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Unrestricted Principal Components Analysis of Brain 
Electrical Activity: Issues of Data Dimensionality, 
Artifact, and Utility 

Frank H. Duffy*, Kenneth Jones**, Peter Bartels ***, Gloria McAnulty*, and Marilyn Albert**** 

Summary: Principal components analysis (PCA) was performed on the 1536 spectral and 2944 evoked potential (EP) variables generated by 
neurophysiologic paradigms including flash VER, click AER, and eyes open and closed spectral EEG from 202 healthy subjects aged 30 to 80. In each 
case data dimensionality of 1500 to 3000 was substantially reduced using PCA by magnitudes of 20 to over 200. Just 20 PCA factors accounted for 
7076 to 8576 of the variance. Visual inspection of the topographic distribution of factor loading scores revealed complex loadings across multiple data 
dimensions (time-space and frequency-space). Forty-two non-artifactual factors were successful in classifying age, gender, and a separate group of 
60 demented patients by linear discriminant analysis. Discrimination of age and gender primarily involved EP derived factors, whereas dementia 
primarily involved EEG derived factors. Thirty-eight artifactual factors were identified which, alone, could not discriminate age but were relatively 
successful in discriminating gender and dementia. The need to parsimoniously develop real neurophysiologic measures and to objectively exclude 
artifact are discussed. Unrestricted PCA is suggested as a step in this direction. 

Key words: Spectral analysis; Evoked potentials; Principal components analysis; Singular value decomposition; Discriminant function analysis; 
Artifact; Dimensionality; Aging; Dementia. 

Introduction 

Principal componen t s  analysis  (PCA) is a wide ly  used  
statistical p rocedure  (Barrels 1981a; Bartels 1981b; Cooley 
and Lohnes  1971; Hotel l ing 1933; Seal 1964) that  has been 
appl ied to brain  electrical activity including data der ived 
f rom EEG spectral  analysis  and  f rom EEG signal averag-  
ing (evoked potent ials  or EP) (Donchin 1966; Duffy  et al. 
1990; Harne r  and  Riggio 1989; Ha rne r  et al. 1991; John et 
al. 1973; K a v a n a g h  et al. 1976; Lopes da  Silva 1987; Maier  
et al. 1987; Molfese et al. 1985; Rawlings et al. 1968; Rogers 

*Department of Neurology, Childrens Hospital and Harvard Medi- 
cal School, Boston, MA, USA. 

**Florence Heller Graduate School for Advanced Studies in Social 
Welfare, Brandeis University, Waltham, MA, USA. 

***Optical Sciences Center, University of Arizona, Tuscon, AZ, USA. 
. . . .  Departments of Neurology and Psychiatry, Massachusetts 

General Hospital and Harvard Medical School, Boston, MA, USA. 
Accepted for publication: March 2, 1992. 
Acknowledgements: This work was supported in part by NIA 

program project POIAG049853 to M. Albert and the Mental Retardation 
Program Project P30HD18655 to J.J. Volpe. We thank our qEEG tech- 
nologists Adele Mirabella, Susan Katz, Ellen Belles, and Marianne 
McGaffigan as well as our research secretaries for their unflagging 
support. 

Correspondence and reprint requests should be addressed to Frank 
H. Duffy, MD, Department of Neurology, Childrens Hospital, 300 
Longwood Avenue, Boston, MA, 02115, USA. 

Copyright © 1992 Human Sciences Press, Inc. 

and Douglas  1984; R6sler and  Manzey  1981; Scherg and 
Von C r a m o n  1985; Skrandies  and  L e h m a n n  1982; Suter 
1970; Valdes et al. 1990; Van Ro t t e rdam 1970; Wood  and 
McCar thy  1984). In general,  according to Barrels (Bartels 
1981a, 1981b), PCA offers  m a n y  a d v a n t a g e s  to the 
analys is  of mu l t iva r i a t e  da ta  sets for c i rcumstances  
where  initial, observed  var iables  are mani fo ld  but  m a y  
be r e d u n d a n t  or highly intercorrelated as is the case for 
EEG. By PCA, var iables  are t r ans formed  into a new data 
set of pa r s imonious  or mutua l ly  independen t  and  uncor-  
related (orthogonal) measures  usual ly  referred to as prin- 
cipal  c o m p o n e n t s  or  factors.  Resu l t ing  fac tors  are 
c o m m o n l y  expressed as the linear, we igh ted  combina-  
tion of observed  variables  and  inspect ion of such factor 
loading coefficients assists in establ ishing the ident i ty or 
mean ing  of the newly  created factors. To improve  inter- 
pretabili ty,  factor contrast  can be enhanced  while  main-  
taining or thogonal i ty  th rough  rotat ions in data space, 
often by the Var imax p rocedu re  (Kaiser 1958, 1959). 
Finally, selection of those factors carry ing the bulk of 
informat ion  about  the data  set, e.g., by  magn i tude  of the 
E igenva lue  (Kaiser  1960) or b y  the Bart le t t  cr i teria 
(Bartlett 1950) yields an es t imate  of the intrinsic data set 
dimensional i ty .  In addit ion,  subsequent  statistical pro- 
cedures ,  such  as d i sc r iminan t  func t ion  analysis,  are 
facilitated by  the meaningfu l  reduct ion  of input  variables 
afforded by PCA. 
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As we have previously discussed (Duffy et al. 1990) 
commercially available quantified EEG (qEEG) devices 
now facilitate collection of very large data sets involving 
many thousands of variables. Variable number can be 
obtained by multiplying the number of scalp electrodes 
(typically 19 to 21) by the number of data points per 
electrode (typically 64 to 256). Prior to analysis users may 
reduce variable number on the basis of pre-existing con- 
vention such as restricting analysis to a selected subset of 
electrodes and to predetermined EEG spectral band(s) or 
EP latency range(s). Recently Abt has described Descrip- 
tive Data Analysis, a more rigorous process by which 
users may restrict analyses to data subsets by recognition 
of patterns within their data set (Abt 1987, 1988; Duffy et 
al. 1990). The traditional PCA technique for data reduc- 
tion is not easily used in neurophysiology for most com- 
monly available statistical packages limit the number of 
input variables to levels well below 1000 often due to 
actual or presumed limitations of available computer 
memory. For this reason, among others, when PCA has 
been applied to scalp recorded data it has been univer- 
sally necessary to make prior simplifying assumptions to 
reduce input variable number before analysis. A com- 
mon approach to PCA on EP data is to treat each 
electrode as if it were a separate case. By this simplifica- 
tion variable number  is reduced to the number  of 
sampled points in time at a single electrode. Resulting 
factor loading plots reflect variation over time but not 
space as spatial variation (electrode location) is sacrificed 
to achieve variable reduction. This process, referred to 
as temporal factor analysis, collapses the spatial variation 
into among subject variation. Alternately, the voltage 
profile across the scalp at each point in time may be 
treated as if it were a single case. Resultant topographic 
maps of factor loadings reveal variation over space, but 
not time, as temporal variation is sacrificed to achieve 
prior variable reduction. This process, often referred to 
as spatial PCA, collapses temporal variation into among 
sub jec t  var ia t ion .  A l t h o u g h  bo th  p r o c e d u r e s  
demons t r a t e  a r educ t ion  of data  d imens iona l i ty ,  
simplifying assumptions place constraints such that 
potential relationships between input variables involv- 
ing both space and time may not be detected. 

Taking advantage of recent advances in low cost com- 
putational power, we undertook PCA of scalp recorded 
neurophysiologic data without  such simplifying as- 
sumptions. The number of variables was equal to the 
actual number of sampled data points which ranged 
from 1536 for EEG spectral to 2944 for long latency EP 
data. The number of cases represented the number of 
actual subjects. Resulting factor loadings were visually 
inspected across both space and time using techniques 
commonly employed for topographic mapping of EP 
data (Duffy 1982; Duffy et al. 1979). In 202 medically 

healthy subjects we evaluated the EP to flash and click as 
well as EEG spectra during eyes open and eyes closed 
states. Our goal was fourfold: 

(1) To estimate intrinsic data dimensionality. 
(2) To evaluate and identify both biologically mean- 

ingful and artifactual factors. 
(3) To estimate usefulness of resulting factors by their 

ability to classify subjects according to age, gender, and 
the presence or absence of dementia. 

(4) To separately estimate the spurious classification 
power of factors derived from non-cerebral sources (ar- 
tifact). 

Methods 

Subjec ts  

Two hundred and two healthy, normal subjects, rang- 
ing in age from 30 to 80, were studied. All subjects had 
been screened to exclude systemic, neurologic and 
psychiatric illness. Any person with a history of al- 
coholism, drug abuse, learning disabilities, severe head 
trauma, epilepsy, hypertension, chronic lung disease, 
kidney disease, diabetes, coronary artery disease, cancer 
or psychiatric illness were excluded from the study. 
Most subjects received a series of standard laboratory 
procedures (i.e., CBC, SMA-20, EKG) and cognitive tests 
to further assure that participants were free of clinical 
disease. The vast majority of subjects were also screened 
by head CT scan. A few subjects refused this test for fear 
of radiation exposure but were none-the-less included if 
all other indices of health were obtained and within 
normal limits. All subjects were medication free at the 
time of evaluation. Many of the male subjects were in- 
cluded in a previous electrophysiological study of nor- 
mative aging (Duffy et al. 1984b). The participants 
included both blue and white collar workers and, in 
general, represented a socioeconomic cross-section of the 
population. The subjects were divided into five decade 
groups as follows: 30-39 (N=29), 4049 (N=41), 50-59 
(N=29), 60-69 (N=57), 70-79 (N=46). Overall there were 
89 males and 113 females of which 191 were right handed 
and 10 left handed by report; one subject was am- 
bidextrous. The small number of left handers precluded 
analysis of this variable. 

In addition to the healthy population, an additional 60 
patients with the clinical diagnosis of early Alzheimer's 
dementia were studied. Many subjects were included in 
a previous study of the impact of Alzheimer's disease 
upon brain electrical activity (Duffy et al. 1984a). The 
diagnosis  of Alzhe imer ' s  disease was  made  by a 
n e u r o l o g i s t  and  i n d e p e n d e n t l y  s u p p o r t e d  by  a 
psychiatrist and neuropsychologist. Medical conditions 
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known to produce dementia were excluded. All subjects 
were otherwise medically healthy and underwent the 
evaluation indicated above for the normal controls. Fur- 
thermore, to rule out multi-infarct dementia all de- 
mented patients had to have ischemic scores of 4 or less 
on the Hachinski scale (Hachinski 1978). Finally to limit 
the study to mildly demented patients, only those with 
scores of 30 or below on the Activities of Daily Living 
scale were included (Weintraub et al. 1982). Selection 
criteria for the current study were not based in any way 
upon prior neurophysiologic data derived from either 
the control or demented subjects. 

Neurophysiologic Data Acquisition 

All neu rophys io log i c  data  were obta ined  and 
analyzed in the BEAM Laboratory of Children's Hospi- 
tal, Boston. EEG data were gathered during four be- 
havioral states which included the following: resting 
with eyes open (EOP), resting with eyes closed (ECL), 
long latency flash visual evoked potential (VER), and 
long latency tone-pip auditory evoked potential (AER). 
Considerable care was taken to minimize artifact due to 
eye movement, eyeblink, muscle tension, mouth and 
tongue movement, and gross body or head movement. 
In the eyes open states, subjects were given fixation tar- 
gets and were instructed to suppress blinking but were 
allowed frequent time outs or "blink holidays". In the 
eyes closed states thin, fully transparent soft film was laid 
gently over the eyes to provide the subject with feedback 
of residual involuntary eye-blinking. The EEG was con- 
tinuously monitored to detect and avoid state change 
(e.g., drowsiness). 

Data were obtained from 20 scalp electrodes (standard 
10-20 placement plus OZ) and, for EOP and ECL, four 
other bipolar artifact electrodes strategically placed to 
monitor vertical and horizontal eye movements and 
muscle tension resulting from face, jaw, or scalp mus- 
culature. Bipolar channels were placed above and below 
the right eye (VEM), between both outer canthii (HEM), 
between both temporal muscles just below the zygomatic 
arch (BTM), and between bodies of both posterior neck 
muscles 1-2 cm below inion level (BOM). For VER and 
AER data only 23 data channels were employed; the 
occipital muscle channel (BOM) was sacrificed for a trial 
marker since our polygraph was limited to 24 channels. 
Following amplification by a Grass model 24-D EEG 
polygraph set to bandpass from 1-300 Hz, data were 
stored for subsequent analyses on a Honneywell 5600E 
28-channel FM analogue 1" tape recorder (0-625Hz 
bandpass) along with  appropriate  trial and event 
markers. A through system sine wave calibration signal 
of 100 uV peak to peak at 10 Hz was recorded for all 
channels. Data were analyzed off-line after low pass 

filtering below 90 Hz and digitization at 256 Hz per 
channel for spectral analysis and 250 Hz for signal 
averaging. In this manner, contamination of the EEG 
spectral frequencies due to undersampling of higher fre- 
quency noise (aliasing) was avoided. Although our 256 
Hz per channel sampling rate allowed for spectral defini- 
tion of up to 128 Hz, data above 32 Hz were discarded 
from analysis of EEG spectral content as artifactual. Thus 
each spectrum consisted of 64, 0.5 Hz data values from 
0.5 to 32 Hz. The 0.0 Hz data value was eliminated as 
artifactual. EEG data destined for spectral analysis were 
gathered in two second segments which were inspected 
off-line, and those containing artifact were eliminated 
from subsequent analyses. A minimum of one minute 
(30-two second segments) but often over two minutes of 
artifact free EEG were used to form the final mean 
spectrum for each subject. Spectral values were ex- 
pressed as the log transform (Duffy 1988; Gasser et al. 
1982; Zar 1984) of the square root value. EP segments 
containing eye blink or motion artifact were eliminated 
on the basis of individually adjustable over-voltage 
criteria. A minimum of 200 segments, to a maximum of 
500 segments, were used to form the final averaged EP. 
All EPs were formed over 512 msec latency epochs (128, 
4 msec data points) both before and after time of stimula- 
tion. The prestimulus latency epoch was used to assure 
adequacy of signal averaging, to verify absence of time 
locked prestimulus artifact, and to provide a zero 
microvolt reference point. 

The VER was formed by visual stimuli (consisting of 
high intensity stroboscopic flashes) delivered from a 
sound-dampened Grass photostimulator Model PS-2, set 
at intensity 8, placed 25 cm from the subject's closed eyes. 
At such supra-maximal intensities dilatation is not neces- 
sary and was not used (Skalka and Holman 1986). A 
white-noise generator masked residual clicks. Stimuli 
were delivered on a pseudorandom basis. The mean 
interstimulus interval was 2.3 sec (range, 1.79 to 2.82 sec). 
To form the AER, auditory stimuli were delivered 
through binaural earphones at a supramaximal 92 db 
sound pressure level. The clicks consisted of 50 msec 
tone pips at 960 Hz with 10 msec rise and fall times. The 
delivery schedule was the same for the visual stimula- 
tion. EEG was carefully monitored for artifact and drow- 
siness during EP presentation. 

Off-l ine da ta  process ing  was  pe r fo rmed  on a 
Masscomp 5500 digital computer. A Nicolet software 
package was employed for off line digitization of tape 
recorded signals, artifact removal, spectral analysis, sig- 
nal averaging, and topographic mapping (Duffy et al. 
1979). The end product for each spectral analysis was 24 
spectral waveforms and for each EP, 23 EP waveforms - 
one from each active electrode. Thus each EEG state 
(EOP and ECL) generated 1536 spectral variables per 
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subject: 64 values per channel times 24 channels (20 scalp, 
four artifact). Similarly each EP state (VER and AER) 
generated 2944 variables per subject: 128 values per chan- 
nel times 23 channels (20 scalp and three artifact - the 
occipital mucle artifact channel was sacrificed for an 
event marker). Details of this procedure have been pre- 
viously described (Duffy 1989). 

Principal Components Analysis 

In the PCA technique there are three fundamental 
options regarding which data to factor: 1. the raw data, 
2. the centered data (i.e., means removed from each ob- 
servation), and 3. the standardized data (i.e., centered 
and shifted to have unit variance). These options cor- 
respond to factoring 1. the raw cross products matrix, 2. 
the dispersion or variance-covariance matrix, and 3. the 
correlation matrix. We chose to factor the correlation 
matrix as we ultimately wish to look at individual dif- 
ferences in brain electrical activity as they relate to other 
clinically derived variables such as those resulting from 
neuropsychological testing. Deviations from the average 
response are of primary interest and that is what our 
factors represent. PCA did not include the 60 pathologi- 
cal subjects. To develop factor scores on this group it was 
necessary to standardize these 60 patients on the basis of 
the means and variances of the normal group. 

Our approach was to factor the entire 1536 or 2944 
variable by 202 subject matrix. One may envision this 
type of data reduction as determiniung the minimum 
dimensionality of a space spanned by 202 subject vectors 
each containing 1536 or 2944 variables. In the usual case 
for PCA the number of subjects is assumed to be greater 
than the number of variables. For our data, the opposite 
was true. Accordingly it is necessary to take advantage 
of several techniques adapted to this issue (Golub 1989; 
Horst 1965; Jones 1967). We chose the technique known 
as Singular Value Decomposit ion (Golub 1989) to 
facilitate solutions in a reasonable length of computer 
time with manageable memory requirements. As the 
number of cases was smaller than the number of vari- 
ables, the maximum number of possible orthogonal roots 
was determined by the smaller case dimension of 202 (or 
201 since the mean was removed). 

Although the default minimal reduction of dimen- 
sionality from 1536 or 2944 to 201 might prove interesting 
since the roots would be orthogonal, the optimal and 
hoped for result would be to find a small number of roots 
describing a reasonably large amount of variance. A 
number of procedures have been developed to estimate 
the number of "significant factors" which traditionally 
include: 1. cumulative percent of trace, 2. Eigenvalues 
greater than one or the "rule of 1" (Kaiser 1960), and 3. 
Bartlett's test of significance of the residual matrix 

(Bartlett 1950). It is not uncommon for these estimates to 
disagree. In our experience Bartlett's test is more conser- 
vative, showing fewer "significant" factors than the rule 
of 1. 

To maximimize factor interpretability the standard 
Varimax rotation procedure was employed (Kaiser 1958). 
Evaluation of PCA results (Table 1) revealed disagree- 
ment among the different procedures for estimating the 
precise number of "significant" factors. At least 20 fac- 
tors were significant for all cases and accounted for 70 - 
85% of the cumulative variance in each case. As a com- 
putational compromise we elected to limit Varimax rota- 
tion and subsequent discriminant analyses to the first 20 
factors for each analysis. A consequence of this com- 
promise is that we cannot exclude the possibility of useful 
information in factors above 20. 

PCA and Varimax rotation were performed on a 25 
MHz 80486 microprocessor with Weitek coprocessor and 
32 megabytes of memory running PC Unix 5.4 from Esix. 
PCA took approximately one hour of CPU time including 
Varimax rotation. 

Other Statistical Analyses 

The prediction of age by the outcome factors was 
assessed by both multiple regression analysis with age as 
the independent variable and by linear discriminant 
function analysis with age as the "by decade" grouping 
variable. Assessment of the value of the factors in 
predicting gender and dementia involved linear dis- 
criminant function analysis. The 60 demented subjects 
were used only for the dementia analysis and were not 
included in the development of factors or for the gender 
and age analyses. The SPSS statistical package was 
employed. 

Results 

Dimensionality 

Table I shows the first ten Eigenvalues, the number of 
Eigenvalues above 1.0, and the number of statistically 
significant facors by Bartlett's test and the variance ex- 
plained by 20 factors. Based upon Bartlett's test, reduc- 
tion in dimensionality by PCA was considerable: 71.8 for 
VER, 226.5 for AER, 59.1 for EOP and 66.8 for ECL. The 
percent variance explained by the first 20 factors was 
71.66 for VER, 69.47 for AER, 86.06 for EOP, and 85.19 for 
ECL. 

Factor Loading Characterist ics 

Tables 2 and 3 summarize the results of visual inspec- 
tion of the spatio-temporal distrubution of the EP derived 
factors. Results for the spatio-spectral distrubution of the 
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Table 1. Results of unrestricted principal components 
analysis. 

Number of Number Sig- % Data Eigenvalues nificant by Variance 
Type (In- First 10 >1 (Data Bartlett (Data For First 
itial Vari- Eigenvalues Reduction Reduction Fac- 20 Fac- 

ables) Factor~ tor~ tors 

VER 358.786 
(2944) 219.816 

212.064 
140.576 
125.240 
117.768 
106.985 
102.938 
94.350 
82.098 

130 41 
(22.6) (71.8) 

71.66 

AER 
(2944) 

386.255 
288.889 
218.908 
181.410 
124.603 
113.072 
95.233 
85.560 
71.285 
64.005 

170 13 
(17.3) (226.5) 

69.47 

EOP 
(1536) 

541.003 
157.725 
126.876 
69.402 
64.493 
50.512 
48.076 
37.516 
33.148 
29.652 

74 26 
(20.8) (59.1) 

86.06 

ECL 
(1536) 

584.181 
163.456 
85.800 
58.772 
54.044 
47.516 
41.728 
35.893 
33.886 
30.064 

78 23 
(19.7) (66.8) 

85.19 

Table 2. VER factor definition. 

Data % 
Factor Variance Status Type After 

Number Rotation 

VER 7.52 real 
1 

2 5.65 real 

3 4.60 real 
4 4.29 real 

5 4.81 real 

6 3.19 artifact 

7 2.31 real 

8 3.77 artifact 

9 4.00 real 

10 4.44 real 
11 3.62 real 

12 2.71 real 

13 2.48 real 

14 2.79 real 

15 2.58 artifact 

16 2.41 artifact 

17 3.88 real 

18 2.31 real 

19 2.22 artifact 

20 2.06 artifact 

Total 71.66 % 

Max Loading: Location, Latency 
& Description 

+.922 at FP1, 480 msec, broad bilat 
frontal 

-.874 at FZ, 248 msec, medial fron- 
tal 

-.843 at CZ, 92 msec, fronto-cental 
-.868 at F4, 176 msec, fronto-cental 
-.867 at 02, 388 & 488 msec, 

bilateral occipital oscillatory 
-.892 at HEM, 396 msec, horizontal 

eye movement 
-.762 at 02, 268 msec, occipital os- 

cillatory 
-.902 at CZ, 16 msec, muscle micro 

reflex/ERG 
-.803 at P3, 212 msec, posterior 

quadrants 
-.822 at FZ, 316, medial frontal 
-.853 at P3, 296 msec, bi-parietal 
-.860 at FZ, 124 msec, medial fron- 

tal 
+.810 at OZ, 128 msec & also -.592 

at OZ, 72 msec, occipital 
-.859 at PZ, 360 msec, bi-parietal 
-.819 at VEM, 144 and 472 msec, 

vertical eye movement/blink 
-.848 at FP2, 60 msec & +.554 at 

FP2, 24 msec, ERG & blink 
-.809 at CZ, at 412 msec, central 
+.634 at 02, 172 msec, occipital os- 

cillatory 
+.713 at HEM, 192 msec, horizon- 

tal eye movement 
+.818 at BTM, 376 msec, bilateral 

temporal muscle 

EEG d e r i v e d  fac tors  a re  s i m i l a r l y  s h o w n  in Tab les  4 a n d  

5. N o t e  for  al l  f ou r  se ts  of  f ac to rs  (Tables  2-5) tha t  the  
p e r c e n t a g e  of v a r i a n c e  a c c o u n t e d  for  b y  the  fac to rs  does  

n o t  n e c e s s a r i l y  s h o w  a c o n t i n u o u s  d e c r e m e n t  for  inc reas -  
i ng  fac to r  n u m b e r .  This  ref lec ts  r e a l l o c a t i o n  of v a r i a n c e  
af ter  the  V a r i m a x  ro ta t ion .  In  gene ra l ,  v i s u a l i z a t i o n  of 
fac tor  l o a d i n g  p a t t e r n s  r e v e a l e d  s m o o t h l y  v a r y i n g  func-  
t i o n s  w i t h o u t  d i s c o n t i n u i t i e s ;  a l l  i m a g e s  a p p e a r e d  
" b io log i c a l "  in  n a t u r e  a n d  m a n y  h a d  the  a p p e a r a n c e  of a 
s i m p l i f i e d  EP (e.g., f i gu re  1) or  s p e c t r a l  (e.g., f i gu re  2) 
w a v e f o r m .  It  w a s  e v i d e n t  t ha t  c e r t a i n  fac to rs  w e r e  
p r o b a b l y  a r t i f ac tua l  in  n a t u r e  on  the  bas i s  of  p r i m a r y  
l o a d i n g  o n  one  of  the  t h ree  (EP) o r  f o u r  (EEG) ar t i fac t  
c h a n n e l s  (e.g., f i gu re  5). In  a d d i t i o n ,  f ac to rs  w e r e  con-  
s i d e r e d  a r t i f ac tua l  if l o a d i n g s  p r i m a r i l y  i n v o l v e d  s ing le  
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Table 3. AER factor definition. Table 4. EOP factor definition. 

Data % 
Factor Variance Status Type After 

Number Rotation 

AER 8.63 real 
1 
2 5.35 real 

3 4.73 artifact 

4 4.77 real 

5 3.77 real 

6 4.45 real 

7 2.72 artifact 

8 3.18 real 

9 1.56 real 

10 2.71 artifact 

11 2.01 artifact 

12 1.86 artifact 

13 3.86 artifact 

14 7.14 real 

15 3.04 artifact 

16 3.84 real 

17 1.49 real 

18 1.35 artifact 

19 1.24 artifact 

20 1.75 real 

Total 69.47 % 

Max Loading: Location, Latency 
& Description 

+.849 at FZ, 416 msec, bifrontal 

-.885 at FZ, 148 msec, frontal 
+.812 at F7 & -.574 at F8, 340-472 

msec, horizontal eye movement 
-.812 at P3, 304 msec, bi-parietal 
+.894 at FZ, 104 msec, central-parie- 

tal 
+.826 at FZ, 276 msec, frontal 
+.889 at BTM, 200-500 msec, 

bilateral temporal muscle 
+.866 at CZ, 64 msec, central 
-.412 at CZ, 332 msec, central-parie- 

tal 
-.780 at PZ, 480 msec, technical ar- 

tifact 
+.734 at CZ, 12 msec, muscle micro 

reflex 
+.828 at PZ, 36 msec, early AER or 

muscle 
+.828 at HEM, 52-440 msec, 

horizontal eye movement 
-.906 at PZ, 216 msec, bi-parietal 
-.860 at VEM, 244-500 msec, verti- 

cal eye movement/blink 
-.748 at O1, 384 msec, broad bi- 

parietal-occipital 
-.645 at T5, 144 msec, broad, 

biposterior 
-.577 at VEM, FP1, FP2, 0-50 msec, 

ERG or eye artifact 
+.545 at T6, 52 msec, focal right 

posterior temporal 
-.672 at O1, 108 msec, broad 

biposterior 

e l ec t rodes ,  e s p e c i a l l y  b i l a t e r a l  m i d  t e m p o r a l  or  p o s t e r i o r  
t e m p o r a l  e l e c t r o d e s  in  the  h i g h e r  s p e c t r a l  be t a  r a n g e  
(e.g., f i gu re  6). Of  the  in i t i a l  80 fac tors ,  38 w e r e  d e e m e d  
a r t i f ac tua l  o n  the  bas i s  of  h i g h  l o a d i n g  o n  at  l eas t  one  
a r t i fac t  c h a n n e l ,  o r  u n u s u a l l y  foca l  l o a d i n g  on  one  o r  
m o r e  a r t i fac t  p r o n e  s c a l p  c h a n n e l s  d e s p i t e  a b s e n t  a r t i fac t  
c h a n n e l  l o a d i n g  ( u s u a l l y  focal  be ta )  o r  EP fac tors  l o a d i n g  
at  v e r y  e a r l y  l a t enc i e s  s u g g e s t i v e  of  m u s c l e  m i c r o r e f l e x  
(Bickford  et  al. 1964) or  e l e c t r o r e t i n o g r a m .  Of  the  38, 19 
w e r e  r e c o g n i z e d  b y  h i g h  l o a d i n g  o n  a n  a r t i fac t  c h a n n e l  
a n d  19 w e r e  p r e s u m e d  a r t i f a c tua l  b y  the  o t h e r  e m p i r i c a l  

cr i ter ia .  F o r t y  n o n - a r t i f a c t u a l  f ac to rs  r e m a i n e d  (14 VER, 
11 AER,  8, EOP,  9 ECL). In  Tab l e s  2 to 5 the  s ing le  
e l e c t r o d e  at  w h i c h  l o a d i n g  w a s  g r e a t e s t  is g iven;  in  no  

Data % 
Factor Variance Status Type After 

Number Rotation 
EOP 

10.60 real 1 

2 16.80 real 

3 8.68 artifact 

4 4.15 artifact 

5 8.54 real 

6 3.19 artifact 

7 4.56 artifact 

8 7.16 real 

9 5.44 real 

10 2.09 artifact 

11 1.79 real 

12 1.74 artifact 

13 1.83 artifact 

14 1.45 artifact 

15 1.23 real 

16 2.30 artifact 

17 1.02 artifact 

18 1.12 artifact 

19 1.06 artifact 

20 1.32 real 

Max Loading: Location, Latency 
& Description 

-.910 at OZ, 18-32 Hz, posterior 
beta 

+.883 at CZ, 12-18 Hz, central slow 
beta 

+.942 at FP1 & +.921 at VEM & 
FP2, 1.5 Hz, vertical eye move- 
ment or blink 

+.945 at BTM, 1.5-32 Hz, bilateral 
temporal muscle 

+.891 at F3, 26 msec, bifrontal beta 
+.953 at BOM, pan spectral, 

posterior muscle 
+.900 at T3 & +.725 T4, 14-32 Hz, 

bitemporal muscle 
-.867 at CZ, 7 Hz, central 
-.761 at PZ, 0.5-6 Hz, peaks 2.5 Hz, 

parietal delta 
-.773 at VEM, 13-32 Hz, vertical 

eye movement/blink 
+.625 at C3, 22-32 Hz, bilateral 

central beta 
-.707 at FP2, 16-32 Hz, focal right 

prefrontal muscle 
+.775 at HEM, 22-32 Hz, horizontal 

eye movement 
+.840 at T6, 0 Hz, broad bi- 

posterior delta noise 
-.575 at OZ, 10 Hz peak, classic 

alpha 
+.683 at T5, 28 Hz, bi-posterior tem- 

poral muscle artifact 
+.473 at HEM, 1 Hz, horizontal eye 

movement 
-.481 at T4, 11.5 Hz, focal right mid 

temporal alpha 
-.567 at F7, 15-32 Hz, focal left tem- 

poral beta 
+.469 at CZ, broad peak at 23 Hz, 

central beta 

Total 86.06 % 

i n s t a n c e  w e r e  d i sc re te ,  s p a t i a l l y  i s o l a t e d  l o a d i n g s  n o t e d  
for  t he se  " rea l "  fac tors .  

F i g u r e  1 i l l u s t r a t e s  the  fac to r  l o a d i n g  p a t t e r n  of  A E R  
fac tor  5 (Table  3). T h e r e  is a c l ea r  p e a k  at  104 msec .  p o s t  
s t i m u l u s  l a t e n c y  ( f igure  1A) a c c o m p a n i e d  b y  a s y m m e t r i -  
cal  f r o n t o - c e n t r a l  spa t i a l  d i s t r i b u t i o n  ( f igure  1B) w i t h  
m a x i m a l  l o a d i n g  of  0.894 at  the  m i d  f ron ta l  e l ec t rode ,  FZ. 
N o t e  tha t  t he re  is m i n i m a l  l o a d i n g  o n  the  ve r t i ca l  eye  
m o v e m e n t  c h a n n e l  (VEM) s u g g e s t i n g  n o n - a r t i f a c t u a l  
or ig ins .  Th is  f ac to r  p r o b a b l y  r e p r e s e n t s  the  c lass ic  N1 
c o m p o n e n t  of  the  AER. N o t e  in  g e n e r a l  t ha t  the  s ign  of  
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Table 5. ECL factor definition, 

Data % 
Factor Variance Status Type After 

Number Rotation 
ECL 18.46 real 

1 

2 12.48 real 

3 10.30 real 

4 5.76 real 

5 3.16 artifact 

6 5.41 real 

7 2.82 artifact 

8 3.42 artifact 

9 3.05 artifact 

10 3.83 real 

11 2.22 artifact 

12 3.39 artifact 

13 1.22 real 

14 1.53 artifact 

15 1.99 artifact 

16 1.31 artifact 

17 1.43 real 

18 1.30 artifact 

19 1.00 artifact 

20 1.11 real 

Total 85.19 % 

Max Loading: Location, Latency 
& Description 

-.876 at CZ, 14 Hz, central slow beta 

+.834 at FZ, 27-30 Hz, fronto- 
central fast beta 

+.876 at PZ, 0.5-6.5 Hz, peaks 2 Hz, 
posterior delta 

+.824 at C4, 6-8.5 Hz, peaks 7.5 Hz, 
central theta 

-.949 at BOM, pan spectral, peaks 
15 Hz, posterior muscle 

-.888 at OZ, 28 Hz, occipital beta 
-.902 at VEM, 14-32 Hz, bifrontal 

eye muscle 
+.904 at T3, 17-32 Hz, peaks 23.5 

Hz, focal bi-midtemporal muscle 
+.936 at BTM, 12-25 Hz, bitem- 

poral muscle 
-.813 at O1, 10.5 Hz, classic alpha 
-.662 at FP1, 21-32 Hz, biprofrontal 

muscle 
+.909 at VEM, FP1, FP2, 0.5-5 Hz, 

vertical eye movement and blink 
+.432 at OZ, 9.5 Hz, biposterior 

alpha and 2nd harmionic 
-.485 at T4, 14-32 Hz, focal right 

temporal muscle 
-.780 at HEM, 17-32 Hz, horizontal 

eye movement 
-.660 at T5, 21-32 Hz, focal left 

posterior temporal muscle 
+.610 at CZ, 8.5 Hz, bianterior slow 

alpha 
+.389 at T5, 0.5 Hz, biposterior tem- 

poral movement artifact 
+.337 at OZ, 13 Hz, occipital 

muscle 
-.452 at CZ, 26-28 Hz, central beta 

the correlation be tween the factor and its under ly ing  
variables (positive for AER factor 5) does not  necessarily 
bear  any  mean ing fu l  re la t ionsh ip  wi th  the original  
polarity of the AER (negative for N1). Figure 2 shows the 
pattern for ECL factor 10 (Table 5). There is a clear peak 
at 10.5 Hz (figure 2A) accompanied by an occipital dis- 
tribution (figure 2B) wi th  maximal  loading of 0.813 at left 
occipital electrode O1. Note  the relatively low loadings 
on the occipital muscle channel  (BOM) suggesting non- 
artifactual origins. This factor appears  to correspond to 
classic occipital reactive alpha. Figure 3 illustrates VER 
factor 3 (Table 2). This factor has two post st imulus 

latency peaks, the larger negative loading of 0.843 at 92 
msec. and a smaller positive loading of 0.452 at 160 msec. 
Note  the slightly different spatial distributions for the 
t w o  t i m e s  of  m a x i m u m  l o a d i n g .  T h i s  f a c t o r  
demonstra tes  associations be tween variables generated 
at differing points in time and space. 

Figures  4 and  5 i l lustrate  two  ar t i factual  factors 
detected by high artifact channel  loading and figure 6 
shows an artifactual factor so designated on the basis of 
loadings on artifact prone scalp electrodes. Figure 4 
shows AER factor 13 which appeared  to represent  verti- 
cal eye movemen t  artifact (Table 3). Note  the relatively 
noisy and low level appearance of the scalp electrode 
loadings with maxima seen in the prefrontal  electrodes 
of 0.3 to 0.4 (FP1 and FP2, figure 4B). On the other  hand 
VEM artifact channel  demonstra tes  a loading of 0.860 
(figure 4A top middle  and figure 4B, top buttons). Figure 
5 depicts ECL factor 15 represent ing  hor izonta l  eye 
movemen t  muscle artifact (Table 5). Note  once again (Fig 
5A) the low ampli tude,  noisy, scalp electrode factor load- 
ing plots reaching a m a x i m u m  of only 0.1 to 0.2 some- 
what  greater in the anterior  temporal  electrodes (F7, F8 - 
Fig 5B). Nonetheless  this factor loads 0.780 on the 
horiziontal  eye m o v em en t  artifact channel  (HEM, figure 
5B left but ton  and figure 5A top left trace) and 0.380 on 
the bilateral temporal  muscle channel  artifact (BTM). 
Al though m ax im u m  loading was achieved at 25.5 Hz, 
note the cont inuous high loadings f rom 13 to 32 Hz over 
the entire beta band. ECL factor 8 (only topographic  map  
shown - Fig 6) was designated artifactual on the basis of 
heavy loadings in the bilateral mid  temporal  electrodes 
(T7, T8) despite absent loadings on BTM or HEM. Load- 
ings  r e a c h e d  0.904 for  T7 an d  0.661 for  T8. The 
topographic  m ap  of the factor loading scores at the 
spectral point  of m a x i m u m  loading demonst ra ted  char- 
acteristic high values in both temporal  regions with a 
pat tern recognized in clinical mapp ing  studies as bi-tem- 
poral muscle artifact. Al though maximal  loading was 
achieved at 23.5 Hz, there was a broad  distribution of 
high loadings from 12 to 32 Hz  involving the entire beta 
band, a pat tern also suggest ing muscular  rather than 
cerebral origin. 

Statistical Evaluat ion 

Age 

All 202 normal  subjects were g rouped  into the five 
decades indicated above. Linear discriminant analysis 
was per formed on the basis of the 42 artifact free factors 
(Table 6A). The first cannonical  discriminant function 
was highly statistically significant, Wilk's lambda 0.166, 
p < 0.0001, wi th  an overall classification success of 66%. 
Note that the r an d o m  outcome for this five group dis- 
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AER FACTOR 5 

Figure 1. This figure displays the spatial and temporal extent of AER factor 5. tn figure 1A the factor Ioadings are displayed 
as if they were evoked potential data, The 2944 factor loadings are divided into 23 curves of 128 Ioadings each 
corresponding to the 23 original evoked potentials. The name of the appropriate electrode is given to the right of each 
curve. Each curve corresponds to 512 msec time. Scale shown above indicates a loading value of 1.0 (vertical line) and 
100 msec latency (horizontal line). Figure 1B is a schematic map of the head from vertex view with nose above, right ear 
to the right, left ear to the left, and occiput  below. Data within the head outline represent the topographic distribution 
of factor ioadings at  104 msec, peak of the curves shown in figure 1A. The head outline is surrounded by six "buttons" 
reflecting artifact channel data. The two buttons above the eye correspond to vertical eye movement and blink arifact 
(VEM). The button by the left ear corresponds to horizontal eye movement and/or  temporal muscle artifact (HEM). The 
button to the righf of the right ear reflects bilateral temporal muscle activity (BTM). The occipital two buttons correspond 
to occipital muscle activity (BOM). See text for electrode p lacement  description. Red-orange corresponds to positive 
loadings and blue to negative loadings. Maximum loading is at electrode FZ, +0.899. This curve is believed to represent 
non-artifactual data corresponding to the N1 long latency AER component  latency. 

ECL FACTOR 10 

j 

Figure 2. Both figures 2A and 2B are displayed similarly to the format of figure 1, Data correspond to the spatio-spectral 
distribution of ECL factor 10. The scale corresponds to a loading score of 1.0 (vertical line) and 10 Hz (horizontal line). 
Curves correspond to the original 24 EEG spectral curves of 64 data values from 0,5 to 32 Hz. Figure 2B depicts the 
topographic distribution of the loading factors at 10.5 Hz, peak of the curves in figure 2A. Maximum loading is achieved 
at electrode O1, -0.813. This factor represents non-artifactual data corresponding to the classic alpha spectral peak. 
Note minimal Ioadings in the artifact buttons. 
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VER FACTOR 3 

~t !i i i  ! ,  ! ,  
X: W W W 

Figure 3. Figure 3A is displayed as for figure 1A and figures 
3B and 3C are displayed as for figure 1B, Figure 3 shows 
VER factor 3. Figure 3B depicts the distribution of negative 
toadings at the 92 msec peak, -0.843 at electrode FZ, 
Figure 3C depicts the positive loadings at 160 msec, max- 
imal at electrode PZ, -0,452, This factors illustrates the 
natural tendency of original data to associate across 
space and time, 

AER F A C T O R  13 

Figure 4, Figure 4 is shown as for figure 1, Illustrated is the spatio-temporat distribution of AER factor 13. It is an artifacuat 
factor which loads maximally on the vertical eye movement channel (VEM) shown above in figure 4A - (VEM button is 
white, maximum), The topographic distribution at 360 msec is displayed in figure 4B, the time of maximal VEM loading, 
-0.860, This corresponds to a typical vertical eye movement artifact. 
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ECL FACTOR 15 

Figure 5. Figure 5 is shown as for figure 2. Illustrated is the spatio-spectral distribution of ECL factor 15 representing a typical 
horiziontal eye movement muscle artifact. The topographic map in figure 5B shows the frequency of maximum loading 
at 25.5 Hz, maximal in the horizontal eye movement channel (HEM bufton) at + 0.780 and bilateral temporal muscle 
channel (BTM button) at +0.380. 

Figure 6. Figure 6 shows the topographic map for artifac- 
tual ECL factor 8 at 25.5 Hz, where loading was maximal 
at the left mid temporal electrode, T7 (+0.904), and the 
right mid temporal electrode, T8 (+0.661 ). Display conven- 
tion is as for figure 2B. Note the clearly artifactual nature 
corresponding to temporal muscle actMty but without 
heavy loading on BTM or HEM. 

criminant would be 20% in contrast to a 50% random 
outcome for a two group problem. Of the 10 factors most 
highly correlated with the discriminant function, eight 
were derived from EP data (five VER, three AER) and two 
from EEG data (EOP). Most factors involved symmetri- 

cal frontal and central areas. The two EEG factors in- 
volved parietal delta and occipital alpha. 

When  the same five g roup  d i s c r i m i n a n t  was  
restrticted to the 38 artifactual variables, a different result 
was seen (Table 6B). Wilk's lambda increased to 0.494 
and did not quite achieve significance at the 0.05 level. 
Factors correlating with the discriminant function in- 
cluded early muscle artifact and ERG signals, blink ar- 
tifact, horizontal eye movement, and temporal muscle 
activity. 

Multiple regression restricted to the 42 non-artifactual 
factors with age now treated as a continuous rather than 
a grouping variable yielded an overall Multiple R of 
0.795, explaining 63 % of the variance (Table 6C). 
ANOVA on the residual was quite significant, p < 0.0001. 
Of the 10 most significant variables, nine were derived 
from EP data (five VER, four AER) and only one from 
EEG (EOP). Variables were similar to those in the 42 real 
factors discriminant analysis described above. 

Gender 

Using the 42 real factors, 88% of males and females 
were correctly discriminated overall with roughly equal 
success for both genders (male=92%, femalesffi85%). 
Wilk's lambda was 0.45, significant at p < 0.0001 (Table 
7A). Of the 10 most highly correlated factors with the 
discriminant function, five were EP derived (three VER, 
two AER) and five EEG derived (three EOP, two ECL). 
Factors included many sources including occipital oscil- 
latory VER (factor 18), central theta (ECL factor 4), occipi- 
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Table 6. Statistical analyses: prediction of age. 

A) AGE BY LINEAR DISCRIMINANT ANLAYSIS OF FIVE DECADE USING 42 "REAL" FACTORS 

W i l k ' s  l a m b d a  = 0.166 C h i s q u a r e  = 319.069 D F  = 168 p <= 0.0001 

10 m o s t  h i g h l y  corre la ted  factors  
with discr iminant  f u n c t i o n s :  

G r o u p  M e m b e r s h i p  Predict ion:  O v e r a l l  S u c c e s s  = 65.84% 

Factor Corre la t ion  

AEP factor 6 0.282 

VEP factor 10 -0.251 

VEP factor 4 0.239 

AEP factor 2 0.236 

VEP factor 13 -0.190 

VEP factor 3 0.188 

VEP factor 17 0.181 

EOP factor 9 0.176 

EOP factor 15 0.161 

AEP factor 16 -0.097 

actual 

(N) 
% p r e d i c t e d  g r o u p  m e m b e r s h i p  

30 40 50 60 70 

30 (29) 79,3 13.8 3.4 0.0 3.4 

40 (41) 9.8 58.5 12.2 10.3 7.3 

50 (29) 6.9 13.8 69,0 10.3 0.0 

60 (57) 3.5 7.0 10.5 50.9 28.1 

70 (46) 0.0 0.0 6.5 13.0 80,4 

B) AGE BY LINEAR DISCRIMINANT ANALYSIS OF FIVE DECADE USING 38 "ARTIFACT" FACTORS 

Wilk 's  lambda = 0.494 C h i s q u a r e  = 130.646 DF = 108 p <-- n s  

7 most h ighly  correlated factors  

with first d iscr iminant  function: 

Factor Factor 

AEP factor 12 EOP factor 19 

VEP factor 16 EOP factor 10 

AEP factor 13 AEP factor 3 

VEP factor 6 

C) AGE BY MULTIPLE REGRESSION USING 42 "REAL" FACTORS 

Mult iple  R = 0.795 V a r i a n c e  explained --- 63.24 

A N O V A  o n  Res idua l :  F = 6.32 (42 ,158) ,  p <= 0.0001 

10 M o s t  s i g n i f i c a n t  V a r i a b l e s  b y  T Test:  Factor T value Factor 

AEP factor 2 

AEP factor 6 

VEP factor 10 

AEP factor 20 

VEP factor 3 

4.13 

3.72 

-3.70 

-3.49 

3.47 

EOP factor 5 

VEP factor 4 

VEP factor 17 

AEP factor 8 

VEP factor 13 

T value 

3.06 

3.03 

2.81 

2.56 

-2.28 
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Table 7. Statistical analysis: predict ion of gender.  

A) G E N D E R  BY LINEAR DISCRIMINANT ANALYSIS USING 42 "REAL" FACTORS 

Wilk's  l ambda  = 0.445 Chisquare = 144.877 DF = 42 p <= 0.0001 

10 most  h i g h l y  correlated factors w i t h  discriminant function: Grour Membership Prediction: Overall Suc- 
cess = 88.12% 

Factor Correlation Factor Correlation actual % predicted group membersh ip  

VEP factor 18 0.363 AEP factor 2 -0.181 (N) F M 
ECL factor 4 -0.302 ECL factor 2 0.177 
EOP factor I -0.265 AEP factor 6 -0.162 F(113) 85.0 15.0 
VEP factor 3 0.214 VEP factor 11 -0.152 M(89) 7.9 92.1 
EOP factor 9 -0.210 EOP factor 2 0.147 

B) GENDER BY LINEAR DISCRIMINANT ANALYSIS USING 38 "ARTIFACT" FACTORS 

Wilk's lambda = 0.697 Chisquare = 65.288 DF -- 38 p <= 0.0038 

10 most  h i g h l y  correlated factos w i t h  dis- 
¢riminant functions: 

Group Membership Prediction: Overall Success = 
73.76 

Factor Factor actual % predicted group m e m b e r s h i p  

VEP factor 16 EOP factor 3 (N) F M 
ECL factor 18 EOP factor 6 
ECL factor 9 ECL factor 5 F(113) 72.6 27.4 
ECL factor 8 VEP factor 8 M(89) 24.7 75.3 

EOP factor 14 EOP factor 13 

tal beta (EOP factor 1) among  others. 
Using the 38 artifactual factors (Table 7B), correct 

gender  discrimination was reduced,  but  not  to the chance 
level, at 74% overall  (males--75%, females=73%). Wilk's 
lambda at 0.70 was increased but  remained significant (p 
< 0.004). Factors most  correlated wi th  the discriminant 
function included ERG and blink (VER factor 16) and 
many  temporal-occipital  muscle factors. 

Dementia 

Table 8 s u m m a r i z e s  l inear  d iscr iminant  func t ion  
analyses be tween  the 202 normal  heal thy adults  and the 
60 Alzheimer 's  patients. On  the basis of the 42 real 
factors (Table 8A), Wilk's l ambda  was 0.52, significant at 
p < 0.0001. Ninety  percent  of subjects were  correctly 
classified; normals--92%, Alzheimer patients=85%. Six 
of the 10 factors most  correlated wi th  the discriminant 

funct ion were  EEG der ived (three EOP, three ECL) and 
four  were  EP der ived (two AER, two VER). EEG derived 
factors represented the four  most  correlated factors. Fac- 
tors, among  others, represented  central theta (EOP factor 
8), parietal delta (EOP factor 9 and ECL factor 3), and slow 
beta (ECL factor 1). EP factors were  largely frontal. 

Restriction of analyses to the 38 artifactual factors 
resulted in little degradat ion  of result  Table 8B). Wilk's 
lambda decreased slightly (0.51) and was highly sig- 
nificant (p < 0.0001). Overall  classification was slightly 
reduced  to 87%; normals---87%, Alzheimers--88%. How-  
ever, artifact der ived  factors were  slightly better in dis- 
c r iminat ing  just the Alzhe imer ' s  patients.  Half  the 
discriminating factors der ived f rom eye movemen t  or 
muscle activity in the eye channels  (AER factors 3 and 15, 
EOP factors 17 and 3, and ECL factor 12). Remaining 
factors represented artifactual delta and beta or other 
artifact. 
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Table 8. Statistical analysis: prediction of dementia 

A) DEMENTIA BY LINEAR DISCRIMINANT ANALYSIS USING 42 "REAL" FACTORS 

Wilk's  lambda  -- 0.518 Chisquare = 157.194 DF = 42 p <= 0.0001 

10 most  h igh ly  correlated factors w i t h  discriminant function: Grour Membership Prediction: Overall Suc- 
cess = 90.46% 

Factor Correlation Factor Correlation 

EOP factor 8 0.440 VEP factor 2 0.262 
EOP factor 9 0.375 VEP factor 2 0.256 
ECL factor 3 -0.358 AEP factor I 0.237 N(202) 
ECL factor I -0.345 EOP factor 2 0.229 A(60) 

VEP factor 12 0.286 AER factor 20 0.228 

actual % predicted group membersh ip  

(N) N a 

92.1 7.9 
15.0 85.0 

B) DEMENTIA BY LINEAR DISCRIMINANT ANALYSIS USING 38 "ARTIFACT" FACTORS 

Wilk's  lambda  -- 0.512 Chisquare = 161.185 DF = 38 p <= 0.0001 

10 most  h i g h l y  correlated factos w i t h  dis- 
criminant functions: 

Group Membership Prediction: Overall Success = 
87.02% 

Factor Factor actual % predicted group m e m b e r s h i p  

AEP factor 3 ECL factor 12 (N) N A 
EOP factor 17 EOP factor 3 
ECL factor 19 EOP factor 18 N(202) 86.6 13.4 
AEP factor 10 ECL factor 18 A(60) 11.7 
EOP factor 14 AER factor 15 

Discussion 

Principal components  analysis (PCA) was per formed 
on the brain electrical activity of 202 heal thy adults 
employing singular value decomposit ion,  a computa-  
tional algori thm which facilitates analysis of data sets 
with large numbers  of initial variables and smaller num-  
bers of subjects. The goal was to derive factors f rom the 
thousands  of variables characteristically p roduced  "in 
qEEG mapp ing  studies. Prior studies have often made  
simplifying assumptions  such as restricting analysis to 
the t ime d imension and neglecting space so as to reduce 
variable number  to a more  manageable  size. Such com- 
putational  restrictions are no longer necessary given the 
ready availability of fast microprocessors  with cheap 
memory  and PCA algori thms opt imized to manage  com- 
putational  singularities (Golub 1989). As anticipated our  
results demonst ra ted  a clear clustering of evoked porten-  

tial (EP) factor loading scores at regions def ined by both 
time and space (figures 1 and 3). VER factor 3 was 
remarkable in that two separate space - t ime cluster 
points were  clearly visible (figure 3), one at 92 msec in the 
fronto-central  region and another  at 160 msec in the 
parietal vertex region. Similarly spectral factor loading 
patterns clustered at regions def ined by  both frequency 
and space. ECL factor 10, for example,  appears  to repre- 
sent eyes closed alpha on the basis of the occipital loca- 
tion and 10.5 Hz peak loading (figure 2). Almost  all factor 
loading score profiles, w h e n  visualized in two dimen- 
sions (t ime-space or f requency-space) ,  demons t ra ted  
considerable variat ion across both  dimensions.  Those 
showing little variat ion in one d imension (e.g., EOP fac- 
tor 6 and AER factor 12) were  clearly artifactual in origin. 
The importance of al lowing all data points to freely as- 
sociate w h e n  per forming neurophysiologic  PCA is there- 
by illustrated. 
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Silberstein et al. (1992) suggest that much of the spatial 
variation in scalp recorded data, as determined by spatial 
PCA, results from physical considerations such as the 
spherical nature of the skull. These results call into ques- 
tion the need to evaluate the spatial dimension at all. 
However, Valdes et al. (1990) feel that such physical 
considerations dominate spatial PCA only for signals of 
low spatial frequency. It may be that restriction of PCA 
exclusively to the spatial data dimension serves to over 
emphasize physical characteristics and facilitates con- 
tamination by spherical harmonics. Use of unrestricted 
PCA, as reported herein, would be freer of such potential 
contamination for factors are free to demonstrate associa- 
tions across space and time (or frequency). 

Visualization of factor loading scores in time-space 
(EP data) or frequency-space (EEG data) yielded in al- 
most every case patterns that were recognizable from 
experience evaluating unprocessed EP or EEG spectral 
data (figure I to 6). On the basis of heavy loadings upon 
channels placed so as to be maximally sensitive to ar- 
tifact, or upon other unique characteristics such as load- 
ing on a single scalp channel, so called "artifact" factors 
were readily identified. Of the 80 factors studied almost 
half (38) were clearly artifactual, attesting to the high 
amount of potential scalp electrode contamination that 
must be expected even when great care is taken to both 
reduce artifact at time of data collection and at time of 
subsequent off-line analysis Remaining "real" factors 
ranged from those obviously corresponding to reactive 
occipital alpha (ECL factor 10 and EOP factor 15) to those 
coresponding to known EP components such as the AER 
P2 (AER factor 14). 

PCA also provides an indication of the underlying 
dimensionality of data structures. It is important and 
reassuring to note the relatively low intrinsic dimen- 
sionality of neurophysiologic data (Table i) since such 
numbers are often used to estimate the potential for false 
positives or capitalization on chance (Duffy et al. 1986; 
Oken and Chiappa 1986). It would be clearly inap- 
propriate to make such estimates solely on the basis of 
input variable number. Reduction in dimensionality by 
PCA, calculated by dividing the number of variables 
input to PCA by the number of "significant" factors 
produced, was considerable. Unfortunately there is no 
absolute and /o r  universally accepted technique to es- 
timate the number of "significant" factors resulting from 
PCA and thereby unequivocally estimate the intrinsic 
dimensionality of the underlying data structure. Results 
for two common techniques, the "rule of 1" and Bartlett's 
test are both shown in Table 1. By the "rule of 1", reduc- 
tion in dimensionality ranged from 17 to 22 across all 
modalities. By Bartlett's test it was somewhat greater, 
varying from 59 to 227. Between 69% and 86 % of the total 
variance was accounted for by just the first 20 factors. 

This reduction in dimensionality should come as no 
surprise. It stems from the high intercorrelation among 
primary neurophysiologic variables clearly recognizable 
by the smooth,  cont inuous appearance data when 
evaluated across time or frequency and space. Indeed 
any data point  s tanding apar t  f rom or not easily 
predicted by its neighbors is commonly deemed artifac- 
tual. Thus although there have been legitimate questions 
as to whether factors should be taken as one to one 
analogues of underlying biological generators (Achim et 
al. 1988; RSsler et al. 1981; Scherg et al. 1985; Van Rotter- 
dam 1970; Wastell 1979; Wood et al. 1984), it is widely 
agreed that PCA is useful in providing practical estimates 
of electrophysiological data dimensionality and that 
when performed such dimensionality is far less than the 
number of variables collected (Duffy et al. 1990). Al- 
though a study of 202 healthy adults may appear large, 
the number of subjects is relatively small when compared 
to the number of variables entered into analysis. Accord- 
ingly the ultimate answer as to underlying demen- 
sionality must await for an even larger study. In this 
report case number was limited by our wish to study 
only subjects whose health was well documented; a 
process demanding of both resources and time. 

It is, of course, insufficient to assume that factors rep- 
resent the useful essence of the data structure without 
some practical test of their utility. Accordingly we 
grouped our healthy subjects into five decade groups 
from 30 to 80. The resulting discriminant function was 
highly significant and decade was predicted with an 
overall classification success of 66% in a situation where 
chance outcome would be 20% (Table 6A). Using multi- 
ple regression, neurophysiologic factors accounted for 
63% of the variance in predicting age as a continuous 
variable (Table 6C). Again using the 42 "real" factors 
88% of all subjects correctly categorized by gender (Table 
7A). Demented and healthy, normal subjects were 90% 
correctly identified (Table 8A). Thus a priori factors 
derived solely from the neurophysiologic data showed 
potential for use in clinical diagnosis and research. 

It is also interesting to note the relatively high correla- 
tion of EP factors with the discriminant functions. As can 
be seen in Tables 6-8, EP data provided the highest cor- 
relating factor for two (age and gender) of the three 
discriminants. Results suggest that long latency data 
may be underutilized in clinical practice and research 
perhaps owing to inefficiencies in extracting useful 
measures from raw data by visual inspection alone. EP 
factors derived from PCA may ultimately extend the 
value of such data by providing useful a priori measures 
or components. 

The biological or medical "meaning" of all factors has 
yet to be fully determined. Almost half are artifactual 
and about one quarter appear, on the basis of their load- 
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ing patterns, to represent  familiar entities (alpha, N1,P2, 
etc). But final definit ion will rest upon  complet ion of a 
series of evaluat ions where  factors are uti l ized in correla- 
tional or discriminant analyses. Final factor "meaning"  
will be der ived by  a table for each factor indicating the 
types of studies in which  it p roved  useful. For example 
based upon  our  own  pilot studies one can infer that EOP 
factor 8 (central theta - Table 4) is useful in discrimination 
of dement ia  (Table 8A). Much more  work  is needed  
before all factors can be more  clearly unders tood.  

Most surprising was the relative success of discrimina- 
tions based solely upon  factors recognized as artifactual. 
Al though unsuccessful  in predict ing age (Table 6B), dis- 
cr iminant  functions based upon  the 38 artifactual factors 
fared well  predict ing gender  (74%, Table 7B) and demen-  
tia (87%, Table 8B). Thus neurophysiologic  artifact can 
be so group specific as to have discriminating power.  
Dementia,  for example,  was discriminated largely on the 
basis of artifactual factors deriving f rom eye movement .  
Classification of just the demented  patients was slightly 
better for the artifactual discriminant (88 %) than wi th  the 
real discriminant (85%) - see Table 8. This might  have 
been predicted since we have observed that demented  
patients appear  to have more  difficulty controlling eye 
movements  than normal  subjects and many  have accen- 
tuated blink rates. Differences in muscle tone and sub- 
sequent muscle artifact and in early eye potentials appear  
to be in part  responsible for the successful gender  dis- 
crimination. We wou ld  not, on the basis of our  ex- 
perience, have been able to anticipate this group specific 
artifact. 

In summary ,  PCA consti tutes a powerfu l  tool for 
meaningful  reduct ion of all types of data. Its application 
to large neurophysiologic  data sets may  prove a fruitful 
direction to follow especially when  input  variables are 
allowed to freely associate in an unrestr icted manner.  
Factors resulting f rom unrestr icted PCA on qEEG data 
sets demonstra te  complex associations across time or 
frequency and space demonst ra t ing the need to avoid 
artificial restriction of PCA to one dimension or another. 
Uses of PCA include recognit ion of artifact, est imation of 
data dimensionali ty,  and the pars imonious derivat ion of 
m e a s u r e s  fo r  s u b s e q u e n t  d e s c r i p t i v e  a n d / o r  dis- 
cr iminant  analyses. It is our  hope that unrestr icted PCA 
will eventual ly  prove  useful as a supplement  to other 
methods  for neurophysiologic  data reduct ion including 
the neurometr ic  approach  of John et al. (1977, 1988) and 
Descriptive Data Analysis of Abt (1987, 1988). 

Artifact is surpris ingly pervasive, substantially con- 
tributing to almost 50% of resulting factors, and is not  
necessarily evenly  distr ibuted across categories w h en  
subjects are grouped.  Under  some circumstances this 
might  lead to successful g roup  classification on the basis 
of artifact alone. Al though artifact sensitive electrodes 

were  extensively used for our  analyses not  all artifactual 
factors demonst ra ted  loading on  these channels. Ap- 
proximately half of the artifactual factors had to be recog- 
nized by empirical criteria and pr ior  experience with 
such data. Much progress needs  to be made  in the 
generat ion of apriori  measures  f rom neurophysiologic  
data that are artifact free on the basis of objective rather 
than subjective criteria. The work  of Semlitsch (Sem- 
litsch et al. 1986), w h o  demons t ra ted  that eye blink could 
be r emoved  by  partial covariance of eye blink channels 
with scalp channels, is an impor tan t  step in the right 
direction. The possibility of extending this approach to 
muscle artifact is a next  step. 
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