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Abstract. We present new ways of trapping a neutral 
atom with static electric and magnetic fields. We discuss 
the interaction of a neutral atom with the magnetic field of 
a current carrying wire and the electric field of a charged 
wire. Atoms can be trapped by the 1/r magnetic field of 
a current-carrying wire in a two-dimensional trap. The 
atoms move in Kepler-like orbits around the wire and 
angular momentum prevents them from being absorbed 
at the wire. Trapping was demonstrated in an experiment 
by guiding atoms along a 1 m long current-carrying wire. 
Stable traps using the interaction of a polarizable atom 
with the electric field of a charged wire alone are not 
possible because of the 1/r 2 form of the interaction poten- 
tial. Nevertheless, we show that one can build a micro- 
scopic trap with a combination of a magnetic field gener- 
ated by a current in a straight wire and the static electric 
field generated by a concentric charged ring which pro- 
vides the longitudinal confinement. In all of these traps, 
the neutral atoms are trapped in a region of maximal field, 
in their high-field seeking state. 

PACS: 52.55.Lf; 32.80.Pj; 83.75.Bc 

In the last decades, electromagnetic traps for ions have 
been developed and used for a large number of pioneering 
experiments [1]. Trapping neutral atoms is more difficult, 
since their interactions with magnetic and electric fields 
are much weaker. The interaction potentials of neutral 
atoms with static fields are: Vmag = --/~'B due to the 
magnetic moment of the atom in a magnetic field, and 
Vpo~ = -~E2/2  for the interaction stemming from the 
electric polarizability of the atom in an electric field. 
Realizable traps are very shallow, generally less than 1 K deep. 

Recently, the development of new techniques to cool 
and slow neutral atoms to low velocities [2.1 has made 
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trapping of neutral particles in static magnetic fields pos- 
sible [3]. Neutrons [4], hydrogen [5-1, and alkali atoms 
[6] have been trapped in magnetic storage rings, bottles, 
and traps. In all of these experiments, the particles were 
trapped in a local minimum of the magnetic field, in a so 
called "low-field seeking state". In these traps, the mag- 
netic moment is anti-parallel to the magnetic field, i.e., 
Vmag > 0; therefore, the atoms are trapped in an exited 
state of the particle-field system. The stored potential 
energy, which is always larger than the trap depth, can be 
released by bipolar spin relaxation to the ground state in 
binary collisions [7]. The particle will leave the trap. 

The ideal magnetic trap would have a magnetic-field 
maximum that captures atoms in a "high-field seeking 
state". This high-field seeking state has the magnetic mo- 
ment parallel to the magnetic field, i.e., Vmag < 0; hence, 
the particle-field system is in its ground state. In these 
traps, energy conservation prohibits the two-body spin- 
flip process, and the trap will be more stable at high 
densities. Traps based on the interaction of a neutral atom 
with the electric field (Vpol = - ~E2/2) are always "high- 
field seeker" traps. 

However, the classical Earnshaw theorem forbids the 
creation of a local maximum of the magnetic field in free 
space [8]. It was shown that the same holds true for any 
combination of electric, magnetic, and gravitational fields 
[9]. 

The above restrictions can be circumvented if the 
source of the field lies inside the trapping region. A max- 
imum of the magnetic field can be found in a region of 
non-zero current which can be created by a current-carry- 
ing wire [10]. A maximum of the electric field and, there- 
fore, a minimum of the interaction potential between the 
field and a polarizable atom can be found in a region of 
non-zero charge density. Such a geometry can be achieved 
by a charged wire or a well-defined beam of charged 
particles. In these field configurations, the atoms would be 
trapped in the lowest particle-field state. 

To sustain a stable trap, the atom has to be kept away 
from the wire, because atoms generally are absorbed at 
surfaces. This can be achieved by the potential barrier 
created by the angular momentum L. In cylindrical 
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geometry, the centripetal potential Vl = L2/2Mr 2 can 
compensate for all regular potentials which diverge less 
rapidly than 1"-2 as r ~ 0. 

In the remainder of the paper, we will focus on various 
possibilities of trapping a neutral atom with a wire. In 
Sect. 1, we discuss the interaction between a neutral atom 
possessing a magnetic moment and a current-carrying 
wire. We will show that atoms can orbit the wire in 
Kepler-like orbits in the regime of classical physics. We 
also present a novel experiment which demonstrates two- 
dimensional trapping of an atom on a wire. In Sect. 2, we 
will investigate the interaction of a charged wire with 
a polarizable atom. Even though trapping with a static 
electric potential alone is impossible, the electric interac- 
tion can be used in combination with the magnetic inter- 
action to form a three-dimensional trap for neutral atoms, 
as shown in Sect. 3. 

1 A t o m  and a current 

Consider a neutral atom with mass M and magnetic 
moment # placed at distance r from the center of a straight 
wire with current I flowing through it (Fig. 1). The mag- 
netic field at the distance r from the wire is given by (in 
Gaussian units): 

B(r) = 2I×~,.1. (1) 
c p 

er is the unit vector in the radial direction. The atom 
interacts with the magnetic field of the current-carrying 
wire by the potential V = - p .  B. The Hamiltonian for 
the motion of the atom in the magnetic field of a cur- 
rent-carrying wire is then given by: 

p 2  
H -  p 'B(r) .  (2) 

2M 

If the wire is straight, the motion along the wire is free and 
the problem reduces to two dimensions. From now on, we 
will focus only on the transverse motion. Assuming the 
current flows in the z-direction, the magnetic interaction 
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Fig. 1. Schematic of the interaction of a neutral  a tom possessing 
magnetic  m om e n t  !a with the magnetic  field B of a wire carrying 
a current  I 

in H can be written as: 

21 
Vmag (r) . . . .  # e~o, (3) 

c v  

where &~ = - ex sin q~ + ~y cos ~p is the unit vector in the 
q0 direction around the wire. For  a magnetic moment 
p parallel to the magnetic field, the interaction potential 
V = - p. B is attractive towards the wire, and binding is 
possible. 

1.1 Classical motion 

Let us first consider the classical motion of the atom 
around the wire. The dynamics of a point particle with 
a magnetic moment in an arbitrary magnetic field is given 
by the equations of motion: 

d 2 
M~f~x = - V [ p ' B ( x ) ] ,  (4a) 

h d  
a "t  p = p x B(x).  (4b) 

Y 

Here, x is the position of the atom and M its mass and 
7 = gePB is the gyro magnetic ratio of the atom. Equation 
(4a) describes the spatial part of the motion. It is complic- 
ated by the fact that the potential depends on the dot 
product of the two vectors p and B. The force, therefore, 
depends on the relative orientation of the magnetic mo- 
ment and the magnetic field. The motion of the mag- 
netic-molnent orientation is given by (4b). In general, 

will precess around the direction of B. 

1.1.1 Adiabatic approximation. Moving in a classical tra- 
jectory around the wire, the atom will encounter a mag- 
netic field changing in direction and strength. If the mag- 
netic field varies slow enough, i.e., the precession of the 
magnetic moment is faster than the effective rotation of 
the magnetic field, one can apply an adiabatic approxima- 
tion with the following familiar results [11, 12]. 

One can split the motion of the atom with the mag- 
netic moment in two parts. One is a fast motion governing 
the spin precession of the magnetic moment, i.e., the 
internal degrees of freedom. The other is a slow motion of 
the atom around the wire, i.e., the external degrees of 
freedom. Employing the adiabatic approximation the ex- 
ternal motion can be characterized by #li = p-B/IB[, the 
component of p parallel to the magnetic field. For a par- 
ticle with spin F, we have to treat this interaction, the spin 
motion, quantum mechanically. #1 is then given by 
#11 = 7mr, where me is the projection of F on the mag- 
netic-field direction. #11 and my are adiabatic invariants, 
i.e., they are not changed by the slow motion [13]. 

The effective Hamiltonian that governs the external 
motion of the particle, the slow degrees of freedom, can be 
found using the full Born-Oppenheimer approximation. It 
includes a geometric vector potential Aadiaba t and a scalar 
potential @aaiaba, induced by the spatial variation of the 
magnetic-field direction b = B/IBI [11, 12]. For  the sys- 
tem of a neutral atom moving in the magnetic field of 



a current-carrying wire we find: 

(P - A a d i a b a t )  2 2 I 
Hef f = -t- {[[ladiaba t - -  - - - -  ymf, (5) 

2M c r 

where the vector potential Aadiaba t and the scalar potential 
(I)adiaba t a r e  given by: 

m F  ^ 
fl~adiabat = - -  e~o 

h 2 [ F ( F + I ) - m ~ ]  1 
~ } a d i a b a t  = 4M r ~"  (6) 

The vector potential Aadiaba t itself does not result in a clas- 
sical force, but will be important in the quantum-mechan- 
ical treatment. The scalar potential Oaa~b~t gives a small 
repulsive 1/r 2 interaction, repelling the classical motion 
from regions of non-adiabaticity. In this adiabatic approx- 
imation, we can separate (4a) governing the slow center- 
of-mass motion from (4b) governing the fast internal 
motion. The classical equations of motion in cylindrical 
coordinates can thus be simplified to: 

d 2 d [ - L ( L  2 h2[F(F + 1 ) -  m 2 ] )  

M ~ r -  dr k r 2 ' \ 2 M  + 4M 

d L 
dt ~o - M r  z . 

The resulting interaction potential governing the slow 
evolution is Vmag = -- 7lB(r)tmF, which is a scalar. This 
potential is Coulomb-like (l/r) [14] and, therefore, the 
atoms will circle the wire in Kepler-like orbits. The addi- 
tional vector potential A has no effect on the classical 
motion, but will contribute a geometric phase which 
will be discussed in the quantum-mechanical treatment. 
The scalar potential • has the form of 1/r 2 and its effect 
will be an additional rotation of the orbit 
&p = - 2rtEF(F + 1) - m2]/4I 2, where hl = L is the or- 
bital angular momentum [15]. The orbits will not be 
closed. However, for 1 > F, the contribution of • is very 
small and we can further simplify the adiabatic approxi- 
mation by neglecting this term. 

i71 

The adiabatic approximation holds when the Larmor 
precession col = ? / h  B of the magnetic moment is much 
faster than the apparent rotation of the magnetic field cob 
in the rest frame of the moving atom (coL >> coB). To test 
the range of parameters where the motion is adiabatic, we 
use a self-consistency argument. We assume that the 
motion is adiabatic and calculate the ratio coL~co B for 
orbits around the wire. Assuming a circular orbit for 
simplicity, the rotation of the magnetic-field direction is 
identical to the orbit frequency coo: 

L 1 412 7 2 t n 2  

(Do - -  m r 2 - -  c ~ L ~ '  (8) 

where L is the angular momentum of the orbit, whereas 
the Larmor precession frequency col is given by: 

Y 412 Y 2rJ~f 
COL = ~ e - -  ca  hL  2 . (9) 

For an atom in a circular orbit around a current-carrying 
wire, one finds from (8) and (9) that the ratio (ZOC/(dJ B 

is independent of mass M or current I: COL/COR= 
coL/COo = L/hmF = 1~mr. Therefore, for 1 > 1, the adiabatic 
approximation is valid and the atom will move in Kep- 
ler-like orbits. This classical motion, in the adiabatic ap- 
proximation, is a nice example of "microscopic celestial 
mechanics" [16]. 

The basic relations between current, orbit radius, 
binding energy, and orbit frequency for circular orbits of 
a neutral atom with mass number A around a current- 
carrying wire are summarized in Table 1. 

We can also determine when the adiabatic approxima- 
tion is valid by integrating the full set of (4) to find the 
classical trajectories. In Fig. 2, we show trajectories cal- 
culated with initial conditions that would give circular 
orbits in the adiabatic approximation but with different 
degrees of adiabaticity given by the ratio coL/COo. One can 
easily see that for growing coL/coo, the orbits get more and 
more circular. For coL/coO = 16, the trajectory is very close 
to a circular orbit which would be expected in the 
adiabatic approximation. 

1.2 Quantum motion 

Let us now consider the quantum motion of a neutral 
atom with spin F in the magnetic field of a current I. The 

Table 1. Basic relations for trapping 
a neutral atom with mass number A and 
magnetic moment ,q#B in circular orbits 
around a current-carrying wire. The or- 
bits are determined by two of the follow- 
ing parameters: current I, binding energy 
Eb, orbit radius r, and orbital angular 
momentum quantum number l 

Current Binding energy Radius l COOrbl t 

AI2# 2 l 2 
I - 1 . 6 0 3 - -  3.611x10 -6 ! 

12 A/d 

I 5.788 x 10 -6 #~/ r 526.237x/A#Ir 
F 

I E b 5 . 7 8 8 x 1 0  6 ~  b 1.2660i /  1 
~/ - -  E b 

0.036112 l z 
Ar# 0.00209 ~ r I 

4.870 x 10 lsA#I 
13 

3.342x 10 v / # I  
x/At 3 

_ E  2 
2.400x 1015 / - -~ b  

X/ A#I 

6 . 3 5 x  1 0 1 2 ( / )  2 
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coL= 1.5m o 
I I ~ l t 

O) L = 4 O] 0 

0 
0 

% = 2 0  o 
I I I I I 

co L = 16 co o C' 
Fig. 2. Classical calculation of trajectories of a magnetic moment in 
the field of a current-carrying wire. The starting conditions were 
such that the adiabatic orbits would be circular. The trajectories are 
shown for various degrees of adiabaticity as given by the ratios 
COL/COO" For COL/CO o = 16, the orbit is, on the scale of the drawing. 
indistinguishable from a circular Kepler orbit expected in the 
adiabatic limit 

transverse motion is described by the Schr6dinger equa- 
tion (in cylindrical coordinates): 

1 d 2 \  h 2 d 2 1 d ~ ~ ) W ( P '  q)) 

2 v  

,. go_/F. ~o~(p, ~0) = E~(p ,  qo). (10) 
- Y2rcr 

One can easily verify that Jz = - i ( d / d q ) ) +  Fz, the z- 
component of the total angular momentum J, commutes 
with H and, therefore, is a conserved quantity. 

The quantum problem of a spin 1/2 neutron in the 
field of a current-carrying wire was first discussed by 
Vladimirskii [10]. Exact solution for a spin 1/2 problem 
were obtained by Voronin [17] and Bliimel and Dietrich 
[18]. They obtain a hydrogen-like energy spectrum with 
energy eigenvalues: 

1 
e .  = - Eo (n + v + ½)2, (11) 

where v is the quantum number characterizing Jz. 
v =  _+½, + 3 ,  _+_~... is a half-integer for a spin 1/2 

neutron. To our knowledge, there is no analytic solution 
to the Schr6dinger equation for higher spins. Neverthe- 
less, numerical solutions have been obtained for spin 1 
[18] and higher 1-19]. 

1.2.1 Adiabatic approximation. For trapping an atom 
around a current-carrying wire with a finite radius rw > 0, 
only those states with the wave function completely out- 
side the wire are interesting. These are the high angu- 
lar-momentum states where the adiabatic approximation 
can be applied. 

In this case (l >> 1) the atom-current systems look like 
a two-dimensional hydrogen atom in Rydberg states. The 
wire resembles the "nucleus" and the atom now takes the 
place of the "electron". In the adiabatic approximation, we 
can determine the energy levels by a semiclassical Bohr- 
Sommerfeld quantization condition, as given by [11, 20]. 

~o dX = 2zch(n + ½) + hog . . . .  
r b i t  

(12) 

where q~geom = ~AadiabatdX=2gmF is the geometric 
phase, caused by the parallel transport of the magnetic 
moment /~ = ymv along the orbit [11]. This additional 
geometric phase in the quantization condition (12) results 
in a shift of the quantum-mechanical energy levels when 
compared to an electron in a two-dimensional Coulomb 
potential. The difference can be seen by comparing the 
exact solutions for a spin 1/2 neutron in a magnetic field of 
a linear current [17, 18]: E, = - Eo/n 2 to the solution for 
the two-dimensional hydrogen atom with a spin 1/2 elec- 
tron [21]" E, = - Eo/(n - ½)2 (n is an integer in both 
cases). The energy levels differ by a half-integer quantum 
number, which corresponds exactly to the additional 
phase Ogeom = 27Z½ in (12). 

1.3 Typical parameters for trapping an atom with a current 

Let us now consider the typical parameter range for which 
trapping of a neutral atom on a current-carrying wire is 
possible. We will focus on two different regimes: classical 
motion of the atom in a Kepler-like orbit, and a micro- 
scopic quantum trap in which the total system of the atom 
and the wire resembles an artificial Rydberg atom in two 
dimensions. Using the basic relations summarized in 
Table 1, we calculate typical parameters for trapping neu- 
tral atoms on a current-carrying wire in each regime. The 

Table 2. Typical parameters for alkali 
atoms trapped on a current-carrying wire. 
The upper part of the table gives trapping 
parameters in the classical regime which is 
easily reachable with atomic-beam tech- 
nique. In the second part of the table, we 
give parameters for microscropic traps re- 
sembling a two-dimensional Rydberg 
atom in its circular states 

Atom Current Radius Binding 1 COo Velocity 
[gm] energy [eV] [cm/s] 

Li 2A 100 1.210 v 19690 17863 178 
Na 2A 100 1.210- 7 35700 9855 99 
Rb 2A 100 1.210- 7 69000 5096 51 
Cs 2A 100 1.210- 7 85000 4113 41 

Li 2.58 mA 2 7.410- 9 100 226800 45.0 
Na 0.79 mA 2 2.3 10 -9 100 69030 14.0 
Rb 0.21 mA 2 0.6 10 .9 100 18462 3.7 
Cs 0.14 mA 2 0.4  10 - 9  100 12028 1.4 
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values are summarized for various favorite atoms in 
Table 2. 

Our classical example assumes a macroscopic wire of 
100 gm diameter that can support currents of 2 A. Typical 
orbits have r ~ 200 txm, and the binding energy is on the 
order of 10 - 7 eV. A sodium atom in a mr = 2 state in such 
an orbit has an atomic velocity of approximately 1 m/s, 
and its orbital angular momentum is on the order of 
l ~ 3.5 x 104. 

In the quantum-mechanical example of atoms in circu- 
lar Rydberg states around the wire, we need to use a me- 
soscopic wire with a 1 gm diameter which can support 
a current on the order of mA. A typical orbit with 
r = 2 Ixm and l ~ 100 for a Na atom requires a current of 
about 800 gA. The binding energy of the sodium atom in 
a mr -- 2 state is then on the order of 2.3 x 10 -9 eV. This 
binding energy has to be compared with the limit for laser 
cooling of neutral atoms using polarization-gradient cool- 
ing, which is on the order of 10 times the recoil energy 
Eree = h2k2/2M (Ere° = 1 x 10- lO eV for a Na atom) [2]. 
In this regime, the current-carrying wire can be used as 
a wave guide for matter waves. 

1.4 Guiding experiment 

Here, we will describe a simple experiment in which a neu- 
tral atom is trapped on a current-carrying wire [22]. In 
the two-dimensional geometry of a straight wire, only the 
transverse motion is important for a trapping experiment 
and the longitudinal velocity and the length of the wire 
only limit the time the atom spends in the trap. 

To demonstrate the two-dimensional trapping in the 
classical region, the transverse motion has to fall within 
the limits given in Table 2, i.e., typical transverse energies 
of 10-7 eV or transverse velocities on the order of 1 m/s. 
In a well-collimated atomic beam, with a divergence 

2 cm 50 cm 50 cm 3 cm 
Naoven  ] ~ l ~  _ .~!~ ~ ! _  _! 

I"'J [~ ~ d lhot wire 
I I  idetect°r 

diaphragm 1 bender diaphragm 2 

/ /  .............. / /  
Fig.  3. Basic schematic of the experimental setup. Na atoms are 
emitted from the oven. The two beam-defining diaphragms hold the 
wire. The 'wire bender' and the movable detector are shown. The 
inserts below show in detail the relative geometric arrangement 
between the apertures and the moveable beam shutter used to bend 
the wire, and how the wire is mounted 

< t0 -3  rad, the transverse motion is well within the re- 
gime required for trapping in the classical regime (l >> 1). 

The experiments were performed using an effusive 
sodium atomic beam with mean velocity of approximately 
600 m/s emitted from a 1 mm diameter nozzle of a 100 °C 
oven. Good  collimation was achieved by two apertures 
spaced 1 m apart (Fig. 3). These apertures were of special 
shape and also held the 1 m long, 1501.tm diameter, 
W/wire meant to guide the atoms. The apertures were 
mounted on one long metal rod to guarantee dimensional 
stability. The whole setup, mounted in the vacuum cham- 
ber, was carefully aligned in respect to the source nozzle 
and the detector with the help of a HeNe-laser beam. 

In order to demonstrate the binding of atoms to the 
wire, a small bend was introduced in the wire 
( <  10 -3 rad) to guide atoms along the wire around 
a beam stop. This was accomplished by a moveable beam 
blocker halfway between the two collimating apertures. 
The edge of the beam blocker was parallel to the bottom 
of the first aperture and perpendicular to the slit of the 
second collimator (Fig. 3). This beam blocker could be 
moved into the beam from above, with an accuracy of 
better than 0.05 ram. Together with the geometry of the 
first aperture, it blocked the direct beam in a well-defined 
manner, giving a sharp shadow on the slit of the second 
aperture. In addition, the blocker bends the wire. 

Single sodium atoms were detected using a Re hot- 
wire detector [231 mounted on a translation stage 3 cm 
behind the second aperture. By moving the 250 ~tm dia- 
meter hot wire along the slit, the beam profile along the 
bending direction was measured. For  typical operating 
conditions, the background was on the order of 10 cps 
with better than a millisecond time resolution. 

In the experiment, the position of the wire was first 
determined by looking as its shadow behind the slit with 
the beam blocker out of the beam. This defined the refer- 
ence point of our measurements. As the beam blocker was 
moved into the beam, its position relative to the wire was 
determined by its shadow. When the shadow of the beam 
blocker and the shadow of the wire overlap, the wire starts 
to bend. The bending angle of the wire could be deter- 
mined by the position of the shadow of the beam blocker 
to better than 0.1 mrad. The bending angle could also be 
determined from reading the micrometer that translates 
the bender. Both determinations of the bending angle 
were in good agreement with each other. 

A 150 l~m diameter W wire can support more than 2A 
current in vacuum. However, applying such a large con- 
stant current heats the wire significantly causing a large 
thermal expansion, up to a few mm. To compensate for 
this expansion, the second aperture (it holds the far end of 
the wire, as shown in Fig. 3) was mounted on a translation 
stage. A small tension was applied to the wire with 
a spring to keep it taut. 

Even though the wire was kept taut by a spring, the 
resistive heating of the wire or other mechanical effects on 
the wire, like magnetic forces, could alter the geometry in 
the setup. To avoid any systematic changes in the atom 
flux caused by different alignments with and without the 
current, and to measure trapping unambiguously, the 
atom flux was measured alternately with and without 
current through the wire. Uniform conditions were 
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achieved by rapidly alternating periods with the current 
on and with the current off. This was done on a time scale 
faster than the time constant for the resistive heating or 
the damping of any mechanical oscillation of the wire, 
which was on the order of a second. 

In a measurement cycle, atoms were counted for time 
/7 . . . .  t (typically 100 ms) with the current off. Then, the 
current was switched on and a delay of two, (typically 
10 ms) was allowed before atoms were counted again for 
t . . . .  ~. The current was then switched off again and the 
time twaJt was allowed before starting the counting cycle 
again. A typical switching time of approximately 100 ms 
was long compared to the flight time of the atoms along 
the wire (2 ms) and the detector response time (typically 
1 ms). To check for any time-dependent effects on a time 
scale on the order of the switching time or shorter, experi- 
ments were performed over a wide range (one order of 
magnitude) of parameters t . . . .  and tw~t. The experimental 
results were found to be independent of the times t . . . .  t and 
/ ) w a i t  used in the measurement cycle. 

The current through the wire was driven by 
a HP6825A current power supply and amplifier with 
a 10 kHz band width and supplied up to 2A constant 
current. It amplified a square-wave signal generated by 
the computer controlling the experiment using a digital- 
to-analog converter. This way, a perfect synchronization 
of the counting and the current according to the above- 
described measurement cycle was achieved. The current 
was measured as a voltage drop across a 1 ~ resistor, 
using both a fast voltage meter and an oscilloscope. Both 
current measurements agreed with each other to much 
better than 10%. 

Since other magnetic fields would influence the mag- 
netic trapping of the atoms on the current-carrying wire, 
all the parts of the experiment were made out of non- 
magnetic materials: stainless steel, aluminum, and copper. 
The typical magnetic field generated by 1A at a radius of 
200 ~tm is 10 G, which is much larger than the earth- 
magnetic field (typically < 0.5 G). No special care was 
taken to compensate stray fields. 

The experiments were performed with various currents 
up to 2.0A, for various bends of the wire up to 1.5 mrad. 
Figure 4 shows a typical experimental run for the detector 
placed on axis behind the wire. One trace shows the count 
rate of atoms with the current on and one with the current 
off. To demonstrate the effect of the current on trapping, 
the current was switched off completely for the time be- 
tween 3.5 and 7 s. 

The beam profile behind the wire was determined from 
the detector scans along the exit slit. The data are shown 
in the left-hand graphs in Fig. 5. The thin line with the 
symbols is the difference of Na  atoms counted with the 
current on n(i) and the current off n(0). The peak around 
the wire position (thin vertical line at position 0) is clear 
evidence of guiding the atoms along the wire and around 
the bend. The thick dark line shows the fraction of the 
direct beam reaching the detector. This is the shadow of 
the bender on the detector plane. One clearly sees the edge 
moving to increasingly negative positions as the wire is 
bent. 

Monte-Carlo calculations of atoms guided in the mag- 
netic field of the wire were performed using classical dy- 

150 

lOO 

50 

0 
0 2 4 6 8 10 

time (s) 

Fig. 4. Raw data from an experiment with 1 A current and a bend of 
0.5 mrad. Measurements were done alternatively with the current on 
for t00 ms (o) and the current off for 100 ms (<~). Between 3.5 and 
7.2 s, the current was switched off completely and both count rates 
agree within the experimental error 

Experiment 

~100 • ~ b n ' ' d ' J 

~;~ 50 0 . 2 5 ~ ~ ,  . - ' m r a d  i ~  ~ i  

~ 0 , , : ,  ~ ,- 
6 0 '  ' , '  

~-. 0.5 mrad > ~ ~ 2  

1.0 mrad 
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-0.4 0 0.4 -0.4 0 0.4 
d e t e c t o r  p o s i t i o n  ( m m )  

E 
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& 

Fig. 5. Na atoms being guided along a 1 m long, 150 #m diameter, 
W wire (at detector position 0 indicated by the vertical line). Experi- 
mental data (lef0 and Monte-Carlo simulations (right) are shown 
for a 1.00 mrad bend in the wire. The data are given as the difference 
n(i) n(O), where n(i) is the number of atoms reaching the detector 
with current on and n(0) is the number of atoms reaching the 
detector with current off. The different symbols are for 1.0 A (~), 
1.5 A(×) and 2.0 A (A) current through the wire. The thick line 
shows the fraction of the direct beam reaching the detector. The 
steep slope shows the shadow cast by the bender 

namics in the adiabatic approximation (l >> 1). The a tom 
enters the first collimating aperture at a random position 
with a random velocity chosen from the velocity distribu- 
tion of atoms coming from the effusive source. The inter- 
nal state of the a tom is randomly selected as well as its 
magnetic quantum number  defining the attractive or re- 
pulsive nature of the potential V = - jiB. The atoms then 
move in Kepler orbits around the wire. The motion along 
the wire is free up to the bender. At the bend, we 
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assume a sudden kink in the wire and in the potential. The 
motion of an atom after the bend is calculated from a new 
set of orbit parameters obtained by requiring the velocity 
vector to be the same before and after the bend. From 
here, they move in new orbits up to the exit slit. Atoms 
that hit the wire, the bender, or collimators are regarded 
as absorbed. The Monte-Carlo calculations for the exact 
parameters (current, wire bend) used in the experiment are 
shown in the right-hand graphs of Fig. 5. The only free 
parameter is the normalization. The calculations show 
good agreement with the experimental data shown in the 
left-hand graphs. Furthermore, the Monte-Carlo calcu- 
lations show that atoms, mainly from the low-energy tail 
of the effusive beam, are guided along the wire. 

2 Atom and a charged wire 

The attractive 1/r 2 potential is of special interest [25] 
because it lies on the border between these 1/r ~ potentials 
where the radial motion can be stabilized by angular 
momentum (n < 2), and those where this is not possible 
(n > 2). In three dimensions, this potential has been dis- 
cussed classically [26] and quantum mechanically 
[27-30]. The attractive 1/r 2 has become of more interest 
lately because the interaction of electrons and ions 
with the electric dipole of a polar molecule is of this form 
[31]. 

The interaction of a neutral atom with a charged wire 
gives us a realizable two-dimensional model for this pecu- 
liar attractive 1/r 2 potential. In the following para- 
graphs we will discuss the classical and quantum motion 
briefly and describe how to make a switch for neutral 
atoms guided along a wire. 

Consider now the interaction of a neutral atom with 
a charged wire [25] (Fig. 6). A neutral atom placed in an 
electric field E will acquire an induced electric-dipole 
moment d = aE, where ~ is the electric polarizability of 
the atom. For simplicity, we will assume ~ to be scalar, 
which is true for all alkali-atom ground states. The inter- 
action potential with the electric field is then given by 
Vpol = - o:E2/2. We neglect here all other possible inter- 
actions with the electric field [24] like l g .  (v x E), which 
are much smaller. 

The electric field of a wire with a finite radius rw which 
is held at a potential U relative to a concentric cylinder 
with radius rg (Fig. 6) is given by (in Gaussian units): 

1 U 2q 
E(r)  - - , (13) 

I" ln ( rg / rw)  r 

where q is the charge per unit length on the wire. The 
relation of the line charge q to the applied potential U is 
given by the capacitance between the wire and the 
grounded cylinder. C = [2 In (rjrw)] - 1 

The interaction potential of a neutral atom with 
a charged wire can then be written as: 

Vpol(r) = - ½~ (2q / r )  2. (14) 

The interaction potential is attractive but, in contrast to 
the interaction of a magnetic moment and the field of 
a current-carrying wire (Sect. 1), the potential has the form 
of 1/t "2 [25]. 

cy l inde r /  
/ Atom 

2.1 Class ica l  mo t ion  

If the wire is straight, the motion along the wire is free and 
we can focus again only on the transverse motion. The 
Hamiltonian for the radial motion is then given by: 

g 2 1 / 2 q ~ 2  p 2  fi 
U , . -  Pff 4- ~ - - - - + - -  (15) 

2 M  2 M r  2 2 k - r /  2 M  t -2, 

where the coupling of the effective 1/r 2 radial potential fi is 
given by: 

L 2 
fi - 2M 2aq2" (t6) 

From (16), one can immediately see that there exists 
a critical angular momentum Lcrit = 21 q I(Mc~) 1/2, equiva- 
lently a critical charge Iqcritl = L / ( 4 M c @ / 2 ,  so that for 
L < Lcrit (]q] > Jqcrit]), the total strength fi of the effective 
potential is negative, i.e., the effective potential in the 
radial equation of motion is attractive. There is no centri- 
fugal barrier like in the magnetic-trapping case. The min- 
imum of the potential is at r = 0 and all classical trajecto- 
ries will go through the center, that is, the atoms will hit 
the wire. On the other side, for L > Lcrit (]qj < ]qcrit[), fi is 
positive and the effective potential in the radial equation 
of motion is repulsive, preventing the particle from reach- 
ing the center. Trapping an atom in this configuration is 
also not possible, since the minimum of the potential is at 
F =  OO. 

The classical equations of motion in cylindrical coor- 
dinates are 

d 2 2fi 
dt 2 r - -  r3. 

wire 
d L 
dt  ~o - M r  2 . (17) 

Integration of the equations of motion gives [15] for the 
radial motion: 

Fig. 6. Geometry for the interaction of a neutral atom with 
a charged wire of radius rw surrounded by a grounded cylinder of 
radius rg N/2 2Eb /.2 ~/2_~ 2/3 

r(t) = ro + ~ + 2s "2 - ~ t ,  (18) 
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Fig. 7. Classical trajectories of an atom moving in the attractive 1/r 2 
potential of a charged current. The trajectory on the left-hand side is 
for L < Lcri~ and the atom spirals into the center. The trajectory on 
the right-hand side is for L > L~rit and corresponds to the atom 
scattering from a charged wire 

and for the motion in ~o for fi > 0 

x/ M 
q)(t) = L arctan b ' (1%) 

and fl < 0 

sJ-r°  + t -  b 
(p(t) = L In - - 7 = ~ - - = =  = . 

ro + M + b 

(19b) 

Here, b = (fl/Eb) 1/2 is the point of largest distance (closest 
approach for fl > 0) to the wire and s = _+ 1 depends on 
the sign of dr~dr at t = 0. The time it takes for an atom 
with L < Lcri, to fall into the center is given by 

•/ M 2 
T c a p t u r  e = - -  - ~ b ( S X / b  -- r 2 + b). (20) 

Figure 7 shows two trajectories for a particle moving in an 
attractive 1/r z potential. On the left-hand side, a traject- 
ory resembling the fall into the center for L < Lcrit is 
shown. The graph on the right-hand side shows a traject- 
ory for L > Lcrit coming from infinity and returning to 
infinity. 

Trapping a neutral atom on a charged wire alone is 
not possible. For a stable two-dimensional trap, the fall 
into the center has to be stopped by applying an addi- 
tional strong repulsive potential. This can be achieved by 
replacing the wire with an optical fiber that is made 

conducting by a thin metal coating. A charge on the metal 
coating will bind the atoms. The trajectories are stabilized 
by the repulsive optical dipole potential of a blue-detuned 
evanescent wave produced by light in the optical fiber, 
which will prevent the atom from hitting the fiber [31]. 

Anotherd possibility to obtain a stable two-dimen- 
sional trap was suggested by Hau et al. [25]. They pro- 
posed to stabilize the attractive 1/r 2 potential by oscillat- 
ing the charge on the wire. The trap is then stabilized by 
a repulsive ponderomotive force. Hence, trapping neutral 
atoms in a wire Paul trap should be possible. 

2.2 A tom switch 

If an atom approaches a charged wire it will fall to the 
center and hit the wire if its orgbital angular momentum is 
below the critical angular momentum Lcrit. The short 
capture time of atoms in the 1/r 2 attractive potential of 
a charged wire allows one to build fast beam shutters for 
atomic beams. This may be especially interesting in com- 
bination with atoms trapped in wave guides like the cur- 
rent-carrying wire. 

An electric shutter for a wire guide as described in 
Sect. 1 may be built by arranging a concentric cylinder 
around a portion of the wire (Fig. 8). Applying a charge to 
the cylinder will introduce the additional attractive 1/r 2 
potential and the atom can be captured at the wire. The 
cylinder has to be long enough so that the traversing time 
is longer than the capture time. Typical capture times for 
a guide from Table 2 are given in Table 3. 

3 A wire-ring trap for neutral atoms 

Even though the static electric field of a charged wire does 
not offer a possibility to trap atoms on a wire, it neverthe- 
less has some appealing properties that allow modifica- 
tions to the two-dimensional trapping of a neutral atom 
on a current-carrying wire, as discussed in Sect. 1. 

First, we discuss how the addition of an attractive 1/r 2 
potential, as discussed in Sect. 2, will change the classical 
dynamics of an atom around the current-carrying wire. 

Fig. 8a, b. Proposal for an electric shutter for atoms guided along 
a current-carrying wire. Sample trajectories for atoms guided along 
the wire are shown in (a). If the cylinder around the wire is held at 
a potential so that L < Ler i t  , the switch will shut the guide and the 
atoms will spiral to the wire and be absorbed (b) 
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T a b l e  3. Typical parameters for the interaction of alkali atoms with 
a charged wire. The potentials U are given for a ratio rJrw = 104, rw 
being the radius of the wire and rg the radius of the surrounding 
cylinder defining the capacitor. The capture times are given for the 

orbits given in Table 2 and for an electric potential U = x/2U~it 

Atom Capturing an atom with Capturing an atom with 
E b = 1.2 10 -7 eV, I = 100, r = 2 gm 
r = 100 gm 

Uo,i, Toa., Uc,i, L. . t  
IV] [ms] [V] [ms] 

Li 3700 5 18.8 0.42 
Na 3400 10 9.6 1.6 
Rb 2415 20 3.5 6.1 
Cs 2125 25 2.5 9.3 

The most important fact here is that the interaction potential 
is attractive and has a 1/r 2 radial dependence which, as 
pointed out before, has the same functional form as the 
repulsive angular-momentum potential in the radial equa- 
tion. It will modify the motion in the following way. 

Let us first consider the case where the adiabatic approx- 
imation for the dynamics of the magnetic interaction is still 
valid after the attractive 1/1" 2 potential is added. To keep the 
effective radial potential the s a m e  ( L e f t  = (2Mfl) 1/2 = Lold, 
the orbit witl have to have higher angular momentum 
Lnew = (Lo~d + 4M~qZ) ~/2 to compensate for the additional 
attractive 1/r 2 potential. In this case, the radial equation will 
look the same, and therefore the radial motion will be 
unaffected. The addition of an attractive 1/i" 2 potential will 
only require a faster q, motion around the wire. The orbits 
will, in general, not be closed. The effect of a small additional 
1/r 2 potential results in a precession of the orbit with a pre- 
cession angle given by 6~0 = - 4~o~qZ/L 2. 

In addition to the above described modification of the 
Kepler problem in the adiabatic approximation, the applica- 
tion of this additional 1/r 2 potential will change the degree of 
adiabaticity of the classical orbits. Eventually, by applying 
larger and larger electric fields, the motion around the wire 
will speed up to such an extent that the adiabatic approxi- 
mation will no longer be valid. We can define a characteristic 
charge qchar on the wire when the orbit frequency (/)orbit for 
a circular orbit is equal to the Larmor frequency COL. For 
q = qchar, the adiabatic approximation brakes down. Assum- 
ing/old >~ mF, one finds q c h a r  = lold/mF lold/(4Mc) 1/2. In such 
a regime, trapping in the high-field seeking state in the 
non-adiabatic regime can be studied. 

3.1 The wire-ring trap 

The addition of an electric potential to the two-dimensional 
trapping configuration of a current-carrying wire has some 
other appealing possibilities. By shaping the electrode 
around the wire, one can make the electric field and thus the 
electric interaction potential of the neutral atom dependent 
on the position along the wire. In this manner, one can build 
a three-dimensional high-field seeking trap for neutral atoms 
using static fields. 

The two-dimensional trapping of an atom using a cur- 
rent-carrying wire has the disadvantage that the time the 
atoms spend in the trap is limited by the velocity of the 
atom and the length of the wire. Even with long wires and 
laser-cooled atoms, trapping times much longer than one 
second would be difficult to achieve. This severely limits the 
ability to study quantum structure in the motion of an atom 
around the wire. The possibility to confine the atoms also in 
the third dimension, along the wire has the clear advantage 
that the atom stays, in principle, confined to a small control- 
led trap area. Trapping atoms in a three-dimensional wire 
trap will be especially important in studying the motion in 
a combined magnetic and electric field for both the adiabatic 
and the non-adiabatic regime in more detail. This is essential 
in studying transitions between quantum levels and inves- 
tigating possible quantum-statistical effects. 

A simple geometry to achieve a three-dimensional trap is 
the following. Imagine the configuration of a concentric 
charged ring with radius rr around the wire at position z = 0, 
as shown in Fig. 9. The electric field for a ring with an outer 
diameter of 1 mm and an inner diameter of 0.2 mm concen- 
tric around a 4 ~tm diameter wire is shown in Fig. 10. Here, 
a cylinder with a radius of 1 cm, much larger than the ring 
diameter, was added in the calculation, to define the bound- 
ary conditions for large r. At any line parallel to the z- 
direction (along the wire), the electric field will be a max- 
imum in the plane of the ring (z = 0). The resulting addi- 
tional interaction potential Vpol(r) = - ~E(r)2/2, shown in 
Fig. l la,  has a local minimum at z = 0. Close to this min- 
imum, the potential can be approximated by a harmonic 

~ charged ring 

nt ~ o n  

Fig. 9. Arrangements for the atom wire-ring trap. The radial confine- 
ment is given by the interaction of the magnetic moment of the atom 
with the magnetic field of the current in the wire. The trap is closed in 
axial direction by the electric field of a charged ring 

1 0  . . . .  ~ . . . .  , . . . .  , . . . .  

i 0.1 

0.01 

0 . 0  0 . 5  1.0 1 . 5  2.0 

z - p o s i t i o n  [ m m ]  

Fig. 10. Electric field in the wire-ring trap. The charged ring has 1 mm 
outer diameter and a 0.1 mm radius hole and is 0.2 mm thick. It is 
mounted at z = 0, concentric around a 2 gm radius, straight wire at 
ground potential in the z-direction. The whole setup is mounted inside 
a 10 man radius, grounded cylinder. Only the electric field for positive 
z is shown for this symmetric configuration 
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Fig. lla, b. The interaction potential Vpol = - ~EZ/2 of a Li atom in 
the wir~ring-trap geometry of Fig. 10. In (a) the axial confinement 
potential for a potential difference of about 9 V between the ring and 
the wire. The electric interaction potential is of the same order of 
magnitude as the magnetic interaction of binding a Li atom in a circu- 
lar Rydberg state with l = 100 (Table 2). The dashed line is a har- 
monic-oscillator approximation to the confinement potential close to 
z = 0. (b) show the deviation of the radial potential in the plane of the 
charged ring from the ideal 1/r 2 form expected from a charged cyhnder 
around the wire. Note that the potential is very close to the 1/r 2 form 
up to about 10 ~m, that is, 10% of the inner-ring radius 

oscillator. This local minimum of the electric-interaction 
potential at z = 0 gives longitudinal confinement, and, in 
combination with the trapping of an a tom on a current- 
carrying wire, a three-dimensional trap for neutral a toms 
around a wire can be built. 

It is also interesting to point out that, close to z = 0 
(z ~ rr) and for r ~ rr, the radial dependence of the interac- 
tion potential Vpo~(r) = - c~E(r)Z/2 is close to the 1/r 2 poten- 
tial, as expected for a charged cylinder around the wire. In 
Fig. 1 lb, one sees clearly that for r < 30 ~tm, the potential on 
the wire-ring trap is indistinguishable from the 1/r 2 potential 
form of an infinitely long cylinder. Therefore, all the implica- 
tions discussed above for an addition of a charged cylinder 
to the current t rap are to first order also applicable for the 
charged ring around the wire. 

In a typical wire-ring trap, we will assume that  the 
electric and the magnetic interaction are of similar strength. 
This translates into the requirement that  the critical angular 
momen tum Lcrlt = 2]ql(Mc~) 1/2 for the attractive 1/r 2 poten- 
tial is equal to the orbital angular momen tum of our desired 
orbit in the magnetic trap Lol a. Combining both potentials, 
the orbit in the plane of the ring will have to have an angular 
momen tum of L,ew = ~ L o t d  to compensate for the addi- 
tional attractive 1/r 2 potential. 

Fig. 12. Classical trajectories of an atom trapped in the wir~ring trap. 
The trajectory is obtained from numerical integration of the classical 
equations of motion in the combined electric and magnetic fields of the 
wire ring. The strength of the electric and magnetic interaction is chosen 
to be of the same magnitude. The initial position of the atom is in the 
plane of the ring and the initial velocity is chosen to give a circular 
motion in the plane of the ring and to have a small additional velocity 
component along the wire axis. The ring itself is only shown for 
illustration and is not to scale 

Combining the parameters given in Table 2 for the mag- 
netic trapping and in Table 3 for the interaction with the 
electric field, one finds, for example, that a line charge of 
about  67 nC/cm will be needed for trapping Li atoms. If we 
use a 100 ~tm dimeter wire and a i cm inner diameter ring, 
this translates to an applied voltage of about  1850 V. Such 
a trap is about  10 7 eV deep and would trap Li atoms with 
velocities of up to a few meters per second. These velocities 
are easily reachable with standard laser cooling. In such 
a trap, the motion of the particles will be completely classical. 
An example of classical trajectories of a neutral a tom in such 
a wire-ring trap are shown in Fig. 12. 

For  trapping of neutral a toms in a microscopic trap that 
required quantization of the mot ion of the atom, we can start 
from our l = 100 Rydberg-atom-like two-dimensional traps 
shown in the lower part  of Table 2. Using a 1 gm radius wire 
and a ring with an inner diameter of 0.2 mm, one has to 
apply about  9 V to make the electric interaction of a Li a tom 
equal to the magnetic interaction for trapping on a cur- 
rent-carrying wire. in the wire ring trap, the circular orbit 
with radius 2 gm will then have ! = 141. The trap depth of 
about  7.4 x 10- 9 eV is within the reach of laser cooling of Li 
atoms. The spacing of the quantum levels for mot ion along 
the wire is on the order of kHz. 

Having a stable microscopic t rap of a neutral a tom 
exhibiting quantized external mot ion brings a variety of 
gedanken experiments close to realization. One can see such 
a trap as being like an artificial mesoscopic atom. The trapped 
atom, itself a microscopic particle, taking the role of the 
electron, and the macroscopic wire and ring takes the role of 
the nucleus. One can imagine studying how to drive 
transitions between the quantum levels and to investigating 
the effects of the bosonic or fermionic nature of the atoms on 
transitions between the levels and on the occupation of the 
levels. A different, but not less interesting, aspects of these 
traps is the possible combinat ion with the mesoscopic phys- 
ics [33] of quantum wires and quantum dots. 
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4 Conclusion 

We have given the basic principles of how to trap a neutral 
atom on a wire. We studied the interactions of a neutral 
atom with a current-carrying wire and a charged wire. 
Atoms can be trapped in a two-dimensional trap on a cur- 
rent-carrying wire. They move in classical Kepler-like orbits 
around the wire. Using mesoscopic wires and cold atoms, 
a n~croscopic trap resembling a two-dimensional Rydberg 
atom can be built. Trapping on a charged wire is not possible 
because the 1/r 2 interaction potential of the atom with the 
charged wire has no stable bound states. Nevertheless, 
a combination of both interactions allows us to form 
a three-dimensional trap. Placing a charged ring around 
a current-carrying wire makes Vvol dependent on the posi- 
tion along, there by resulting in longitudinal confinement, 
a "wire-rin9" atom cavity. In these traps, the atoms are 
trapped in the high-field seeking state. 
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