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Summary. The point charge model for calculating the two-center two-electron 
integrals in MNDO and related methods is extended to d orbitals. It is suggested 
to expand these integrals in terms of semiempirical multipole-multipole interac- 
tions where all monopoles, dipoles and quadrupoles are included, and all higher 
multipoles are neglected. The proposed scheme has been implemented, and 
numerical results for the integrals are reported. A preliminary MNDO 
parametrization for chlorine indicates that the inclusion of d orbitals improves 
the results significantly, compared with the original MNDO and related 
methods. 
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1 Introduction 

MNDO [1], AM1 [2], and PM3 [3] are widely used in theoretical studies of 
molecular structure and reactivity [4-6]. These semiempirical methods employ 
an sp basis set and do not include d orbitals in their present implementation. 
Therefore they cannot be applied to most transition metal compounds. The lack 
of d orbitals may also explain that MNDO and AM1 normally predict hyper- 
valent compounds of main-group elements much too unstable [3]. It has been 
claimed that this deficiency has been largely overcome by the PM3 parametriza- 
tion [3] but, on the other hand, there is ample evidence for the importance of d 
orbitals in hypervalent compounds, both at the ab initio [7] and semiempirical [8] 
level. Thus an extension of the MNDO formalism to d orbitals appears to be 
desirable for semiempirical investigations of transition metals and heavier main- 
group elements. 

The treatment of the two-center two-electron integrals is the most difficult 
problem in such an extension. A semiempirical scheme for evaluating these 
integrals in an spd basis has been suggested [9] which is based on a spherical 
tensor approach and involves polynomials of interpolation for small interatomic 
distances. The present paper proposes a generalization of the original point 
charge model [10] which is currently used in MNDO, AM1, and PM3 to 
calculate the two-center two-electron integrals. Numerical tests and a preliminary 
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M N D O  parametrization for chlorine are reported to demonstrate the validity of 
our new approach for introducing d orbitals into the M N D O  formalism. 

2 Theoretical derivations 

Unless noted otherwise we adopt the same conventions as in the original paper 
[10]. The two-electron integral (#v, 2a) is defined by: 

(#v, 2o-) = ~ q~(1)q~(l)(eZ/rlz)q~(2)tp~(2) dz 1 dz2 (1) 

where e is the electronic charge, r12 is the interelectronic distance, and dz~ and dq7 2 

are the volume elements for integration over the coordinates of electron 1 and 2, 
respectively. The functions q~ are the atomic orbitals (AOs) of  our basis, the 
Greek subscripts denoting the particular AOs involved. They are chosen to be 
Slater-Zener orbitals with quantum numbers n, l, m: 

(2) 

where the radial functions R,z(r) and the normalized real spherical harmonies 
Stm(O, q~) are defined in the usual manner [10, 11]. The two-center two-electron 
integrals (gAvA, 2Ba B) represent the electrostatic interactions between the charge 
distributions #AvA=Q'v(1) at atom A and 2 B a B = e ~ ( 2 )  at atom B. For 
Slater-Zener orbitals these charge distributions can be expressed [11] in terms of 
a finite linear combination of normalized real spherical harmonics: 

~ = etp~qgv = eR,,l~(r)R,j~(r) ~ a~MSLM(O, q~) (3) 
L M  

with an analogous formula for Q~. The coefficients a ~  are closely related to 
Clebsch-Gordan coefficients, and a complete list of their values is available for 
an spd basis [ 12]. The multipole moments of a given charge distribution can be 
defined either in cartesian tensor form [13] or using spherical tensors [14, 15], 
with well-known relationships between the two representations [15, 16]. For our 
purposes it is most convenient to introduce real spherical multipole components 
[10, 15]: 

M~, = ~ dr" r'Stm(O, q~)Q~(r, O, ~p) dz (4) 

dtm= [4~r/(2l + 1)] 1/2 (5) 

Explicit expressions for dlmr~St,~(O, q~) up to l = 4 are given in Table 1 of  Ref. 
[15] (denoted as Rz0 for m = 0 ,  Rim c for m >0 ,  and Rd,,i ~ for m <0) .  After 
inserting Eq. (3) into Eq. (4), only the terms with l = L and m = M survive in 
the angular integration due to the orthogonality of  the spherical harmonics, and 
we obtain: 

- eat,. dr., ~ R..l~(r)R..lv(r)r 1+2 dr =eafm db. A f  v (6) 

Af ~ = (2~.)". + 1/2(2~v)n~' + l/2(~p + ~v) -nt~ --nv --l--l[(2nu)!(2nv)!] -,/2(n u + nv + 1)! (7) 

where ~ is the orbital exponent appearing in the explicit formulas [ 10, 11] for the 
radial functions R.t(r). An expression analogous to Eq. (6) holds for Mtm.x° 

Under the assumption that the two interacting charge distributions ~ ( 1 )  at 
atom A and Oa'(2) at atom B do not overlap, the two-center two-electron integral 
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can be calculated exactly as a sum over classical multipole interactions [10]: 

= f l I I 2 m R A B  mllm( )M,zm( ) ( 8 )  
l I =0  12=o rn= - lmi  n 

ft,Z2m = (--1)/2+lml(/, +/2)![(ll + [m])!(/2 + [m[)!(/1 --[ml)!(/2 --[m[)!] 1/2 (9) 

where lmi, is the smaller of Ii and/2, and RAB the internuclear distance. It should 
be noted that our current definitions for dlm, see Eq. (5), andfliz2m, see Eq. (9), 
deviate from the previous ones [10] in the case / = 2 ,  m # 0  (by a constant 
factor) in order to be consistent with spherical tensor conventions [ 14, 15]. This 
does not affect any physically relevant results, e.g. for (#v, 2tr). 

The classical expression for (#v, 2~), see Eq. (8), shows the correct asymp- 
totic behaviour for RAB ~ ~ ,  but breaks down for small internuclear distances 
since the assumption of zero diatomic overlap is then no longer valid. It must 
therefore be modified semiempirically to ensure proper behaviour at small 
distances. For the limit RAB = 0, in particular, the modified expression should 
reproduce the values of the corresponding semiempirical one-center two-electron 
integrals. In order to satisfy these objectives it has been suggested [10] to 
represent the nonvanishing multipoles of the two interacting charge distributions 
by suitable configurations of point charges. The interactions [M~m, M~m] 
between the multipoles are then calculated by applying the Klopman formula 
[17] to each of the repulsions and attractions between the point charges repre- 
senting the two interacting multipoles, and by summing over all these repulsions 
and attractions. The two-center two-electron integrals are given as the sum over 
these semiempirical multipole-multipole interactions: 

lmi, 
(l~V, }~0") = ~ ~ Z [M~m' M}'zm] (10) 

11 =0  •2=0 m =  --Imi n 

The essential step in this scheme is obviously the definition of suitable point 
charge configurations for all relevant multipoles. Table 1 specifies the quantum 
numbers l and m of all 96 multipole moments M~, which turn out to be nonzero 
in a minimal spd basis with 45 unique charge distributions/~v. 

Figure 1 shows the point charge configurations used for multipoles up to 
l = 2. The monopole [q] of any charge distribution is represented by a single 
point charge of magnitude e at the respective nucleus (multipole Moo). The 
dipole [p~] of an sp or pd charge distribution is represented by two equal but 
opposite point charges, _e/2,  located on the s-axis on opposite sides of the 
nucleus (multipole Ml0 for u = z, M~1 for u = x, and M~_ ~ for ~ = y). While the 
preceding definitions are obvious and unique there are several feasible point 
charge configurations for quadrupoles. In the original paper [10] a linear 
configuration [Q~,] is suggested for the charge distributions p~v,, and a square 
configuration [ Q j  for p~pp. Each linear configuration [Q~,] correctly reproduces 
the quadrupole moments M20 and M22 of the corresponding distribution 
Pd~, (~ =x ,y , z ) ,  and each square configuration [ Q j  generates the only 
nonzero quadrupole moment of the distribution p~pp (M2~ for ~fl = xz, M2_I for 
~fl =yz, and M2_ 2 for ufl =xy).  However, the symmetry relation 
[Qxx, Qxx] - [Qxx, Qyy] = 2[Qxy, Q~y] is not satisfied for the original choice [ 10] 
of equal charge separations in [Q,~] and [Q,p]. Therefore small numerical 
deviations from rotational invariance occur with the original point charge model 
[10]. Rotational invariance can be restored [18] by imposing the condition: 

(PxPy, P~Py) = [(P~P~, P,~P~) -- (PxPx, pypy)]/2 (11) 
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Table 1. Nonzero multipole moments Mf,~ for charge distributions #v" 

It v lm  It v lm 

s s O0  p~ d~ 11 ,  3 1 ,  3 3  
s Po 1 0  p~ dg 1 - 1 ,  3 - 1 ,  3 - 3  
s p~ 1 1  p~ d o 1 - 1 ,  3 - 1  
s p~ 1 - 1 p~ d~ 3 - 2  
p, p,  0 0 ,  2 0  p~ d~ 1 O, 3 0 ,  3 2  
Po P~ 2 1  p~ d~ 1 - 1 ,  3 - 1 ,  3 - 3  
Po P~ 2 - 1  p~ dg 11 ,  3 1 ,  3 3  
p~ p~ 0 0 ,  2 0 ,  2 2  do do 0 0 ,  2 0 ,  4 0  
p~ p~ 2 - 2  d o d~ 2 1 ,  4 1  
p~ p~ 0 0 ,  2 0 ,  2 2  d o d~ 2 - 1 ,  4 - 1  
s d. 2 0  d. d a 2 2 ,  4 2  
s d. 2 1  do dg 2 - 2 ,  4 - 2  
s d~ 2 - 1  d~ d~ 0 0 ,  2 0 ,  4 0 ,  2 2 ,  4 2  
s da 2 2  d. d~ 2 - 2 ,  4 - 2  
s d a 2 - 2  d= d a 2 1 ,  4 1 ,  4 3  
Po do 10 ,  3 0  d~ dg 2 - 1 ,  4 - 1 ,  4 - 3  
Po d~ 11 ,  3 1  d~ d~ 0 0 ,  2 0 ,  4 0 ,  2 2 ,  4 2  
Po d~ 1 - 1 ,  3 - 1  d~ d a 2 - 1 ,  4 - 1 ,  4 - 3  
p. da 3 2  d~ dg 2 1 ,  4 1 ,  4 3  
p~ dg 3 - 2  d~ d a 0 0 ,  2 0 ,  4 0 ,  4 4  
p~ d o I I, 3 1  d~ dg 4 - 4  
p~ d,~ 1 O, 3 0 ,  3 2  dg dg 0 0 ,  2 0 ,  4 0 ,  4 4  
p,~ d~ 3 - 2  

ap~ =Px, P~ =Py, Po =P: ,  do = 4 2 ,  d. =dx:, d~ =dye, ds =dx2_y~, dg=d~y in the standard local 
coordinate system [10] 

,e ~ cx 

[q] 

t 
-~2 ] ~t_2 _ a  

I 
[p,l 

It It l1 

I ¸ 
.,.e/b. I,... "&-ell* elA. 

[Q,,,.,] [Cl,,Fd [Q~,id 

Fig. 1. Point charge configurations 
for multipoles up to l = 2 
(~t, ~ = x, y, z). The separation 
between two adjacent point charges 
of opposite sign is 2D 1 in [p~], and 
2D 2 in [a~], [a~p], and [ Q j  
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which has been adopted in all standard semiempirical computer programs for 
MNDO, AM1, and PM3 [19-21]. 

For practical reasons we have decided to retain the original point charge 
model [ 10] with the above modification, Eq. (11), for all two-center two-electron 
integrals which do not involve d orbitals, so that the established MNDO 
formalism and parameters remain unchanged for all elements without d orbitals. 
In the case of two-center two-electron integrals involving d orbitals, we do use 
the square configuration [ Q j  for representing the quadrupoles M21, M2_~, and 
M2_> but abandon the linear configuration [Q=] in order to avoid problems such 
as those discussed above. Instead we introduce a second square configuration 
[Q,~] of four equal point charges with alternating signs which are located on the 

and fl axes (see Fig. 1). The quadrupole M22 is then represented by [Q~y], and 
M20 by [Q~] -½[Q~]. Hence, for two-electron interactions involving d orbitals, 
the multipoles up_ to l = 2 are described by the point charge configurations [q], 
[#,], [Q~], and [Q~]. 

The separation between two adjacent charges with opposite signs is 2D~ in 
[#~], and 2D2 in [ Q j  and [Q~¢]. To satisfy the symmetry relations and to ensure 
rotational invariance, the charge separations must be identical for all charge 
distributions/~v with the same quantum numbers l u and l~, respectively, so that 
there are only five independent charge separations for an spd basis, i.e. D~ p, Dq a, 
D~ p, D~ d, and D ad. They are determined from the requirement [10] that the 
multipole moment M~ v of a reference charge distribution is reproduced by the 
multipole moment M~ c of the corresponding point charge configuration which 
is easily calculated from the definitions in Eqs. (4) and (5): M~?C~--eD~, 
M~C= 3 eD2/2, and M~,,~ = 31/2 eD~ for m ¢ 0. With our choice of reference 
distributions (see below, ell = 1 in Table 2) we obtain the following expressions 
in terms of A~ v, see Eq. (7): 

D*F = 3-1/2A*1P (12) 

Dq a = 5- l/2A~a (13) 

D pp = 5-'/2(APP)1/2 (14) 

D~a-- -- 15-'/4(A~e) ,/2 (15) 

Dd2 a = 7-1/=(A ga),/2 (16) 

The formulas for D~ p and D~; are equivalent to those given previously [10]. The 
definition of the charge separations in Eqs. (12)-(16) implies: 

M~',~ ~v ~arpc (17)  C l m  l V~ l m  

,v are listed in Table 2. In the original point charge model where the coefficients Ctm 
[10] for two-center two-electron integrals involving only s and p orbitals, the 
charge separations in the configurations [p,], [Q~j, and [ Q j  were defined such 
that all c~ v = 1, at the expense of problems with rotational invariance (see 
above). In the present extension to d orbitals, our choice for the charge 
separations in the configurations [#~], [ Q j ,  and [ Q j  avoids such invariance 
problems, at the expense of introducing coefficients c~',~ ~ l in Eq. (17). It is 
obvious from Table 2, however, that c~L always remains close to 1. It should be 
stressed that our definitions in Eqs. (12)-(16) and Table 2 are, to some extent, 
arbitrary since a simultaneous scaling [10] of the charge separations D~ v by a 
factor p and of the coefficients c~,~ by a factor p -~ would not affect the internal 
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Table 2. Coefficients c~'L for point charge configurations [g=], [Q~e], and [Q~]" 

v Im c~2 t~ v lm c~L 

s p~ 10 1 p~ d~ 11 1 
s p~ 11 1 p~ dg 1 - 1  1 
s p~ 1 -1  1 p~ d~ 1 -1  (1/3) 1/2 
po p~ 2 0 4/3 p~ d~ 1 0 1 
p~ p= 2 1 1 p~ d a 1 -1  1 
p,, p~ 2 - 1 1 p~ dg 1 1 1 
p= p, 2 0 2/3 d~ d~ 2 0 4/3 
p~ p~ 2 2 1 d~ d~ 2 1 (1/3) 1/2 
p= p~ 2 - 2  1 do da 2 -1  (1/3) a/2 
p~ p~ 2 0 2/3 d~ da 2 2 (4/3) 112 
P.a P= 2 2 1 d,, dg 2 - 2  (4/3) 1/2 
s d, 2 0 (4/3) ~/2 d, d= 2 0 2/3 
s d. 21 1 d. a. 2 2  1 
s d~ 2 -1  1 d= d~ 2 - 2  1 
s d o 22  1 d~ d~ 21 1 
s dg 2 - 2  1 d. dg, 2 - 1  1 
p. < 1 0 (4/3) '/2 4 4 2 0 2/3 
p, d= 11 1 4 4 2 2  1 
p, d~ 1 -1  1 d~ da 2 - 1  1 
p= d~ 1 1  (1/3) ~/z d~ dg 2 1  1 
p. a= 10 1 d a d o 2 0  4/3 

da dg 2 0 4/3 

See footnote a of Table 1 

consistency of  the proposed  model.  The final numerical  results for the two-elec- 
t ron integrals are, however,  quite insensitive to such a scaling, and we thus adopt  
the definitions in Eqs. (12 ) - (16 )  and Table 2. 

Having  specified the geometry and orientat ion o f  the point  charge configura- 
tions and knowing the internuclear distance RAB, we can calculate all the 
distances R o. between the point  charges i and j o f  two configurations at a toms A 
and B, respectively. Applying the K l opm an  formula  [17], the semiempirical 
multipole-multipole interactions in Eq. (10) are given by: 

e 2 2ll 212 

[M~m(1) ' M~m(2)] - _ _  u~ ~ -2,~+,2%..<~.. Z E [R,3-+(~'~+~,~;)q -'/~ (18) 
i = l j = l  

,v and ~ The factors C11m Cl:m, see Eq. (17), ensure the correct  asymptot ic  
behaviour  for large internuclear distances (RAB ~ oO) where the multipole-multi-  
pole interactions approach  their classical limit [ 10]. The additive terms Q~ and 
0~  must  be chosen such that  Eq. (18) yields the correct one-center two-electron 
integrals in the homonuclear  case [10]. To maintain  rotat ional  invariance, 
identical additive terms are required for  all charge distributions/~v with the same 
quan tum numbers  l~ and lv, respectively, so that  there are at mos t  eight 
independent additive terms, i.e. 0~', Off', Qo aa, 0~ p, Q{d, Of ,  e~ a, and Q2 ad. They are 
determined f rom the following condit ions at RAB = 0 (given in a tomic units): 

(0 f)~) -~ = 2g~ = 2F°~ (19) 

Q~p = e8  s ( 2 0 )  
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(~gd)  -- 1 2 = 3(gd~d¢ "Jr- 2ga~d~ + 2gd,~da) = 2F°a (21) 

(0~') -~ - [(~o~p)2 + (D~p)2] ~/2 = 4h~p = 4G~p/3 (22) 

(o~d)-~ _ [(oqa)2 + (Dqa)2] ~/2 = 4hpoa. = 16G~a/15 (23) 

(e~p)-i _ 2[(e~P)2 + (D~P)2/2]'/2 + [(e~,,)2 + (D~P)2] ~/2 = 8h~,. = 4F~p/25 (24) 

(Q~a)-, _ 2[(Q~d)2 + (D~d)2/2],/2 + [(0~d)2 + (D~a)z],/2 = 8h~d = 8G~d/5 (25) 

(~ga) - ,  _ 2[(0g~)2 + (Dga)2/2 ] ,/2 + [(~g~)2 + (Dgd)2] ~/2 = 8haj,  = 8F~d/49 (26) 

where guy and huv denote the usual one-center Coulomb and exchange integrals, 
respectively, while r ° , ,  V2~, Glv, and GZv are Slater-Condon parameters. Equa- 
tions (19), (20), (22), and (24) are equivalent to the conditions used in the original 
model [10]. The implicit expressions for Q~v in Eqs. (22)-(26)  are solved by 
iterative numerical techniques [ 10]. Oq d and ~gd may alternatively be determined 
from conditions involving other one-cent~ exchange integrals which, however, 
leads to the same numerical results as Eqs. (23) and (26), respectively. 

At this point of our derivation, the two-center two-electron integrals involv- 
ing d orbitals can be calculated from semiempirical multipole-multipole interac- 
tions (up to l =2) .  The computational procedure is completely specified 
by Eqs. (10), (12)-(16),  (18)-(26)  and the information given in Fig. l and 
Tables 1 and 2. In analogy to previous work [10] explicit expressions for all 
nonzero integrals can be written easily. Considering the large number of such 
integrals in an spd basis, however, these explicit formulas will not be given here. 
We only note one simplification concerning the quadrupole M20 which is 
represented by [Qzx]-½[Qxy]: Its interactions with Moo, M20, and M20 can 
be evaluated from [q, Qz~], [/~z, Qzx], and [Qz~, Qzx]- l [Qxy,  Qxy], respec- 
tively, since [q, Q~,] = [#z, Q~y] --- [Qzx, Qxy] = 0. 

Many of the charge distributions involving d orbitals have octopole or 
hexadecapole moments. In fact, for a minimal spd basis, there are 44 such 
multipole moments with 1 = 3 or l = 4 (see Table 1). It is possible to define point 
charge configurations for describing these higher multipole moments. For exam- 
ple, eight alternating charges of  magnitude el8 at the corners of  a cube represent 
three of  the octopoles M3m when the z axis is chosen to be either the C3 axis 
connecting two opposite corners (case m = 0), or the (72 axis bisecting two 
opposite edges (case m = 1), or the C4 axis through the center of two opposite 
faces (case m = 2), whereas six alternating charges at the corners of  a regular 
hexagon in the xy plane represent the octopole M33. 

The point charge configurations that may be constructed for hexadecapoles 
are even more complicated. When using these point charge configurations for the 
higher multipoles with l > 2, great care must be taken to avoid certain symmetry 
and invariance problems, e.g. the occurrence of nonzero values for some interac- 
tions which should vanish by symmetry, particularly at RAB = 0. Moreover, in an 
analytical evaluation, the interactions involving higher multipoles with l > 2 are 
usually found to be very small (see below). Therefore it would seem doubtful 
whether the effort of  calculating such complicated higher multipole-multipole 
interactions is worthwhile in semiempirical calculations. 

In view of this situation we have decided to neglect all interactions involving 
octopoles, hexadecapoles, or higher multipoles, in the evaluation of two-center 
two-electron integrals by the proposed point charge model. The following section 
presents some numerical results for these integrals to support our choice. The 
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ultimate justification of the proposed model will rest on a successful new MNDO 
parametrization with inclusion of d orbitals for the heavier elements. 

3 Numerical tests 

Table 3 lists the number of two-center two-electron NDDO integrals in the standard 
local coordinate system [10], for atoms A and B with an sp or spd basis. In the 
case of the spd-spd combination with a total of 491 nonzero integrals, the present 
model neglects 59 and retains 432 of these integrals. Due to symmetry many of 
these integrals in the local coordinate system are equal to each other in absolute 
value. Hence, in the homonuclear spd-spdcase, there remain only 117 and 95 unique 
nonzero integrals in an analytical approach and in our model, respectively. 

We have calculated the numerical values of these integrals for a wide range 
of internuclear distances and orbital exponents. In this section we present only few 
selected results for distances between 1 A and 5 A, and for orbital exponents 
~3~ = ~3p = 2 and ~3d = 1 which, however, are typical and representative. 

Table 4 contains analytical values for all 6 unique two-center two-electron 
integrals which are neglected in our point charge model for the spd-spd combina- 
tion. These analytical values have been computed with the use of an STO-4G 
expansion [22]. They are quite small, i.e. below 0.1 eV around bonding distances, 

Table 3. Number of  two-center two-electron integrals in NDDO 
approximation ~ 

Basis set for atom pair A - B  sp-sp sp-spd spd-spd 

No NDDO integrals neglected 
- - T o t a l  number of  integrals 100 450 2025 
- - N o n z e r o  integrals 34 123 491 
- - U n i q u e  integrals, A # B 22 64 204 
- - U n i q u e  integrals, A = B 15 - -  117 
Present model (Mlm up to l = 2) 
- - N o n z e r o  integrals 34 118 432 
- - U n i q u e  integrals, A # B 22 60 163 
- - U n i q u e  integrals, A = B 15 - -  95 

a Integrals (#v, 2a) with p/> v and 2 >1 tr, in the standard local coordi- 
nate system [10] 

Table 4. Absolute analytical values (eV) of  neglected two-electron inte- 
grals a,b 

RAB (A) 1.0 1,5 2.0 3.0 5.0 

(p~ p , ,  p~ d~) 0.1773 0.1008 0.0432 0.0064 0.0003 
(p~ d~, s da) 0.1287 0.0895 0.0466 0.0089 0.0005 
(p~ d~, p~ d~) 0.0217 0.0433 0.0295 0.0061 0.0002 
(p~ d~, d~ d~) 0.0972 0.0517 0.0163 0.0009 0.0002 
(p~ d~, d~ d~) 0.0210 0.0614 0.0657 0,0281 0.0019 
(d~ d~, d~ dg) 0.1249 0.0764 0.0408 0.0090 0.0003 

a Homonuclear case, orbital exponents ~3s = ( 3 p  = 2 and ~3d = 1 
b 53 other integrals are equal in absolute value to the 6 unique integrals listed 
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and they quickly approach zero with increasing distance. Compared with two- 
center Coulomb integrals which are of the order of 5-15 eV and with other 
two-electron integrals in an sp basis (see Fig. 4 of Ref. [10]) it seems justified to 
neglect the integrals in Table 4, especially when considering that the effects of 
such a neglect may partly be absorbed by the parametrization procedure. 

By construction the semiempirical two-dectron integrals obtained from the 
point charge model show the correct analytical behaviour for large internuclear 
distances (RAB--~ 00), and they reproduce semiempirical one-center two-electron 
integrals for RAB = 0. The latter are usually determined either from experimental 
atomic spectra or from a semiempirical parametrization. In both cases they are 
found to be significantly smaller than the analytical one-center two-electron 
integrals since the effects of electron correlation are included in the semiempirical 
one-center two-electron integrals, in an average sense [5, 23-25]. The point 
charge model provides an interpolation between the limits RAB = 0 (correlation 
included) and RAB = ~ (no correlation) so that some allowance for electron 
correlation is also made at small internuclear distances. Therefore it seems 
reasonable to expect [10] that the differences between the analytical and semi- 
empirical two-electron integrals should decrease with increasing internuclear 
distance and that both types of integrals should show qualitatively the same 
distance dependence, e.g. with regard to the occurrence of extrema and zero 
points. These expectations are generally confirmed by our present numerical 
results for two-electron integrals involving d orbitals, in analogy to previous 
results for an sp basis [10]. 

In order to compare the distance dependence of the analytical and semi- 
empirical two-electron integrals in a more quantitative manner, we have carried 
out some test calculations where analytical one-center integrals were used in Eqs. 
(19)-(26) to determine the additive terms 0~ v. With this choice the semiempirical 
and analytical integrals are equal both for RAB = 0 and RAB -" ~ .  Deviations at 
intermediate distances can then be taken as a measure of the difference in the 
distance dependence of the analytical and semiempirical integrals (I~ and I s, 
respectively). For N integrals considered we define a root-mean-square (rms) 
deviation Arms and an average relative deviation Are1: 

Arms = N - '  (i~ _ IS)2 (27) 
i = 1  

N 

Are ' = U -~ ~ [I~ -- ISi [/I A (28) 
i = 1  

Table 5 lists these deviations for our standard test case, i.e. a homonuclear 
pair of atoms with an spd basis ((38 = (3p = 2, (3d = 1) and distances between 1 A 
and 5 A. Considering all 491 nonzero integrals (see Table 3) the proposed point 
charge model leads to rms deviations (labeled MNDO) of about 0.3 eV around 
bonding distances, and less at larger distances. These rms deviations turn out to 
be higher for the subset of 81 Coulomb integrals, and appreciably smaller for the 
other 410 integrals. However, in the case of the Coulomb integrals, the average 
relative deviations remain around 10% or less which seems tolerable. 

For the sake of comparison, Table 5 also includes data for semiempirical 
integrals from the Hoggan-Rinaldi  [9] scheme (labeled HR). Generally the 
deviations for HR are of similar magnitude as those for MNDO, the latter ones 
being often slightly smaller. Judging from Table 5 the simple MNDO point 
charge model thus performs at least as well as the more elaborate HR scheme [9]. 
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Table 5. Deviations a between serniempirical and analytical integrals b 

Integrals N Deviation a'c RAB (A) 
considered 1.0 1.5 2.0 3.0 4.0 5.0 

All nonzero 491 rms, MNDO 0.426 0.349 0.297 0.196 0.112 0.063 
rms, HR 0.373 0.371 0.338 0.215 0.118 0.065 

Coulomb 81 rrns, MNDO 0.937 0.781 0.685 0.465 0.268 0.152 
rms, HR 0.790 0.823 0.762 0.500 0.281 0.157 
tel, MNDO 0.063 0.092 0.105 0.093 0.068 0.048 
tel, HR 0.075 0.085 0.100 0.091 0.068 0.048 

Other nonzero 410 rms, MNDO 0.210 0.158 0.114 0.059 0.028 0.012 
rms, HR 0.208 0.184 0.148 0.076 0.034 0.015 

a Rms deviations Arm s in eV, Eq. (27), and dimensionless relative deviations Ard, Eq. (28) 
b Homonuclear case, orbital exponents (3.3 = (3p = 2 and (3d = 1 
c MNDO integrals from point charge model (this work), HR integrals from Hoggan-Rinaldi scheme 
(Ref. [91) 

4 Preliminary results for chlorine 

A preliminary M N D O  parametrization with d orbitals has been carried out for 
chlorine to demonstrate the validity of  the proposed point charge model for the 
two-center two-electron integrals. The remaining terms in the M N D O  formalism 
[1] have been extended to d orbitals in the following manner.  

For  a minimal spd basis there are 265 nonzero one-center two-electron 
integrals (~tAY A, ,~A0"A) with ~ >~ v and 2 >~ cr (81 Coulomb, 36 exchange, and 148 
hybrid integrals). All these integrals are retained to ensure rotational invariance 
[26]. Due to symmetry many of these integrals are equal in absolute value so that 
there are only 45 unique one-center two-electron integrals (14 Coulomb, 11 
exchange, and 21 hybrid integrals, where one unique exchange and hybrid 
integral are equal to each other). The analytical evaluation of these integrals 
using Sla ter -Zener  orbitals requires the calculation of 14 S la te r -Condon  
parameters (~sss, F~pp, F°aa, FOp, F°d, F°d, F~p, V~d, F2d, F4d, Glp, G~d, G2d, G3d) 
and 3 additional radial integrals ~ 2 2 Rsddd). In the original M N D O  R sdpp, ( R sppd , 
formalism for an sp basis [1, 18] the 5 unique one-center two-electron integrals 
are determined from experimental atomic data. This procedure is generally not 
feasible for an spd basis since some of  the 17 independent one-center two- 
electron parameters (see above) cannot be determined f rom atomic spectra, in 
principle, and also since suitable experimental data are sometimes lacking for the 
heavier elements. In this situation one may either adopt  a combination of 
experimentally and theoretically derived one-center two-electron parameters,  as 
e.g. in the SINDO1 method [27] or optimize these parameters independently, as 
e.g. in the PM3 method [3] where all 5 unique one-center two-electron integrals 
for an sp basis are determined by the parametrization. The latter approach 
obviously becomes impractical for an spd basis due to the much larger number 
of  unique integrals (see above). We have therefore chosen the following pro- 
cedure: The one-center Coulomb integrals gss, gpp, and gad are optimized in the 
semiempirical parametrization, and used to derive corresponding orbital 
exponents (~,  ~p, ~d) which analytically reproduce these semiempirical integrals. 
Using these orbital exponents all other one-center two-electron integrals are 
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calculated analytically. It is evident that this approach satisfies rotational invari- 
ance and allows the parametrization to adjust the magnitude of the one-center 
two-electron interactions independently for s, p, and d electrons. Based on 
previous experience [1-3,23-25]  the semiempirical one-center two-electron 
integrals should be smaller than the integrals calculated analytically from the 
orbital exponents ((s, (p, (d) used elsewhere in the M N D 0  formalism [1]. Hence 
we expect ('s < (s, (p < (p, and ~'d < (d since the analytical formulas for 
( f l g y g ,  ~AffA) are linear in the orbital exponent if all orbitals belong to the same 
shell. 

In the original MNDO method [1] the core-electron attractions and the 
core-core repulsions are expressed in terms of two-center two-electron integrals: 

Vltv, B = - -  Z B ([gt A y  A,  S BS B) (29) 

E ~  e = ZA ZB(sAs A, SBSB)(1 + e--~ARA, + e--~,RA,) (30) 

where Za and ZB denote the core charges while eA and eB are adjustable 
parameters. In Eqs. (29) and (30) the effect of the atomic core is simulated by the 
valence-shell charge distribution ss which, like the core, has no multipole 
moments higher than the monopole. This choice leads to a realistic balance of 
the electrostatic interactions [ 1] in the case of first-row atoms where the s and p 
orbitals are generally of comparable size. This may no longer be true for an spd 
basis, e.g. in the case of transition metals where the s, p, and d orbital exponents 
may be quite different. We have therefore decided to represent the core by a 
monopole [q .... ] which is associated with an own additive term ~ .... . For 
elements with an sp basis we use ~ .... = ~s, see Eq. (19), as in the original 
MNDO formalism [1]. For elements with an spd basis, however, Q .... is treated 
as an independent adjustable parameter so that the balance between attractive 
and repulsive Coulomb interactions is determined by the semiempirical 
parametrization. Hence we have in general: 

V#vB __ ZB( ]~AyA,  B • = q . . . .  ) ( 3 1 )  

core A B e--CtARAB -~- e--ctBRAB) q .... )(1 (32) gAB ~ Z A Z B ( q  . . . . .  + 

where the relevant interactions are evaluated according to the point charge 
model (see Sect. 2), e.g.: 

A B q .... ) = + (q . . . . .  e2[R2B A B 2 -1/2 (~ .... + ~ .... ) ] (33) 

This completes the description of the proposed extensions to the MNDO 
formalism [1] since all other definitions in MNDO remain unchanged when 
including d orbitals. For an element with an spd basis there are thus 14 
parameters to be optimized, i.e. Uss, Upp, Udd (one-center one-electron energies); 
gss,gpp, gdd (one-center two-electron Coulomb integrals); ~, Qcore (to evaluate 
core-electron attractions and core-core repulsions); and fls, tip, fld, (~, (p, (d (to 
calculate resonance integrals). It should be noted for comparison that MNDO 
and PM3 normally employ 7 and 18 adjustable parameters, respectively, for 
atoms with an sp basis. 

Table 6 lists preliminary values for the optimized parameters of chlorine 
which generally appear to be of reasonable magnitude. Table 7 compares the 
MNDO results obtained with d orbitals to those from standard MNDO [ 1, 28], 
AMI [2, 29], and PM3 [3]. The statistical evaluation in Table 7 is based on a set 
of 82 test molecules (70 with monovalent CI, 12 with hypervalent C1) which 
consists of the 47 test molecules (46 with monovalent C1 and C1F3) used in AM1 
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Table 6. MNDO with d orbitals: Preliminary optimized parame- 
ters for chlorine 

Us~ (eV) -60.163796 /I,3 (eV) -14.215175 
Upp (eV) -54.822875 /~p (eV) -16.400251 
Uaa (eV) -22.213087 /~a (eV) -0.597872 
g.~ (eV) 10.379211 ~ (au) 3,442061 
gpp (eV) 7.948007 ~p (au) 2.321293 
gaa .(eV) 6.197289 ~a (au) 1.315332 
ct (A -1) 2,213706 Q ... .  1.232854 

[29] and 35 additional molecules for which reliable experimental data are 
available (mostly from the PM3 tabulations [3]). For each semiempirical 
method all 82 test molecules have been calculated using the same computer 
program, the same geometry input, and the same experimental reference data 
in the statistical evaluation to avoid any technical errors. The statistical results 
certainly depend on the choice of the test molecules, but we do believe that 
their number and diversity are large enough to provide a fair qualitative 
assessment. 

Table 7. Mean absolute errors for chlorine compounds 

Property a Molecules b N c MNDO d MNDO ~ AMI PM3 
spd sp 

AHf (kcal/mol) All 82 4.44 28.93 21.61 9.42 
Monovalent 70 4.35 4.57 4.74 6.42 
Hypervalent 12 5.00 167.61 119.99 26.93 
Ref. [29] 47 4.19 6.05 5.43 5.04 

Ra_ x (A) All 46 0,030 0.063 0.063 0.036 
Monovalent 34 0.029 0.037 0.037 0.037 
Hypervalent 12 0.034 0.138 0.137 0.036 
X = C 25 0.017 0.033 0.028 0.034 

Oclxv (deg) All 35 3.27 3.91 4.45 4.47 
Monovalent 27 2.43 1.84 2.21 2.52 
Hypervalent 8 6.12 10.91 11.99 11.06 
X = C 22 1.76 1.57 1.98 2.24 

IP (eV) All 45 0.47 0.87 0.36 0.62 
Monovalent 43 0.43 0.87 0.36 0.60 
Ref, [29] 36 0.47 0.92 0.37 0.54 

(D) All 31 0.27 0.32 0.28 0,45 
Monovalent 29 0.27 0.31 0.27 0.45 
Ref. [29] 22 0.24 0.31 0.28 0,43 

a Heat of formation AHf, bond length Rcl_ x involving chlorine, bond angle Oax v involving chlorine, 
first ionization potential IP according to Koopmans' theorem, and dipole moment # 
b See text 
c Number of comparisons 
d Preliminary MNDO parametrization with d orbitals, this work 
e Standard MNDO with an sp basis [ 1, 28] 
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It is obvious from Table 7 that MNDO(spd), MNDO(sp), AM1, and PM3 
give results of comparable quality for monovalent chlorine compounds, with a 
slight overall advantage for MNDO(spd). However, the inclusion of d orbitals in 
MNDO(spd) leads to considerable improvements for hypervalent chlorine com- 
pounds, particularly with regard to heats of formation. While MNDO(sp) and 
AM1 were not designed to cover hypervalent chlorine compounds [28, 29] the 
PM3 parametrization was aimed at reproducing the properties of both normal- 
valent and hypervalent compounds [3]. However, the mean absolute error for the 
heats of formation of hypervalent chlorine compounds is much higher in PM3 
(26.93 kcal/mol) than in MNDO(spd) with d orbitals (5.00 kcal/mol) indicating 
that the elaborate PM3 parametrization with 18 adjustable parameters could not 
overcome the lack of d orbitals in this case. In our opinion, this underscores the 
need for including d orbitals in semiempirical calculations of hypervalent 
molecules. Judging from the data in Table 7, MNDO(spd) succeeds in providing 
a balanced description of normalvalent and hypervalent chlorine compounds. 

As stated before the MNDO(spd) results in Table 7 are preliminary. They are 
quoted here to demonstrate that the proposed point charge model for the 
two-center two-electron integrals and the other extensions of the MNDO formal- 
ism to d orbitals have been implemented and that these developments lead to 
significant improvements in the expected areas. Further parametrization work is 
in progress and will be reported in due course. 
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