencies, which are all 
similar to the central frequency u0. Further, we assume that 
the x- and y-dependence of each of the stationary solutions 
is the same as the x- and y-dependence for the central fre- 
quency. The general stationary solution ¢ , ( r ) ,  can be written 
as a sum of Gaussian forms which represent the x- and y- 
dependence of the solution, 

¢(zn)(u) = A(~n)(u, z)A(n)(u, z) ~/C(n)(u' z)D(n)(u' z] 

x exp -C(n)(u, z) ( x  

- D(n)(u, z) (y  

2 

D~n)(b"z)) 2 ] 2  
, ( l O 8 )  

multiplied by phase factors e iI(n)(u,z) which correspond to 

the e +i f k(n)(u'z)dz factors in (39). The successive evolutions 
from classical turning point to classical turning point in both 
directions are referenced by the index n, and each of the 
functions of z is itself different for different n values. Noting 
the above approximation that the x- and if- dependence is 
the same as for the central frequency, we can write 

/? k~(r, t) E n F(t])eii(~)(u,Z)e-i2~rUtdu = ¢z (u0) . (109) 
n o o  

For a given time t, it is only values of the central frequency 
phase I(n)(u0, z), where I(n)(Uo, z) ~ 27ru0t, that will con- 
tribute significantly to the total wave function, as different 
values of the phase will cause the complex exponential func- 
tions in the integrand to be sufficiently oscillatory over the 
range of frequencies for which F(u) is non negligible that 
the total contribution will average to zero. As the phase is 
always increasing, only a single Gaussian form, (or two near 
the classical turning points) will contribute to the total wave 
function at any one time. 

3.4.1 Distinguishable directions. If initially we assume that 
only one Gaussian form is contributing, which is equivalent 
to saying that the upwards and downwards traveling waves 
are distinguishable, we write 

F ~(r,  t) = ¢~n)(u0) F(tj)eiI(n)(u'Z)e-i27rutdu , (110) 
O(3 

where, which Gaussian form ¢(zn)(u0) is chosen, depends on 
if the corresponding phase [(n)(uo, z) has a value for some 
z between the classical turning points equal to 27ru0t. In 
the following, for simplicity of notation, we shall remove 
the ¢~(uo), where the remainder of the general solution is 
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described by f (z ,  t). We expand I(~)(v, z) to second order 
in a Taylor series around uo, 

I('~)(v, z )  = I(n)(vo,  z )  + a (n ) ( z ) ( v  - uo) 

+ b('~)(z)(v - Vo) 2 . (111) 
Writing the initial distribution in time at some position Zo 
due to a single transition through that z-position (i.e., not 
including any of the transitions through that position due to 
the bounces), as 

f(zo, t) = re(t) exp [iI(n)(Vo, Zo) - i2rrUot] . (112) 

We can use (110) evaluated at z = zo to find the relationship 
between F(v)  and re(t), and substitute this relation back into 
(110) to find the general time-dependent solution: 

f ( z , t ) = ( m * q )  t+ ~ J 

x exp I)I(n)(Uo, zo) -i27ruot] , (113) 

where 

i rr ( i7r2~2 "~ 
q(t) = ikb(n)(z ) exp \ Ab(~)(z) j (114) 

and Aa(n)(z) = a(~)(z)-  a(~)(zo), Ab(n)(z) = b(~)(z)- 
b(n)(zo). If we assume the initial distribution in time m(t) 
is Gaussian, we can solve for f (z ,  t) analytically, obtaining 
a general solution of the form 

[ ( f ( z , t ) = A  v/B(~)(z) exp B°°(z)  t 
2 ) 

+iAI(n)(uo, z) - i2rcuot] , (115) 

where 

Ab(~)(z) (116) B(n)(z) -1 = B ( n ) ( z o )  - l  - I - i  7r ~ , 

B(2~)(z) = B(~)(zo) Aa(~)(z) , (I 17) 
7F 

AI('~)(u0, z) = I('~)(uo, z) - I(n)(uo, Zo) and A is a normal- 
ization constant. When the evanescent wave is negligible, 
I(uo, Zo), and hence a(n)(z) and b(n)(z) can be solved ana- 
lytically, we obtain 

BO~)(z) -~ = Bo~)(zo)  -~ 

±i2 (  1 1 ) (118) 
g k(~(z) k(~)(zo) ' 

B~n)(z) = B~)(zo) q: 2li [k('~)(z) - k('~)(zo)]. (119) 
mg 

When the evanescent wave is not negligible, I('~)(v, z) cannot 
be solved analytically, but the result can be obtained by a 
simple numerical integration. 

d. 
B(n)(z) -1 = B(')(zo) -I  ± i W o k(n)(z) 3 ' (120) 

B(~)(z ) = (,~) 2m ~ z  dz (121) 
B 2 (Zo) q : T -  o k ( ~ ) ( z )  

3°4.2 Indistinguishable directions. We shall treat the top of 
the bounce, and note that the bottom of the bounce is exactly 
analogous. Around the region of the classical turning point 
at the top of the bounce, we know from (71) and (78) that 
we can write the stationary solution as 

/_,o i_~dkyeik~xeik~yA+(kx. @(r) = dkx , ky) 
o o  o o  

x {[Ai(u) + iBi(u)] + [Ai(u) - iBi(u)]) , (122) 

and at a position z sufficiently below the classical turning 
point, we can write 

@(r) = i -  ~oo dkx iSdkyeik<':ZeikvyA+(kx'kY)co v @ ~  

X exp ( i~  'u[~ - 4 )  

+ I_ 
× exp -1 ul 2 + , (123) 

3 

where lul ~ is given in (68), and we identify the first term 
with the wave traveling upwards, and the second term with 
the wave traveling downwards. Both, the second term in the 

3 

approximation of lu l  ~ and the ~r/4 phase shift were taken 
into account in the x- and y-dependence of the atom, and 
we have assumed that this dependence is the same for all 
non-negligible frequencies. We can hence write the general 
time-dependent solution as 

~(r, t) = C{zn)(uo) i _ ~  F(v)eiS~<(~,Z)e-i2~tdv 

+ ¢z(n+l)(Uo) F(u)eiS(~+%"Z)e-i2~vtdu , (124) 
- - O O  

where 

2 3 
I(~)(,, z) = ~ X/z~ (zoo - z)~ , (125) 

2 C 3 .  I(~+l)(v, z) = - ~  ~ (zoo - z)~ (126) 

¢(n)(Uo) refers to the Gaussian form of the wave traveling up- 
wards, and ~,(n+l)/.. ,, ~z tvo) to that traveling downwards. We once 
again neglect these terms for notational simplicity, writing 
the wave function part due to the upwards-going wave as 

f(zo, t) = re(t)exp [iI(~)(Uo, zo) - i21ruot] . (127) 

Repeating the procedure of the previous section, by expand- 
ing I(~,~+l)(u, z) in a Taylor series to second order around 
~0, finding the relation between re(t) and F(v)  using the 
first term in (t24), and then using this relation to solve for 
the wave function traveling downwards in terms of re(t), we 
find 

4m 
f -  (z, t) = (m . q) [t - -ff-cTk(z)] 

x exp [iI(~)(vo, zo) - i27ruot] , (128) 

where 



3.5 Discussion 

f ' h 2 C z k ( n ) ( z )  / .  ] z 2 V z k ( n ) ( z )  ,2~ 
q(t) = V - t  ~ exp ~t ~ t ) . (129) 

Defining re(t)  as a Gaussian form allows us to solve for the 
wave function traveling down analytically. Using the same 
general form as given in (115), with + superscripts denoting 
the upward (or n) evolution, and - superscripts denoting 
the downward (or n + 1) evolution 

.4 1 
B - ( z )  -1 = B+(z)  -1 + t (130) 

g k ( z )  ' 

B ~ ( z )  = B'~(z) + 2h k ( z ) .  (131) 
m g  

t 

0.05 011 0.15 Using the quantum model, the information that we obtain 
over and above the classical model is about the spreading 
of the atomic wave function in space and time. It can be 
seen from Figs. 4 and 5 that the mean motion in the stable 
gravitational cavity is exactly similar to that, obtained for 
a classical model. The major difference in the formulation 
of the theory is that, while the classical model has time as 
the independent variable, in the quantum model the vertical 
position z and the bounce number n are independent. In the 
quantum model, we cannot obtain information on the evo- 
lution of the wave function near the classical turning points, 
without summing together a large number of slightly differ- 
ent Airy functions. This is why the top and bottom of the 
bounces in Fig. 4 has been chopped. Ignoring such irrele- 
vant details as this, however, we note that the mean position 
of the wave function evolves similarly to a lossless system 
where a mass is bouncing on a hard concave, quadratically 
shaped surface. The height to which it bounces depends on 
how fast the atom is traveling in the x- and y-directions, so 
that energy is conserved and, as it bounces up and down in 
the z-direction (Fig. 4), it oscillates from side to side in the 
x- and y-directions (Fig. 5). (Note that the y-direction plots 
are omitted as they are similar to those in the x-direction). In- 
between each of the interactions with the evanescent wave 
at the bottom of the bounce, the mean momentum of the 
wave function remains constant. 

The spread in the x-position (Fig. 6) breathes in and out 
at twice the frequency of the oscillations of the mean x -  
position, such that it is broadest at the center of the mirror, 
and narrowest at the edges. This is somewhat analogous to a 
Gaussian wave function oscillating in a quadratic potential. 
We note that the oscillations of the standard deviation are not 
caused by any intrinsical quantum feature of the system, but 
is rather due to a classical-type phenomenon. To show this, 
we turned off the spontaneous emission in our semi-classical 
program, and started the system with distributions in position 
and velocity the same as for the probabilistic distributions of 
the atomic wave function. We obtain precisely the same plot 
for the spread in the classical distribution as we did using 
the TDSE. 

The last feature of  interest with respect to the standard 
deviation in the x-direction, is the fact that the maximum 
spread always occurs precisely at a bounce, while the min- 
imum, except for rare coincidental situations, almost never 
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Fig. 4, Plot of the z-position of the atomic wave function vs the mean t ime 
it travels through that position. Parameters used are the same as for the 
classical simulation except for Wlma~ = 10 X 109s -1 ,  cox = Wy = 1 mm and 

the spontaneous emission rate F = 0, as no spontaneous emissions occur. 
Initial conditions for the atomic wave function are B = 2.5 x 109, t32 = 0, 
C = D = 2 .22x  lO11, C2 = D2 = 2 . 1 x  l O - 3 - i 5 . 4  x lO-6,  zo = 2 .75mm , 
and (No~h) = (m/h)9zoo,  where zoo = 3 ram. The following Figs. 5 -8  were 
obtained using the same parameters 
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Fig, 5, Plot of mean x-position of the atomic wave function through par- 
ticular z-positions vs the mean t ime it travels through those positions 

does. This feature can be seen in the acute angular nature of  
the maxima and the curved minima. To understand this, we 
consider the imaginary part of the complex variable C ( z )  -1 . 
It can be seen in both (47) and (80) that, while evolving 
in gravity, this parameter is always increasing, while the 
real part remains constant. Noting that the standard devia- 
tion in the z-direction is cr z = 1 / ~ ,  we see that if 
this parameter Im[C(z)  - I  ] is negative, the standard devia- 
tion in the z-direction will be decreasing with time, while if 
Im[C(z)  -1 ] is positive, then it shall be increasing. The only 
time when this parameter can become negative is when it 
interacts with the evanescent wave, and it follows that this 
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Fig. 6. Plot of the standard deviation in the x-distribution of the atomic 
wave function at particular z-positions vs the mean time the wave function 
travels through those positions 
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Fig. 7. Plot of the standard deviation in the z-distribution vs time, where 
we have assumed that the acceleration of the wave function in the time it 
takes to go past any particular point is negligible 

is similarly the only time when the spread in the x-direction 
can change from increasing to decreasing, that is, the spread 
is maximum. We see also that the curved minima occur sim- 
ilarly to the waist in a laser, as the parameter Im[C(z) -1] 
increases gradually from negative, through zero, to positive, 
causing Re[C(z)] to gradually obtain its maximum value. 
Further, if we use the simplest approximation at the bottom 
of the bounce, where the spread does not change over the 
period of the bounce (the complicated expressions give the 
same physical results with more mathematical complexity), 
and observe the behavior of the parameter Im[C(z)- l ] ,  

Im[C+(z) -1 ] 

I m [ C -  (z)] + 

= - Re[C-(z)]  2 + f I m [ C - ( z ) ]  + 2c~ ~'F=~-~° "1,2 ' (132) 
[ J 

we see that the maximum change in the parameter occurs 
when Re[C-(z)]  is small, or ~rx is large. This has the simple 
physical interpretation that the more spread the wave func- 
tion is, the more it feels the curvature of the mirror, and 
hence, it will have more of a tendency to reduce its spread 
in the x-direction. So there are two competing physical pro- 
cesses. First there is the natural tendency of the atomic wave 
function to disperse, and second, there are the bounces at the 
evanescent-wave mirror, which either decrease the rapidity 
of the spreading, change the spreading to contracting, or in- 
crease the rapidity of the contracting. 

As z is the independent variable, it is not possible to 
write the distribution in z as a Gaussian form. Physically, 
this is attributed to the fact that we are writing the dis- 
tribution in ~ as a Gaussian form, and hence acceleration 
will cause a distortion in the z-distribution from a Gaussian 
form. If  we assume the acceleration of the wave packet over 
the period of time t it goes past a z-position z0 is small 
[B(z) ~ B(zo )  around z0 and expand .B2(z ) linearly in z 
around z0], we can write the atomic wave function as a 
Gaussian in z, and hence, plot the spread in the z-position 

vs time (Fig. 7). This plot is dominated by the dependence 
on velocity. As the atom bounces, it is changing its veloc- 
ity in the z-direction, and for a given spread in time, if the 
atom is traveling faster, it must have a broader spread in 
the z-direction. We can see in Fig. 7, however, that as well 
as this spreading due to velocity changes, causing the rapid 
oscillations, there is an overall tendency to spread out the 
atom, as the maximum spread, which occurs just before the 
atom enters and just after it leaves the evanescent wave, is 
itself increasing with time. To observe this feature, it is more 
convenient to observe the spread in time. 

To obtain Fig. 8, we chose many z-positions and recorded 
the mean and the standard deviation of the time that the 
atomic wave function travels through that z-position for each 
successive bounce, and plotted the latter vs the former. We 
see that during the bounces, and at the bottom of the bounce 
in the evanescent wave, the spreading in time is relatively 
small; however, a large increase of the spread in time occurs 
at the top of the bounce. This result is consistent with our ap- 
proximations, as when we used the slowly varying envelope 
(paraxial) approximation, in the regions between the clas- 
sical turning points, the spreading was small, while at the 
top of the bounce, when the spreading was large, we had 
included all the terms and, in particular, the second-order 
derivative with respect to z. The features of Fig. 8 can be 
explained via the results of quadratic dispersion theory. We 
are multiplying the frequency spectrum by two factors that 
depend on u. The first is a complex exponential e ia(u-u°) 
which simply shifts the distribution in time. The second is 
the exponential of a complex quadratic term e ib(u-u°)2. For 
frequencies u where b(u - u0) 2 >> 1, the exponential will 
be oscillating rapidly in frequency space, while around u0 
it will be oscillating slowly. Hence, as b increases, it will 
narrow the frequency spectrum around u0, with the conse- 
quence that the distribution in time will be broadened. This 
is a standard result in quadratic dispersion theory. In the 
regions where the direction is distinguishable, 
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Fig. 8. Plot of the standard deviation in the time distribution of the atomic 
wave function at particular z-positions vs the mean time the wave function 
travels through those positions 

1 02I(nl(u, z) u=uu 
b ( z ) -  2 Ou 2 

27r2m2 /,z dz 

= + T  Jz0 k(n~(z) 3 
(133) 

and at the top of the bounce 

871-2/TZ 2 1 
b- (z )  = b+(z) + - -  (134) 

Cz h2 k(z) 

with the bottom of the bounce being similar, b(z) is always 
increasing with time, so the frequency spectrum is always 
narrowing, and the distribution in time broadening. Because 
k(z) approaches zero near the classical turning points, we 
find the maximum spreading in these regions; however the 
spreading is much greater at the top of the bounce than 
at the bottom. Mathematically, the reason for this is that 
]G~[ >> ]Cz], the gradient of the potential at the classical 
turning points. Physically, we see that it depends on the 
amount of time the atomic wave function spends in regions 
where it has a small wave number. For small gradients, such 
as occur at the top of the bounce, there is only a small 
force on the atom, and hence, a relatively large period of 
time is spent where the atom has a small wave number, 
and the consequent spreading is large. For large gradients, 
as occur in the evanescent wave, the force on the atom is 
correspondingly large, the atom spends only a short period 
of time with a small wave number, and the spreading is 
relatively small. The limiting case in this situation is where 
the gradient is infinite, due to a potential wall, and there is 
no consequent spreading of the atom. 

Comparing the spreading in time with that for the clas- 
sical simulation, as we did for the standard deviation in the 
z-distribution, there are significant discrepancies. The solid 
plot in Fig. 9 shows the classical simulation of the spread 
in time vs mean time, for a group of particles with the same 
distribution as for the quantum simulation. Similarly to the 
quantum plot, the overall tendency is for the distribution to 
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Fig. 9. Plot of the standard deviation in the time distribution of the classical 
statistical atomic distribution through particular z-positions vs the mean 
time the atomic distribution traveled through those positions. Here, the 
initial velocity and position distribution was chosen to correspond exactly 
to the probability distribution for the atomic wave function in the quantum 
simulation, assuming that the acceleration in the time period that the wave 
function went past the initial z-position zo = 2.75 mm was negligible. The 
solid plot is for a classical numerical simulation in three dimensions, while 
the dotted plot shows the analytical result for a simplified one-dimensional 
potential 

broaden in time, however the magnitude of the spreading is 
significantly less. Perhaps the most striking feature of the 
plot is that the distribution contracts in time during its free 
evolution between the classical turning points. Initially, the 
atomic distribution broadens in free evolution; however, af- 
ter a few bounces the spreading settles down to a pattern of 
increasing at the top of the bounce, and decreasing during 
the free evolution, with a small change at the evanescent 
potential. We understand the contraction of the standard de- 
viation in time as being due to the sorting influence of the 
potential. As the atoms approach the upper classical turn- 
ing point, those that have the greatest energies will travel 
to the highest points, while those with lowest energies will 
not travel as far, and hence, we obtain a consequent sorting, 
with the atoms that have the lowest energies, and hence, 
will achieve the lowest velocities at the lowest z-positions, 
and those atoms that will achieve relatively high velocities 
are at large z-positions. As the atoms accelerate from these 
positions down under gravity, those with large energies will 
catch up to those with small energies, and hence, we obtain 
a reduction in the spread in time. The potential gradient acts 
as an energy "chooser" so that atoms with high energies are 
spatially separated from those with low energies. The overall 
effect is still a spreading in time, but as the atomic distribu- 
tion continues its evolution, the standard deviation in time 
is reduced. 

To verify this interpretation, we considered a one-dimen- 
sional situation where the atomicdistribution was initially in 
an uncorrelated Gaussian of energy and time. The potential 
of the system was 
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V(z) = { mgz z > 0 
ec z_<0  ' (135) 

where the independent variables were the bounce number n 
and the vertical position z. Using this idealized version of 
the stable gravitational cavity, we found the time t that an 
atom passed through a position z on bounce number n, as 
a function of its initial energy and time at position z0 and 
bounce number n = 0, and hence, analytically determined 
the mean and standard deviation of the time distribution of 
the atom through the positions and bounce numbers. This 
standard deviation vs the mean of the time distribution is 
shown in the dotted plot of Fig. 9, and is seen to be ex- 
tremely similar to the upper plot, with the exception of the 
small discrepancies due to the non-infinite gradient of the 
quasi-potential caused by the evanescent wave. Certainly, 
the qualitative character of the plots, with the atomic distri- 
bution initially spreading, and then being gradually sorted 
by the gradient is precisely the same, and we can conclude 
that in the three-dimensional case, it is similarly the "sort- 
ing" of the gradient that is causing the contraction of the 
distribution of the atoms. 

We have found that in the x- and y-directions, both 
the mean and the standard deviation of the Gaussian wave 
packet can be analyzed correctly as a statistical distribution 
of atoms; however, in the z-direction, while the mean behav- 
ior is similar, the spreading in the quantum situation is much 
greater than that found from the statistical classical distribu- 
tion, and hence, representing the distribution of a number of 
bouncing atoms by a classical distribution, where only the 
mean position and momentum for a great number of atoms 
is determined, will not adequately represent the actual nature 
of the spreading in the z-direction. 

Appendix 

Proof of (35) 

in this Appendix, we wish to show the infinite sum in (34) 
can be evaluated as a sum of delta functions, peaked at 
the eigenenergies Era, and[ to determine the coefficients for 
each of these energies. Initially, it will be useful to prove 
the following result. 

(ei0(E))n : ~ d,~6(E-  Era), (A.I) 
n=O m 

where 

O(E,O = 2mTr, (A.2) 
27r 

dra - - -  (A.3) 
O' (Em)  ' 

and we have assumed O'(E,=) =/O. In a distributional sense, 
as N --~ oo, the partial sum 

v'N (ei°(E)) n = e i°(E)N/2 sin [O(E)N] (A.4) 
eiO(E)/2 sin [0(E)] 

n=13 

tends to zero except when sin [0(E)] = 0. Expanding to first 
order around one of these values, Em gives 

O(E) ,.~ 2rrm + O'(Em)(E -- Era). (A.5) 

The partial sum for values of E around Ern is then 

N 

Z ( ei°(E))n= 
n=0 

eiO'(Em)(Z-Em)N/2 sin [O'(Era)(E - Era)N] (A.6) 

eiO'(Em)(Z-Em)/2 sin [O'(E,O(E - Era)] ' 

which tends to a delta function, [27r/O'(Era)]6(E - Era), as 
N ~ o c .  

As IAD/BCI = 1, we identify A D / B C  = e i°, and we 
can write the infinite sum in (34) as a sum of delta functions, 
which have peaks at energies where A D / B C  = 1, which is 
precisely the same condition as for the eigenenergies. So 

~' \B(E)C(E)] (A(E)D(E)~i O'-~ra)2~ 6 E : Z ( -Era)' (A.7) 
/--o m 

where Em are the eigenenergies, and 

0 (A(E)D(E)~  (A.8) 0'(E) : ~-~arg \ ~ ]  . 

Having shown that the initial infinite sum can be written 
as a sum of delta functions peaked at the eigenenergies, we 
now need only determine the coefficients of the delta func- 
tions for each of these eigenenergies. To do this, we assume 
the range of energies with which we are concerned, and the 
potential is of a form that we can use the WKB approx- 
imation, and hence, obtain an analytic form for the wave 
functions between the two points xl and x2 chosen suffi- 
ciently far away from the range of classical turning points, 
and between them for the given energy spread. Neglecting 
for the moment the boundary conditions, we can write the 
WKB solutions as 

exp [±~ f o  k(()d(] O~WKB(X; E) = A 

= Aexp [+i~(x;  E)] 
v%(x)l ' (A.9) 

with k(x) as defined in (30), and the general solution as a 
linear superposition of the WKB solutions 

gtE(x ) = a+( E)O~VKB(X; E) + a_( E)OwKB(X; E) 

= 2Re [a+¢~VKB(X; E)] (A. 10) 

Note that a+ = a*,  as the general solution is real. 
If we consider one-sided solutions, which satisfy the 

boundary conditions at only the right-hand side, thus re- 
taining a continuum of energy eigenstates, the connection 
formula for the right-hand barrier requires the phase of the 
energy eigenstate at xb(E ) (the classical turning point for 
energy E at the right-hand barrier) to be ~r/4. fiE(x) should 
thus be of the form cos[gi(x; E)  - gi(xb; E)  + rr/4]. We note 
here that, while the amplitude of the WKB solution diverges 
at the classical turning point, the phase does not and can 
be evaluated to Xb. We know then that the argument of a+ 
for an eigenstate satisfying the boundary conditions at the 
right-hand barrier only is 

7r 
arg(a+) = - - ~(Xb; E) .  (A.11) 

4 
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Since a+ = a*_, and as we have already shown in Sect. 3.1, 
(A/B) = -(a_/a+), we obtain 

a r g ( A )  = 7 r -  arg(a+) 

71" 
= ~ + 2~5(xb; E ) .  (A.12) 

Using a similar argument for solutions which only satisfy the 
boundary conditions at the left barrier, which has a classical 
turning point xa(E), we get 

arg = ~ - 2~5(x~; E ) .  (A. 13) 

This gives a physical interpretation of arg(AD/BC) as the 
total change in phase in a round trip between the classical 
turning points. We also rederive the quantization condition 
used in the "old" quantum theory, as the condition for an 
energy eigenstate, arg(AD/BC) = 2mTr implies that 

7I" 
~)(Xb; E) - qS(xa; E)  : mTc - - (A. 14) 

2 
Finally then, we obtain 

0 {A(E)D(E)) 
O'(E) = ~-~arg \ ~  

OE [ax.(E) V - ~ - V  - V(x)dx 

= / ~ ( m )  2~-~ 1 dx .  (A.15) 
J~,~(E) , /E  V(x) 

Note that the terms which contain the derivatives of xa(E) 
and xb(E) vanish due to these being classical turning points. 

We wish to relate O'(E,O to the other parameters in the 
system and, in particular, to la+(E~)t 2, which we determine 
by normalization of the energy eigenmodes. To do this, we 
need to choose the basis set of U~E(X) modes. This set of 
modes is also needed to expand our initial conditions, so we 
require a set of UE functions, defined on the entire x-axis, 
which are proportional to the WKB solutions in their region 
of validity xl < x < x2, and further are delta-function 
normalizable: 

[~o [U~E,(X)] * [%~E2 (x)] = ~ ( m , -  m2). (A.16) 

A convenient choice of the u~(x) is to make them solutions 
of a modified potential, which matches the real potential in 
the region x~ < x < x2. We choose the modified potential 
as 

VNEW(X):{0 W(x) otherwiseXl<X<X2 (1.17) 
which has the unnormalized energy eigenstates 

± x CNzw( , E)  = / ei~(~b; E ) [.,  exp ] 
¢~WKB(X, E)  , x~ < x < x2 (A.18) 

exp i ( x - x 2 )  , x > x 2 .  

Noting that the complex exponential part dominates the nor- 
malization, and exploiting the well-known relation 

i f  exp[i(k - = 27r6(k - , (A.19) k')x]dx k') 
o o  

where, in this case k = ~ / h  2, we find 

f ?  exp [ i ( ~ -  2m/'Z~E-7"~ X] dx 
V --g-) 

= 27rf(E - E ' ) ~ m  2-E (A.20) 

Using this relation gives the delta-function normalized en- 
ergy eigenstates of the modified potential as 

± 
= CNEw(X, E) . (A.21) 

To determine la+m 12, where a±,~ = a:t:(Em) and Em is an 
eigenenergy of the original potential, we need to normalize 
the mode functions, which, between xl and x2, have the 
form 

¢,~(x) = a+.lu+(x) + a_,~ u~(x) .  (A.22) 

Our first approximation is that, due to the fact that we are 
using systems for which the WKB approximation is valid, 
the contribution is small outside the classical turning points, 
and as (xl, x2) can be brought sufficiently close to (xa, Xb), 
we write 

/5 1 : ICm(X)12dx 
cx )  

fxb(Z) la+mu+ (x) + a-mu~(x)l zdx " 
Jz~(E) 

(A.23) 

(A.24) 

As the u~(x) are highly oscillatory for the range of energies 
we are considering, the overlap f[uim(x)]2dx is small, so we 
can write 

xb(E) 

1 ~ 2 axe(E) la+m 121u~(x)[2dx , (A.25) 

hence, we obtain la+,, 12 as 

(A.26) la+"12 = V~(m 1 
Jx,(m ~ d z  

27r 
- - -  (A.27) 

0'(Era) 

So we have finally obtained the result 

°° (A(E)D(E) ) i  
Z B(E)C(E) : ~ la+..126(E - Era). (A.28) 
i=0 m 

This may be a more general relation, and not depend upon 
the WKB approximations which have been used to obtain 
it, but the general result has not been proved. 
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