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Abstract. The parametric oscillation of a trapped electron is 
studied and used to measure enhanced spontaneous emission. 
Hysteresis in this motion provides a one bit memory to store 
information about excitations made with the electron "in the 
dark". 

PACS: 42.65.-k  

An electron in a Penning trap is typically observed by driv- 
ing its axial motion along the magnetic-field direction with 
a driving force that is nearly resonant [1]. Instead, we mod- 
ulate the trapping potential and thereby parametrically drive 
the electron's axial motion at approximately twice its reso- 
nant frequency. The magnitude and phase of the response 
are separately measured and compared to theoretical ex- 
pectations, along with resonance line shapes, bistability and 
hysteresis, and the time required to excite to a steady state. 
These studies are done in extremely high vacuum, in an ap- 
paratus virtually identical to that used to establish a pressure 
less than 5 x 10 -17 Torr [3], thereby avoiding the collisions 
which dominated an earlier observation [4]. Parametric res- 
onance [2] is used to measure rapid, enhanced spontaneous 
emission for electron cyclotron motion in a trap cavity, at a 
rate too fast to have been measured previously. The bistabil- 
ity and hysteresis in parametric resonance is used to measure 
the cyclotron resonance frequency with a resolution of one 
part in 109, a resolution which corresponds to the relativistic 
shift in the cyclotron frequency caused by increasing the cy- 
clotron quantum number by one. This resolution is attained 
while the electron is "in the dark" insofar as all nearly res- 
onant drives (other than the cyclotron drive) and detectors 
are turned off, to avoid significantly increasing the electron's 
amplitude. Bistability and hysteresis in the parametric oscil- 
lator is used as a one-bit memory to record whether or not a 
cyclotron excitation occurs. "In the dark", detection should 
make it possible to increase the accuracy of tests of quan- 
tum electrodynamics which are already the most accurate 
comparison of physics experiment [5] and theory [6]. 

Dedicated to H. Walther on the occasion of his 60th birthday 

1 Observed parametric resonance 

One electron is stored at the center of the Penning trap rep- 
resented in Fig. 1. Two end-cap electrodes, above and be- 
!ow, and a ring electrode, are shaped along the hyperbolic 
contours which are the equipotentials of the desired electro- 
static quadrupole potential. An "orthogonalized" geometry 
[7] makes it possible to improve the shape of the trapping 
potential (by adjusting the potential on the asymptotic com- 
pensation electrodes) without changing the electron's oscil- 
lation frequencies. A 5.3 T magnetic field is directed along 
the vertical axis. An electron in this Penning trap undergoes 
the familiar motions [1] illustrated in Fig. 2. Throughout this 
paper, we shall assume that the slow magnetron motion (at 
frequency COm/27r = 13.6 kHz) is cooled to essentially zero 
radius and is hence not an issue. The rapid cyclotron mo- 
tion, also perpendicular to the magnetic-field direction, is at 
frequency wc~/27r = 148 GHz. The axial motion, parallel to 
the magnetic-field direction, is at frequency coz/27c = 63.4 
MHz. 

We focus on the axial motion of a single trapped electron 
for the rest of this section. The common way to monitor this 
motion is to drive one end cap near resonance at a~a ~ COz 
and detect the response voltage detected across the resistor 
_R which is connected to the other end cap, as shown in 
Fig. 3. (We do not discuss a frequency modulation which 
is important for practical reasons but does not change the 
basic idea [1].) The measured points in Fig. 4a fit the ex- 
pected Lorentzian line shape with a width of 12.2 Hz. The 
magnified residuals below in Fig. 4b clearly show that on 
resonance the electron "shorts out" the 4.2 K Johnson noise 
from the resistor. Figure 5 illustrates that it is also possible 
to detect a single electron without the external drive. The 
Johnson noise from the resistor is detected (the noise spec- 
trum is not flat because of the pass band of a crystal filter) 
and the dip demonstrates again the "shorting" of this noise 
by the trapped electron. Such a dip is a common way to 
observe many trapped particles, but a very well-tuned trap 
and optimized electronics are needed to see a single trapped 
particle in this way. Figure 5 requires several minutes of 
averaging. The advantage is that an electron which is driven 
only by noise stays closer to the center of the trap where the 
electrostatic and magnetic field are most carefully controlled. 
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This paper demonstrates parametric resonance as a third 
way to detect the axial motion of a single trapped elec- 
tron. (Detailed studies of  the parametric resonance of many 
trapped electrons have been carried out [8].) Before the elec- 
tron's  axial motion is excited it experiences only a drive so 
far off the 12.2 Hz wide resonance, at wd/27r ~ 2Wz/27r 
127 MHz, that its oscillation amplitude does not increase be- 
cause of  the drive. In this sense, the electron remains "in the 
dark", because the drive does not make the electron oscil- 
late further from the center of  the trap. However,  when the 
electron does come into parametric resonance, a large and 
easily observed axial oscillation at wa/2 ~ evz is produced. 
In the next section, for example,  we shift the electron's  ax- 
ial motion into parametric resonance with the drive using a 
cyclotron excitation, and measure how quickly a response 
occurs. The electron thus remains "in the dark" until a large 
signal is observed. 

The setup in Fig. 3 produces a modulation of the trapping 
potential at eva as well as the direct drive mentioned previ- 
ously. Such a parametric drive at frequency eva = 2(w~ + e) 
excites an electron oscillation at frequency eva/2 = evz + e. 
The one-electron, parametric oscillator has the equation of  
motion 

+ 7 ~  + ~v2(1 + h c o s  evat)z +/k4 Z3 + )~6 Z5 : 0. (1) 

The damping, at a rate 7 z  t = 0.013 s, is due to energy dis- 
sipated in the detection resistor. Adjusting the compensation 
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Fig. 3. Schematic circuit showing the drive and detection for an electron's 
axial motion 
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Fig. 6. Measured amplitude of the parametric response at wz undergoes an 
abrupt threshold as the strength h of the parametric drive at Wd = 2Wz is 
increased 
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Fig. 7. Measured phase of the parametric response at COd/2 ~ COz (points) 
vs the strength h of the drive, superimposed on the theoretical prediction 
of (3) 

potential changes the coefficients )~4 and ~6 of the nonlinear 
terms. In terms of  the Legendre expansion coefficients often 
used to describe Penning traps [1], ~4 = 2C4/(1 + C2) and 
)~6 = 3C6/(1 + ~ 2 ) .  

If we  start with no axial excitation (z  ~ 0), and increase 
the drive strength h, the nonlinear terms are not important 
initially since z is small, and we thus have only the familiar 
Mathieu equation with damping. An abrupt threshold occurs 
when the effect of  the drive overcomes the damping at drive 
strength h = hT with 

h.r = 2%/w~ = 3.8 x 10 -7 .  (2) 

(The number to the right is the measured ratio.) This thresh- 
old is illustrated in Fig. 6 for a parametric drive resonant 
at Wd = 2Wz (i.e., c = 0). Figure 7 compares the measured 
phase (points) and the calculated phase (curve) given by 

sin 2fir= h~:/h, (3) 
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Fig. 8a--e. Amplitude (a) and phase (b) of the parametric response at wd/2 = 
wz + e as the frequency of the parametric drive at Wd is swept through 
resonance. The phase takes one of two bistable values near resonance and 
is not well defined off resonance where the response amplitude is very 
small, as is also illustrated in the measured phase-space plot in (e) 
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Fig. 9. Excitation range e+-e_ vs parametric drive strength h for the Math- 
ieu equation with damping 

where ~ is the relative phase between the response and the 
drive. The two solutions to this equation are separated by a 
phase of  180 degrees, corresponding to the timetranslation 
symmetry which occurs because the period of  the driving 
force is half as long as the period of  the response. 

Figures 8a-c show the amplitude and phase response as 
the parametric drive is swept in frequency. The phase is 
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Fig. 10. Measured excitation range e+-e_ vs parametric-drive amplitude 

not well defined until the axial motion is excited to a non- 
zero amplitude near resonance. Near resonance, either of 
the two phases separated by 180 degrees is equally likely. 
One example of  each phase is superimposed in the figure, 
and the amplitude and phase of all measured points are also 
displayed in a polar, phase space plot. The sharply defined 
excitation range e_ < e < e+ is a property of the damped 
Mathieu equation, with 

1 ~ 2 .  
e+ = +-~Wz~/  M - t f l  r. (4) 

(The nonlinearity keeps the motions from expanding ex- 
ponentially without limit but does not effect the excitation 
range.) Figure 9 represents the excitation band e+-e_ as a 
function of parametric drive amplitude. Figures 6 and 8a-c 
a correspond to vertical and horizontal slices through Fig. 9, 
respectively. Figure 10 shows the measured excitation range 
(points) as a function of the drive strengh, fit to (4) (curve). 
From this fit we obtain hT = 4.3(:t:1.1) x 10 -7,  in good 
agreement with (2). 

The measured line shapes exhibit bistability and hystere- 
sis, as illustrated in Fig. 11, where the line shape extends fur- 
ther when the drive is swept upward in frequency than when 
it is swept downward. The response in the double-valued 
bistable region thus depends on the excitation history. The 
trap was tuned in this case to make )`4 as  small as possible, 
and the observed shape is determined by the value of A6. 
If  the trap is deliberately mistuned to make A4 much larger, 
the excited line shape then becomes a straight line, as is ex- 
pected. If  the trap is instead tuned so that both )`4 and A6 
are important, then a more complicated line shape results, 
one example of which is shown in Fig. 12. For paramet- 
ric drives swept upward and downward through resonance, 
the measured amplitudes A+ either vanish or lie on parallel 
parabolas 

5 ) ` 6 0 J z  "4 3)`4Wz A2 A± + ---g-- ± + e ± - e = 0 ,  (5) 

if we neglect higher-order nonlinearities than those men- 
tioned. This fit makes it possible to determine both 6"4 and 
6'6 (or equivalently ),4 and ),6). In following sections, we 
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Fig. 11. Amplitude of the parametric response at wa/2 = Wz + e as the 
frequency of the parametric drive at COd is swept through resonance, when 
the trap is tuned to make C4 as small as possible. (Calibration of the mm 
scale depends on a calculated parameter D4 = 8.7 x 10 -3  defined in [2]) 
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will illustrate how to use the bistability and hysteresis to 
record information about an excitation made "in the dark". 

So far, we have considered only the steady-state line 
shapes. It is important to realize, however, that the time 
it takes to reach the steady-state excitation amplitude de- 
pends upon the detuning e of the drive from the resonant 
frequency. As the excitation begins from zero amplitude, 
the amplitude initially increases exponentially with the time 
constant ~- given (within the excitation range) by 

= V/e 2, - e 2 + ('yz/2) 2 - "/z/2, (6) T - - I  

which is determined solely by the damped Mathieu equa- 
tion. As the amplitude increases, however, the nonlinearity 
becomes increasingly important and eventually arrests the 
exponential growth. Figure 13a, b illustrates how the re- 
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sponse ampli tude grows as a function of time, with t = 0 
being the time at which the parametric drive is turned on. 
The response grows much more quickly for a resonant drive, 
e = 0 in Fig. 13a, than for a non-resonant drive, e/27r = 20 
Hz, in Fig. 13b. Note from (6) and (4) that the rise time 
within the excitation range can be decreased as desired by 
increasing the drive strength h and can be decreased by mov- 
ing to the ends of  the excitation range. The time taken to 
excite to a steady state will also depend in a very sensitive 
way upon the initial thermal excitation amplitude, suggesting 
excitat ion-time measurements as a promising way to mea- 
sure axial temperature. 

2 Cyclotron motion coupled to a cavity 

The cyclotron oscillation frequency ~c t is more than 2 000 
times higher than the axial frequency Wz. This motion can be 
excited with a very pure microwave drive [9] which enters 
the trap through the small tube shown in Fig. 1. A cyclotron 
excitation to energy Ec results in a shift in the axial fre- 
quency 

A~ E~ 
- (7) 

COz 2fn, c 2 

and a shift in the cyclotron frequency 

mO'c E~ 
7 - (8) 
a3 e 'm,c 2 

Both of these shifts are due to special relativity and are often 
thought of  as relativistic mass shifts since special relativity 
has the effect of  replacing the mass ra in the mass-dependent 
frequencies by 0'm, where 3' is the familiar relativistic fac- 
tor (the total energy, rest-mass energy plus kinetic energy, 
divided by the rest energy). 

For the purposes of  this paper, a cyclotron excitation 
simply causes the axial frequency to shift. The dip to the 
right in Fig. 14 is the undriven axial resonance observed for 
no cyclotron excitation. A cyclotron excitation of Ec = 6.7 
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Fig. 14. Axial resonance of a single trapped electron (noise-shorting dip 
to the right) is shifted to a lower frequency (left) when the the electron's 
cyclotron motion is excited to an energy of Ec = 6.7 eV. When the cy- 
clotron drive is turned off, the dip shifts back as the electron damps via its 
coupling to the radiation field in the trap cavity 
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Fig. 15. Time between turning off the cyclotron drive and the first obser- 
vation of a parametric axial response, as a function of the energy of the 
initial cyclotron excitation. The fitted line (constrained to pass through the 
origin) shows an exponential damping time for the cyclotron motion which 
is shorter than the spontaneous emission time in free space (dashed line). 
Spontaneous emission is enhanced by the coupling of the electron-cyclotron 
motion and the cavity 

eV causes the axial frequency to shift downward by 550 
Hz (the left dip in Fig. 14). Turning off the cyclotron mi- 
crowave drive causes the electron-resonance dip to shift back 
to its original position as the cyclotron motion spontaneously 
emits synchrotron radiation. This spontaneous emission is 
modified by the presence of  a surrounding microwave cavity 
which can either enhance or inhibit the spontaneous emission 
[10, 11]. 

For the large cyclotron excitations used here, the time it 
takes the axial resonance to come within a line width of  its 
Ec = 0 position is of order 100 ms. However,  since it takes 
several minutes of  signal averaging to observe the dip in the 
noise resonance, it is not possible to time resolve the shift- 
ing dip. One could apply a drive directly at Wz for Ec = 0 
and measure how long it takes to see the drive response il- 
lustrated in Fig. 4. Instead, we apply a parametric drive at 
cod = 2a~z and take advantage of  the large signal which is 
rapidly produced by a parametric excitation. At  t ime t = 0, 
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the microwave drive is turned off and the cyclotron energy 
begins to damp. Special relativity shifts the axial resonance 
upward, eventually into parametric resonance with the drive. 
After a delay, a parametric response thus begins (much like 
those in Fig. 13a, b). The response grows with a time con- 
stant that is due to a filter included to improve the signal-to- 
noise ratio. When this filter is removed, we can observe rise 
times less than 10 ms but the signal-to-noise ratio is such 
that averaging over hours then becomes necessary. Figure 15 
shows four measurements made of the time delay before a 
response is observed, for different values of the initial cy- 
clotron excitation. Each point is an average of 10 trials. The 
fitted line (constrained to pass through the origin) gives an 
exponential damping time for the cyclotron motion of 43 4-4 
ms. In free space, this cyclotron radiation lifetime would be 
99 ms. The spontaneous emission is clearly enhanced by 
the coupling between the cyclotron motion and the trap cav- 
ity. In the past, only the longer damping time for inhibited 
spontaneous emission could be observed [10]. 

During these measurements, we also observed the inter- 
esting behavior of two electrons whose cyclotron motions 
are excited. As a context, Fig. 16 shows the axial frequency 
of one electron as a cyclotron drive is swept downward (large 
shift) and upward (small excitation) through resonance. Like 
in earlier observations [9], the frequency of a driven and 
locked axial resonance is observed continuously. The char- 
acteristic, triangular resonant shape of the anharmonic oscil- 
lator is evident. This anharmonicity is due to special relativ- 
ity, as stated in (8). Sweeping the cyclotron drive downward 
through resonance when two electrons are present in the 
trap exhibits a slightly more complicated resonance struc- 
ture shown in Fig. 17. Initially, the slope is the same for two 
electrons as for one. This occurs because the center-of-mass 
motion is observed and the center of mass of two electrons 
has the same charge-to-mass ratio as does one electron. The 
cyclotron excitation energy drops suddenly but not to zero, 
presumably because one electron remains excited while the 
second damps to the center of the trap. The excitation of the 
excited electron continues and increases as the drive is swept 
downward in frequency until eventually this excitation also 
drops out. The measured ratio of the two slopes is 1.9 + 0.2 
and this ratio presumably could be calculated by consider- 
ing an electron-cyclotron orbit perturbed by the presence of 
a second charge at the center of the orbit, though it may 
be necessary to consider small axial excitations as well. Re- 
lated couplings of two antiprotons in cyclotron orbits with 
frequencies shifted by special relativity have been observed 
[12], as have similar couplings between a simultaneously 
trapped antiproton and H -  ion. 

3 Measuring the cyclotron frequency "in the dark" 

The measured enhanced spontaneous-emission rate reported 
in the last section was done "in the dark" insofar as the 
cyclotron decay occurred in the absence of any drive able 
to make an appreciable increase in the electron's excita- 
tion amplitude. However, the FET amplifier which detected 
the voltage induced across the resistor was left on continu- 
ously and energy dissipated in this FET caused the effective 
temperature of the resistor R to be higher than the ambient 
4.2 K. We now consider a cyclotron-frequency measurement 
which is more "in the dark" insofar as the FET detection 
amplifier is turned off during the crucial part of the mea- 
surement, allowing the resistor temperature to decrease to 
the ambient 4.2 K. The parametric axial oscillator is used 
as a one-bit memory to record whether or not a cyclotron 
excitation occurred. Since special relativity produces a shift 
in the electron's axial frequency when the cyclotron motion 
is excited, we need only detect a shift in the axial frequency. 
A parametric drive is turned on at a frequency correspond- 
ing to point A in Fig. 12. The axial motion of the electron is 
not excited. A downward, relativistic shift in the electron's 
axial frequency is equivalent to shifting the frequency of 
the parametric drive upward to point C in the figure. The 
electron's axial motion remains unexcited during the initial 
(and critical) cyclotron excitation, until the electron enters 
the single-valued region at arrow B enroute to point C. Even 
when the axial frequency shifts back because the cyclotron 
drive is turned off, the parametric hysteresis makes the ax- 
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ial excitation persist, as indicated by point D in the figure. 
The FET detector is subsequently turned on to read out the 
one-bit memory,  to find out whether an axial frequency shift 
(and hence a cyclotron excitation) took place. 

The energy levels for the lowest cyclotron eigenstates 
(number states) are shown in Fig. 18. Since no spin is 
flipped, we focus on one of  the two "ladders" of Landau lev- 
els. Because of special relativity, the cyclotron energy levels 
are not equally spaced. Instead, the transition frequency be- 
tween successively higher pairs of  energy levels is lower 
by 

6 = h(c°e')2 (9) 
TR, C 2 ' 

where 6/w~c = 10 -9. To make a cyclotron excitation, a cy- 
clotron drive frequency is swept upward to a turning point 
and then back downward [9, 13], as illustrated in Fig. 19. If  
the turning point is higher in frequency than the unshifted 
cyclotron frequency (C and D in Fig. 19), a large excitation 
is expected (like that directly detected with the FET turned 
on, in Fig. 16). I f  the turning point is less than the unshifted 
cyclotron frequency (and there is no power broadening), then 
no excitation is expected (A and B in Fig. 19). Figure 20 
shows the probability of  observing a large excitation as a 
function of turning-point frequencies which are separated 
from each other by one part in 109 (1 ppb). Each point is 
the average of 10 trials. It took two hours to produce this 
curve owing largely to the time required to turn on and off 
the heavily filtered voltage supply for the FET. The observed 
edge is very clean and has a resolution width less than 1 ppb. 
This is gratifying insofar as 1 ppb corresponds to the rela- 
tivistic frequency shift due to a single-quantum excitation of 
the cyclotron oscillator. We have thus succeeded in resolv- 
ing a one-quantum excitation of the cyclotron motion using 
special relativity, without resorting to any magnetic-field in- 
homogeneities which couple the various electron motions 
and severely broaden the resonance line shapes [5, 14]. This 
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Fig. 19. Representation of the change in the frequency of the drive applied 
to excite the cyclotron motion of an electron (above) in comparison to the 
resonant frequencies (below). For a cyclotron motion initially in its ground 
state, sweeping the drive to the "turning points" in A or B produces no 
excitation, whereas sweeping to the turning points C or D allows a large 
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Fig. 20. Probability for "pulled" relativistic excitation of the cyclotron mo- 
tion of one electron as a function of the turning-point frequency from which 
the cyclotron drive is swept to lower frequencies 

resolution also indicates that the magnetic field produced by 
a self-shielding, superconducting solenoid [15] drifted less 
than 1 ppb during this particular 2 h measurement. 

For a completely "in the dark" experiment, the axial mo- 
tion must also be decoupled from the thermal noise from the 
detection resistor. This is easily accomplished by detuning 
the trap potential to make the axial frequency no longer 
resonant with the LCR circuit which the resistor in Fig. 3 
represents. However, the axial excitation will remain at the 
average energy corresponding to 4.2 K insofar as such de- 
tuning also eliminates the axial damping. To cool the axial 



102 

motion below 4.2 K, it should be possible to employ cavity 
side-band cooling [16]. At  the 4.2 K ambient temperature 
of our current traps, the cooling limit for the axial motion 
would be 2 mK. If  we succeed in lowering our ambient tem- 
perature to 20 mK (an apparatus without the trap installed 
has already reached 17 mK), then the axial energy would be 
reduced to only 9 #K. 

4 Conclusion 

We look forward to repeating these studies in a cylindri- 
cal Penning trap [17], where the radiation modes are now 
well measured and understood [8, 18]. Observing a clean 
parametric resonance will be somewhat more difficult ow- 
ing to the larger trap anharmonicity represented by the pa- 
rameter C6 and may require a specially designed cylindrical 
Penning trap in which C6 is very small. The "in the dark" 
techniques demonstrated here, together with the desireable 
properties of  the cylindrical Penning trap, suggest the like- 
lihood of a new generation of  electron 9-2 measurements 
with higher accuracy and smaller systematic errors. Observ- 
ing clean parametric resonance with a single electron also 
demonstrates the sensitivity required to study the nonlinear 
dynamics of  two, three, four and more interacting electrons. 
An initial study of  the collective plasma behavior of many 
trapped electrons has been carried out [8], and now it should 
be possible to study the onset of collective motions as the 
particle number is increased from unity. 
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