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Abstract. Evaporative cooling of trapped atoms is described 
as a sequence of truncation of the high-energy tail of the 
thermal distribution followed by collisional relaxation. This 
model is solved analytically for arbitrary power-law poten- 
tials. The threshold density for accelerated evaporation is. 
found to be lowest in a three-dimensional linear potential. 

PACS: 32.80.Ps; 42.50.Vk 

Although laser cooling has seen rapid progress in the last 
few years it still has several severe limitations. There are 
absorption effects [1, 2] limiting the density of cold atoms, 
the recoil limit, and also heating and trap loss due to excited- 
state collisions. All of these limitations do not apply to evap- 
orative cooling. In addition, atoms such as hydrogen which 
do not have convenient optical transitions can be evapora- 
tively cooled. Until recently, evaporative cooling could only 
be applied to atomic hydrogen which can be pre-cooled by 
cryogenic methods [3-6]. Several groups are currently try- 
ing to extend evaporative cooling to laser-cooled atoms, and 
very recently two successful demonstrations were reported 
[7, 8]. 

Evaporative cooling was originally proposed by Hess [9]. 
It consists of the selective removal of atoms in the high- 
energy tail of the thermal distribution and the collisional 
equilibration of the remaining atoms. Although neither the 
selection of atoms nor collisions alone increase the phase- 
space density, the combination of both does [10]. It is even 
possible to simultaneously obtain a decrease in temperature 
and an increase in density if the shrinking volume of the 
atom cloud overcompensates for the loss in the number. 

With reference to magnetically trapped hydrogen, sev- 
ern theoretical studies of evaporative cooling have been re- 
ported [11-15]. Some of these models included not only 
evaporative loss of atoms, but also dipolar relaxation [12- 
14] and three-body recombination [13, 14]. Presented here 
is a simplified analytical description including only elastic 
collisions, evaporative loss of particles and background gas 
collisions. One motivation for such a simple model is the 
fact that, for alkali atoms, the elastic cross section is roughly 
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three orders of magnitude larger than for hydrogen. As a re- 
sult, inelastic processes are negligible for a broad regime of 
temperatures and densities which is of interest for several 
experiments [7, 8]. A different analytical model for evapo- 
ration is discussed in [15] and could probably be applied to 
the situation discussed here. 

The most important parameter to control the evaporation 
is the depth rlkT of the potential well. For small q, a large 
fraction of the atoms can escape over the threshold of the 
potential resulting in fast evaporation; however, the temper- 
ature reduction per escaping atom is small. It is this interplay 
between the truncation parameter r/and the dynamics of the 
evaporation which is described in our model. In the most 
general situation, r/will be varied with time to control and 
optimize the evaporation process. In this paper, we mainly 
study the effects of a single truncation step as a function of 
r/. 

Experiments on evaporation employ linear [7, 8] and 
harmonic [16] traps; the hydrogen work at MIT uses an 
anisotropic trap which can be regarded as a two-dimensional 
linear potential with steep walls providing confinement in 
the third dimension [3, 13]. The model presented here is 
valid for any number of dimensions and arbitrary power-law 
potentials. One rather unexpected result is that the important 
self-acceleration of evaporation is only pronounced in linear 
potentials. 

1 The basic model 

We model evaporative cooling as a discrete process. Trunca- 
tion of the energy distribution at rlkT is followed by thermal 
relaxation in an infinitely deep potential resulting in a tem- 
perature decrease from the initial temperature T to Tq This 
cycle is repeated with an energy truncation of rlkT etc. In 
most experiments, the potential depth is lowered continu- 
ously, while the atoms stay in thermal equilibrium through 
elastic collisions. The discrete model has the advantage of 
having an exact solution can be used to study the basic in- 
terplay between the various parameters of the evaporation 
process. 
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Table 1. During evaporative cooling, all relevant quantities scale as u x, 
where u is proportional to the number of trapped particles 

Quantity Exponent x 

Number of atoms N 1 
Temperature T 3' 
Volume V (~, 
Density n 1 - (3' 
Phase-space density 3' 1 - 3"(~ + 3/2) 
Elastic-collision rate nv 1 - 3"(~ - 1/2) 

During one cycle, the number of trapped atoms is re- 
duced from N to N t. It is convenient to express all important 
quantities as power laws u × with u = Nt /N .  Defining 

log(T' /T)  (1) 
7 -  log(N'/N) ' 

the temperature changes as T t / T  = u'~ during one cycle. In 
a d-dimensional potential, 

U(r) = const, r m , (2) 

the volume occupied by the trapped atoms scales as T a/m. 
This scaling arguments it independent on how the volume is 
defined (e.g., by a 1/e decay of the density, or as the number 
of atoms divided by peak density). Note that the potential in 
a spherical quadrupole magnetic trap is anisotropic, but it can 
be written in the form of (1) after a coordinate transformation 
z t = 2z. 

For the density n, one obtains a power law 

n ' /n  = u 1-~'~ (3) 

with 

= d i m .  (4) 

Since we are only interested in ratios n~/n, (3) holds for 
the peak density as well as the average density. Power taws 
exist for all other quantities (Table 1). 

If  j discrete evaporation steps are performed, u has to be 
substituted by uJ. The dynamics of evaporation is entirely 
described by the two quantities u and 3'. 

These two quantities are calculated for an arbitrary 
power-law potential r m in d dimensions from integrals in- 
volving the density of  states D(E) 

D(E) = ( 2 M ) 3 / 2 / v  v / E -  const, r m d3r .  (5) 
h3(27r) 2 (E) 

V(E) is the available position space for particles with en- 
ergy E and atomic mass M [17]. Note that we are always 
considering a three-dimensional gas confined in d dimen- 
sions (either unconfined in the remaining 3-d dimensions or 
confined by infinitely steep walls). 

The occupation number of  classical particles in an energy 
level E in the trap is exp[ - (E-# ) / kT] .  Effects of quantum 
statistics can be neglected for a dilute gas. The fraction u of  
particles with energy E smaller than ~kT is 

1 [~kT 
D (E)e  - (E - , ) / k T  d E .  (6) 

u(~ )  = ~ J o 

The chemical potential p is determined by the normalization 
u(c~) = N.  

Introducing the normalized energy e = E / k T  and cr(e) = 
(kT/N)D(ekT)e u/kT as the normalized density of states, 
one obtains 

u(r/) = a ( e ) e - ~ d e ,  

with 

(7)  

el/2+~ 
~ ( e )  - (8)  

F ( 3 / 2  + ~) 

Note that the chemical potential and the constants in (4) are 
both absorbed in the normalization factor in (6). The integral 
in (5) can be solved in terms of generalized gamma functions 
which are reduced for specific values of ~ to the expressions 
shown in Table 2. 

The function 7(r/) is obtained from the total energy 
a(~)NkT of the trapped atoms after truncation 

/0 a(r/) = ecr(e)e-ede . (9) 

The average total energy per atom in units of  kT is a(rl)/u(rl). 
For r / ~  oo, one obtains 

a ( ~ )  = (3/2) + ~ .  (10) 

a0?) can be obtained in analytical form (Table 2). The nor- 
malized energy per atom after re-thermalization gives the 
decrease in temperature from T to T '  per evaporation cycle 

T '  a(r/) (11) 
T - u ( ~ ) a ( ~ )  

From (1), one obtains 

log { ~(__._q_L~_) "~ 
\ u(n),~(~) ) (12) 

7 = log [u(~)] 

The average energy of an evaporated atom is Eeff kT, with 

a ( c ~ )  - a ( ~ )  
Self = , (13) 

1 - v ( ~ )  

or equivalently, 

eeff= ( ~ +  3 )  1 - u(r/)'v(n~" 
1 - u(r/) (14)  

For a large cutoff parameter r/, u(r/) --~ 1. Expanding (10b) 
by treating 1 - u(r/) as a small parameter, yields 

Eeff 1 .  (15)  
"v - ( 3 / 2 )  + 

Therefore, for large r/, 3' is a dimensionless quantity char- 
acterizing how much more than the average energy is re- 
moved by the evaporated atoms. A similar equation was 
used by Hess [(4) in [9]] including magnetic decompression 
and losses due to dipolar relaxation. For large truncation 
parameters rl, one can integrate (10a) by parts and obtains 
eefe --~ ~ + 1, implying 3' ~ oe. The temperature reduction 
per evaporated atom is large, but the evaporation process is 
slow because there are only few a with energy larger than 
~?kT. 

For small r/, one obtains from (5), (7) and (9), 7 = 2 / (3+  
2~). On first sight, it is surprising that the increase in phase- 
space density has its maximum for r~ --4 0 (Fig. 2). However,  



Table 2. The evaporation process in a d-dimensional potential r m is described by two 
characteristic functions c~(71) and u(r/) which depend only on ~ = d i m  

312 1 - 2+2r/+r/2 3 - 6+6r/+3r/2+r/3 
2e17 2e'O 

2 - -  2 ' /~(15+i° '°+4~72) 1 5 e r / ~ -  ~ + erf(v'~) - "~(105+70r/+28r/2+8 r/3) 1 5 e r / v ~  + 7 er f( ,¢#ff)2 

-- 2x/~(105+70~+28772+8r/3) ,~(945+630'r/+252"q2+72r/3+ 16r/4 ) 9 e f t ( - ~ )  
3 105 e, , /H  + erf(x/~) 105 e~ ~ + 2 
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Fig. 1. Population of energy levels/5(g) (12). The shor t  dashed,  dashed  and 
sol id  curves  are for ~ = 3/2  O-dim. harmonic potential), ~ = 2 (2-dim. 
linear potential), ~ = 3 O-dim. linear potential) 

this corresponds to the selection of the energy levels with 
the largest population. After thermalization, the lowest levels 
have even larger population corresponding to an increase in 
phase-space density [10]. 

2 Comparison for different potentials 

In the following discussion, we examine evaporation in dif- 
ferent trap geometries. Notice that, for this purpose, it is 
more natural to measure energies not in units of kT, but 
rather in units of the average total energy (3/2 + ~)kT. We 
denote energies and truncation parameters normalized in this 
way by g and ~, respectively, i.e., 

c 
g :  3_+( • (16) 

2 

The normalized density of occupied states, 

/5(g) = or(e) ( ~  + ~) e -e , (17) 

(normalized in such a way that fo~(g)dg = 1) is similar 
for different trap geometries having a peak centered around 
the average energy (normalized to 1) with a width of ap- 
proximately 1 (Fig. 1). It is, therefore, not surprising that the 
functions u and 7 are similar too, or in other words, the 
decrease in atom number and in temperature is similar for 
different potentials when the energy truncation is performed 
at the same f]. This conclusion is not valid at very small or 
large f/, but these regions are of minor practical interest for 
evaporative cooling. 

In contrast, the density increase is much larger for large 
since the volume of the trapped sample scales with temper- 

ature as T~. Similarly, the changes in phase-space density 
p and elastic-collision rate strongly depend on the potential 

parameter ~ (Fig. 2). (The elastic collision rate is given by 
nCrelV, where O-el denotes the elastic collision cross section 
and v the atom velocity.) In current experiments with laser- 
cooled atoms, the initial density is just sufficient to start the 
evaporative-cooling process because the thermalization time 
(which is inversely proportional to the elastic-collision rate) 
is comparable to the trapping time. Significant evaporative 
cooling probably requires a speed-up in the thermalization 
rate. This means that the cloud has to be truncated at suffi- 
ciently large ~ or 7. Indeed, from Table 1, one obtains the 
inequality 

1 
7 > - -  (18) 

- 1 / 2  

for accelerated collision rates. For larger potential parame- 
ters ~, evaporation at smaller 7 is favorable (Fig. 2). Indeed, 
for a three-dimensional linear potential (4 = 3), the largest 
increase in the thermalization rate is found at ~ = 0.8. At 
such values of ~, a parabolic trap (~ = 3/2) would already 
exhibit a decrease of the thermalization rate. Evaporation at 
such small ~/values is accompanied by a substantial loss of 
trapped particles. Experiments employing this strategy might 
eventually be limited by the sensitivity of probing very few 
atoms. 

3 Inclusion of background-gas collisions 

So far, we have not taken into account loss of atoms due to 
background-gas collisions. If the trapping time is ttrap, and 
one evaporation cycle is carried out in a time interval tstep, 
the number of particles is reduced by an additional factor 
exp(1/T) during this cycle with 

r = t t rap / t s t ep  . (19) 

We can incorporate this loss process by considering one 
evaporation cycle as consisting of three steps: truncation at 
fl, rethermalization, loss of particles by a factor exp(1/r).  
We could incorporate this additional loss in the number of 
atoms into the exponents in Table 1, as was done by Hess 
for the 7 exponent [9]. However, an equivalent approach 
chosen here is to calculate all quantities without trap loss 
and then multiply N, rL, p and nv by exp(1/r)  and leave T 
and V unchanged. 

Snoke and collaborators have shown that the energy dis- 
tribution is almost indistinguishable from the equilibrium 
distribution after five collisions [18, 19]. 7- is then approxi- 
mately one fifth of the ratio between the elastic-collision rate 
and the trap-loss collision rate which is colloquially called 
the ratio of good-to-bad collisions. 
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Fig. 2. Dependence of various quantities during evaporation 
on the truncation parameter f/. The short  dashed, dashed and 

solid curves are for ( = 3/2 (3-dim. harmonic potential), 
= 2 (2-dim. linear potential), ~ = 3 (3-dim. linear poten- 

tial). The first graph shows the temperature exponent "7, the 
others the ratios of various quantities after and before a single 
truncation/thermalization step 

In the absence of trap loss, the maximum increase in the 
thermalization rate is 1.04 for a parabolic potential and 1.59 
for a three-dimensional linear potential (Fig. 2). This big dif- 
ference is a consequence of the more pronounced shrinking 
of the cloud with temperature for large ~ which, furthermore, 
allows evaporation to be carried out at smaller truncation pa- 
rameters ~. Figures 3a, c show the increase in the thermal- 
ization rate for several values of ~-. Accelerated evaporation 
requires a minimum value of T which is 2.2 for the three- 
dimensional linear potential and 24 for the parabolic case, 
more than an order of magnitude higher. This means that 
accelerated evaporation in a parabolic trap requires a consid- 
erably higher initial density or lower residual-gas pressure 
than in a spherical quadrupole trap. However, a parabolic 
trap with a very small bias field (e.g., a Ioffe trap) has a 
linear potential in the two transverse directions except for 
a small region at the bottom which is rounded off. If  the 
atom cloud extends well beyond the parabolic region, the 
trap can be regarded as a linear trap in two dimensions and 
a parabolic trap in the third dimension, corresponding to 

= 5/2 (see [17] for the derivation of the density of states 
for traps with different power laws of the potential in dif- 
ferent dimensions). Such a field configuration would avoid 
trap loss due to Majorana flops at the zero of the magnetic 
field, and simultaneously provide tight-enough confinement 
for accelerated evaporation. 

A more refined model should account for the change in 
the elastic-collision rate during thermalization. Immgdiately 
after truncation the rate is smaller than before truncation 
by approximately a factor N~vt /Nv  = u 1+'~/2. This reduc- 
tion shifts the optimum strategy to larger values of f/. In a 

worst-case model, we assume that the elastic-collision rate 
during a thermalization step is constant and equal to the 
rate immediately after truncation. The number r of trunca- 
tion/thermalization steps during one trapping time is then 
dependent on ~/through 

~- = ~-0u 1+'Y/2 , (20) 

where To is inversely proportional to the thermalization time 
before truncation. 

We find the minimum T0 for accelerated evaporation 
to be 4.7 for the spherical quadrupole trap and 29 for the 
parabolic trap. The latter value corresponds to roughly 150 
elastic collisions per trapping time, in agreement with the 
same value obtained in [16] from Monte-Carlo simulations. 
The threshold for accelerated evaporation in a spherical 
quadrupole trap should be as low as approximately 25 elastic 
collisions per atom and trapping time. 

With (14), the optimum increase in phase-space density 
no longer happens for q ~ 0. The long thermalization time 
after a deep truncation results in increased loss of atoms due 
to background-gas collisions and favors truncation at larger 
q. Optimized strategies for multi-step evaporation require ad- 
ditional study. For instance, if the overall goal is to maximize 
phase-space density, it could be more advantageous to focus 
first on increased thermalization rate and then to maximize 
phase-space density when fast thermalization times prevent 
excessive loss of atoms due to background-gas collisions. 
However, one possible simple strategy is obvious without 
further elaboration: if the initial conditions for accelerated 
evaporation are met and ~ is kept in the range for increased 
collision rates, density and phase-space density will contin- 
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Fig. 3a-c. Relative change in the elastic collision rate vs truncation param- 
eter g/; (a) 3-dim. linear potential (~ = 3), the different trapping times are 
characterized by the values of 7- (13) given in the figure; (b) same as (a), 
but using 7-o as parameter (14); (e) same as (a), but for a 3-dim. harmonic 
potential (~ = 3/2) 

uously increase. Ultimately, this increase is limited by loss 
processes (dipolar relaxation and three-body recombination) 
which are neglected in the model discussed here. 
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4 Conclusions 

In conclusion, we have presented a simple formalism to treat 
evaporative cooling of trapped atoms. This formalism pro- 
vides guidance to optimize forced evaporation (i.e., variation 
of the potential depth with time). Different strategies max- 
imize the increase in density, phase-space density or ther- 
malization rate. An important prediction is that the threshold 
density for accelerated evaporation is considerably higher in 
a parabolic trap than in a spherical quadrupole trap. 


