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Abstract. A crystal growth model is developed which general- 
izes the Rayleigh fractionation process. The new growth mod- 
el allows some insight into the interpretation of nonequilib- 
rium behavior of minerals, primarily the chemical zoning 
profiles exhibited by metamorphic minerals. A nonlinear 
equilibrium term for exchange of constituents between a 
growing mineral and a reservoir is initially incorporated into 
the usual isothermal fractionation model. Criteria are estab- 
lished to decide when a simple distribution term is sufficient 
to describe the growth and exchange process. The model is 
then extended to allow for tcmperature changes during a 
cooling or heating event. Finally, an exact solution is ob- 
tained for the temperature dependent case incorporating a 
time dependent growth rate. The growth models are success- 
fully used to obtain growth rates of 0.01 to 0.09 cm/million 
year and describe the magnesium and iron zoning profiles of 
garnets from Phillipston, Massachusetts. The generalized mod- 
el confirms the development of zoning during the retrograde 
growth of garnet in the late stages of the Acadian orogeny. 

Introduction 

Compositional zoning of silicate minerals has been recog- 
nized as a common feature in numerous geological environ- 
ments. This disequilibrium feature is most frequently observed 
in metamorphic garnets where the relatively slow diffusion 
kinetics prevent complete chemical homogenization across 
the grain. Qualitative descriptions of the formation of this 
chemical zoning are common features in the geologic litera- 
ture (Atherton and Edmunds 1966; Harte and Henley 1966; 
Linthout and Westra 1968; Blackburn 1969; Brown 1969; 
Emiliani and Venturelli 1972; de B6thune et al. 1975; Woods- 
worth 1977; Yardley 1977; Finlay and Kerr 1979). Only 
recently has there been an attempt to quantify the generation 
of compositional zoning patterns. 

Three general models are normally relied upon to explain 
the zoning patterns of natural garnets: (1) An isothermal 
fractionation model where an element is isothermally par- 
titioned and isolated into a growing garnet from a homo- 
geneous reservoir which, in turn, is being depleted in that 
element (Hollister 1966; Atherton 1968, 1976; Miyashiro and 
Shido 1973); (2) Chemical diffusion and exchange during and 
after crystal growth producing concentration gradients in the 
garnet and/or the neighboring phase as especially developed 
by Lasaga et al. (1977) (see also Anderson and Buckley 1973, 

1974; Loomis 1975); (3) Growth during prograde (or retro- 
grade) metamorphism where the changing temperatures ap- 
propriately alter the equilibrium distribution terms during the 
garnet crystallization (Grant and Weiblen 1971; Miyashiro 
and Shido 1973; Tracy et al. 1976). All of these models, sep- 
arately or combined, have been successful in generating com- 
positional profiles which approximate those observed in some 
metapelitic garnets. 

In this paper we develop an important extension of the 
existing models which allows for crystal growth as tempera- 
ture and pressure conditions, as well as the bulk composition, 
change with time. A significant modification is the incorpo- 
ration of a temperature dependent, and therefore time de- 
pendent, fractionation factor for a prograde or retrograde 
metamorphic reaction. This model would therefore overcome 
the difficulty of explaining the complex behavior of certain 
zoning patterns normally ascribed to temperature fluctuations 
in the isothermal fractionation models of Hollister (1966) and 
Atherton (1968). 

In the first section of this paper we discuss the common 
isothermal fractionation model and some of the difficulties 
encountered in its application. In the second section we rede- 
fine the fractionation factor in its more proper form as a 
nonlinear equilibrium constant and examine its effect on the 
predicted zoning profiles. In the third section, we expand the 
fractionation model to include changing temperature con- 
ditions and constant growth velocities. The theory is applied 
in section four to natural almandine-pyrope garnets from the 
Phillipston area of Massachusetts. Finally, in section five we 
extend our model to include a time dependent growth ve- 
locity term. This final refinement successfully predicts the 
natural garnet profiles in the metamorphic assemblage of 
central Massachusetts and provides a completely general mod- 
el for application in other crystal growth problems. 

Isothermal Fractionation Model 

The isothermal garnet growth and fractionation model is 
based upon the treatment of distillation originally proposed 
by Rayleigh (1902) for the condensation of a multicomponent 
vapor. This growth model, also called the segregation-de- 
pletion model, describes the zoning pattern for a garnet 
which grows from a homogeneous reservoir. The following 
equation, as derived by Hollister (1966), describes the weight 
fraction of an element in the garnet edge as a function of the 
amount of garnet crystallized from the rock: 
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M c = 2 M  o (1 WG~ z-1 -~ - !  . ( 1 )  

The notation used by Hollister, which will be continued in 
our subsequent derivations, is given below: 

Ma = weight fraction of cation in garnet edge 
M 0 =init ial  weight fraction of cation in reservoir prior to 

garnet crystallization 
M R =weight fraction of cation in reservoir 
W G = total weight of crystallized garnet 
W ~ =init ial  weight of reservoir required for growth of sin- 

gle garnet 
2 = fractionation factor, MG/M R. 

Equation (1) assumes local equilibrium for the exchange of 
the cation between the garnet edge and the surrounding min- 
eral reservoir. The constituents of the garnet are essentially 
removed from the system as the garnet continues to grow. 
This leads to a change in the bulk composition of the reactive 
system. The reservoir of minerals, on the other hand, will 
reequilibrate in response to this slight depletion of the cation 
thereby maintaining homogeneity. The factor 2 is assumed 
constant, and represents the fractionation of a cation between 
the garnet edge and the reservoir minerals. In applications, 
this factor is normally obtained from the garnet composition 
at the center of the grain and the initial composition of the 
entire assemblage. 

Several other assumptions are inherent in the derivation 
of the model. Little or no diffusion in the crystallizing solid is 
assumed. Garnet, having one of the smallest cation diffusion 
coefficients for minerals, is therefore best suited for appli- 
cation of the model. This assumption is more valid at low 
grade conditions where the thermally activated diffusion pro- 
cess is essentially shut off (see Lasaga et al. 1977). In addition, 
transport within the mineral reservoir is assumed fast enough 
so that the cation concentration there is uniform. Atherton 
(1976) provides a comprehensive discussion of the fractio- 
nation model and elaborates on the necessary assumptions 
and limitations of the model. 

Hollister (1966) was able to reproduce the variation in 
MnO content of several almandine garnets from British Co- 
lumbia by his fractionation model. Curve a of Fig. 1 repre- 
sents the compositional profile as predicted by his model. 
This curve approximates the measured garnet compositional 
profile as represented by the dots. Deviations between the 
calculated curve and the measured profile are primarily attri- 
buted by Hollister to variations in the fractionation factor 
during the crystallization process. Temperature change was 
assumed to be the major source for these variations. Large 
compositional changes in the particular cation would also 
vary the fractionation factor (see below). The use of a fractio- 
nation factor, 2, in the derivation of the model assumes that 
the cation behaves as a trace element and therefore may not 
be appropriate for describing major cation partitioning. Fi- 
nally, the value of 2 could be affected by the changing pro- 
portions of ferromagnesian reservoir minerals throughout the 
growth history of the garnet (see Hollister 1969). 

Atherton (1968) applied a similar isothermal fractionation 
model to describe the MnO zoning patterns of medium grade 
garnets from Scotland. Several of the profiles required a 
changing fractionation factor to represent the different stages 
of crystal growth during the prograde event. Atherton there- 
fore fitted each section of the measured profile separately 
using a different fractionation factor, 2, for each stage of 
growth (see Fig. 6 of Atherton 1968). 
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Fig. 1. Theoretical compositional profiles for MnO in garnet: (a) 
Rayleigh fractionation model, 2=23, A=3619cm 3; (b) improved fit 
of isothermal fractionation model, 2=23, A=2624cm-3; (c) corre- 
sponding isothermal exchange equilibrium model, K~)=24.6, a= 1, A 
= 2624 cm-3. The dots represent the measured profile of MnO taken 
from Hollister (1966). (A is defined by Eq. (16)) 

The simple isothermal fractionation model, although 
crude, does manage to adequately describe the zoning of 
certain garnets. Low and medium grade garnets, which 
have had little or no modification by chemical diffusion, 
are the likely candidates for the application of this model, 
especially if they grew within a restricted time span so as to 
approximate nearly constant temperature conditions. More 
complicated growth histories (e.g., temperature changes, 
multiple garnet producing reactions and several stages of 
growth) restrict the use of this simple model in describing the 
complex zoning common to most natural garnets. To general- 
ize this fractionation model, it is important to remove the 
restrictions imposed by the need to maintain constant tem- 
perature and the need to ignore major element compositional 
effects upon the fractionation factor. In the next section we 
extend the isothermal model to allow for the treatment of 
major elements by incorporating a nonlinear fractionation 
term. 

Exchange Equilibrium Fractionation Model 

The Nernst distribution coefficient is well defined only for a 
trace element. In this case, we can write: 

,~ =M~ (21 
MR 

where it will be important in what follows to use weight 
percent or weight fraction instead of mole fractions. The use 
of 2 will restrict the application of the fractionation model to 
only the minor or trace cations. With large values of the 
cation concentration, however, 2 becomes compositionally de- 
pendent upon the other cations. Using the model to describe 
major element zoning would require redefining the fractio- 
nation factor as an exchange equilibrium constant, KD: 
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M~ and M~ are the weight fractions of the other major 
cation undergoing exchange in the garnet and the reservoir, 
respectively, for a two component system. Equation (3) as- 
sumes that mole fractions and weight fractions are directly 
proportional. Of course, we would ultimately have to deal 
also with changing activity coefficients. 

If MgA12/3SiO 4 and FeAIa/3SiO 4 are selected as the com- 
ponents for the garnet, then the sum of the weight fractions is 
unity, assuming there are no other components (by definition 
of weight fraction). On the other hand, the reservoir contains 
several minerals and the weight fractions of MgA12/3SiO 4 and 
FeA12/3SiO 4 will not add up to unity. For example, if the 
garnet producing reaction is: 

3 Mg2A14SisOls ~2Mg3A12Si3012 + 4 AI2SiO 5 + 5 SiO 2 
cordierite garnet sillimanite quartz 

then the weight fraction of Mg in the reservoir is: 

M R _ WMgAI2/3SIO4 _ 
Mg Wcor d ~_ Wsil I ~_ Wqtz 

where 

134.4 
WMgA12/3SiO4 - -  292.5 WMg-c~ 

Likewise: 

MFRe = WFeA12/3 SiO4 

Wcord -~- Wsill + Wq, z 

where 

165.9 
WFeAI2/3SiO4 -- 324.0 Wz .. . . .  d" 

Therefore, 

R R 0"459 WMg-cora + 0"512 WF ... . .  d 
M M g  + M F e  = l/ll • l/I/ • l/l/ 

r , .  ~ r r ,  | r ,  er Mg-cord Fe-cord other min als 

= a < l .  

It should be noted that to a good approximation the weight 
fraction of Mg or Fe in garnet will be directly proportional 
to the mole fraction. In the case of the cordierite break- 
down, the weight fraction will also be proportional to the 
mole fraction in cordierite. (Note that the weight of the other 
minerals can be minimized, since all minerals not involved in 
the garnet reaction can be ignored.) The equilibrium ex- 
pression constant in Eq. (3) can therefore be rewritten: 

M E ( a - M  R ) 
KD--MR(1 _Mo).  (4) 

A theoretically correct equilibrium constant is usually defined 
using molar quantities and not the weight fractions required 
for the present derivation. It can be shown for most cases 
that this new K D is essentially independent of composition 
once the weight fractions have been defined in terms of the 
mineral end members (e.g., MgA12/3SiO 4 for Mg in garnet). 
We will be ignoring changes in the activity coefficients as- 
suming ideal mixing in both the garnet and the reservoir or 
by incorporating them into K D. Note that Eq. (4) reduces to 
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the corresponding linear fractionation term, Eq. (2), as the 
weight fraction terms approach trace concentration values. In 
this limit, we find that K o = a 2 .  This last relation is important 
in what follows. 

The initial differential equation for the derivation of the 
Rayleigh fractionation model is based on mass balance con- 
straints (hence the use of weight fractions) between the grow- 
ing garnet and the mineral reservoir and on the assumption 
that the garnet is subsequently removed and prevented from 
back-reacting with the reservoir. We therefore have the fol- 
lowing relations among the changes in the contents of the 
different phases: 

-dw~ dw$ 
ME= - d ~  - d W  G (5) 

The additional terms are defined as follows: 

W R =weight of cation in reservoir 
W R =weight of reservoir 
W~ = weight of cation in garnet. 

Solving for M G in Eq. (4), we obtain: 

KoMR 
ME =a + MR(K e -  1)" (6) 

Inserting Eq. (6) for M E into the mass balance equation 
(Eq. 5) describing the reservoir weight change, we obtain: 

dwR - KDMR (7) 

dW R a + M R ( K . - I )  

M R can be written in terms of the absolute weight values as: 

w2 (s) 
MR-- WR 

which gives the following differential equation with only W,, R 
and W R as variables: 

dW R K ,  \WR I 
- -  - ( 9 )  

(W'ff~ (KD-- 1 ) dWn a+XWRl 

K D is constant in the isothermal fractionation model. The 
solution to this equation, as developed in Appendix A, is 
given below: 

1 - - K D  - -a  a 

wR (MR-1 t  o-o iMq ;-o 
w ~ = \ M o - ~ /  \Mo! " 

(10) 

Equation (8) has been introduced to obtain an expression in 
terms of the weight fl'action of the cation in the reservoir, 
M R . To get the final expression in terms of the garnet weight 
and the cation concentration in the garnet we require two 
more relationships: 

WR = W ~ - W ~ ,  ( 1 1 )  

aMa 
MR--KD(1 _M6)+ M ~ . (12) 

Equation (11) represents the decreasing weight of the re- 
servoir as garnet crystallizes. Equation (12) is a rearranged 
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form of Eq.(4). Introducing Eqs . ( l l )  and (12) into Eq.(10) 
and rearranging, we obtain the following expression for the 
extended fractionation model incorporating an exchange 
equilibrium term: 

1 - - K  D --a 

1 - ~ - =  WG [ M G(a+K o-1)-K o 1)] ~o-. 
I-(/D (1 -- MG) + Ma)(M o - 

a 

a M  G _]K~-~ 
�9 K D M o + M a M o ( I _ K D ) I  (13) 

or finally 

1 - - K D  --a 

[ M G ( a + K D - 1 ) - K  D ] Ko-, 
f (MG) 

[(KD(1 - Ma) + Mc) (M o -  1)J 
a 

.[_ a M  G ]K2-~ W ~ 
I_KDMo+MGMo(I_KD)I  + ~ - -  1 =0.  (14) 

Equation (14) is a function of only the weight fraction of 
the cation in the garnet edge, once a value is given for the 
extent of crystallization term, W ~ / W  o. This latter term can be 
evaluated knowing that W ~ is proportional to the cube of the 
garnet radius. W ~ is incorporated into the curve fitting pa- 
rameter, A: 

W G 
- Ar a (15) W o 

where 

A 4~pg (16) 
=3  W ~ " 

r is the radius and pg is the density of the garnet crystal. 
Hollister (1969) evaluated the initial weight of the system, 
W ~ by using the sum of the estimated weights of the fer- 
romagnesian minerals involved in the growth of the particu- 
lar garnet. Similarly, Atherton (1968) incorporated his curve 
fitting term as the effective size of the mineral reservoir from 
which one garnet is crystallizing as suggested by a modal 
analysis of the minerals in the rock thin section. 

A Newton-Raphson iterative technique is used to de- 
termine the root, MG, of Eq. (14). Therefore, given values of 
the constants KD, M0, a and A, along with the radius of the 
garnet, we can determine the weight fraction of the com- 
ponent at the edge of the garnet. This process is repeated for 
each radius position to produce the complete zoning profile. 

Figure 1 compares the simple Rayleigh fractionation mod- 
el (Eq. 1) and the nonlinear exchange equilibrium model 
(Eq. 14) to the measured manganese profile in a garnet anal- 
yzed by Hollister (1966). Figure 1 states the values used for 
KD, M0, a and A. We have improved the fit of the Hollister 
fractionation model by decreasing the A parameter in the 
simple theory; and this value is used to obtain the nonlinear 
exchange model. There is no major difference between the 
MnO zoning curves as produced by either model. The use of 
the more correct exchange equilibrium term alters the 
theoretical profile by only 0.08 wt. % MnO at the maximum 
difference near the radial position of 200 gm. 

The effect of varying the parameter a in the K D expression 
(Eq. 4) at constant 2 was analyzed. Normally, this term is set 
equal to unity to represent the simple two cation exchange 
process. However, the value of a has been reduced to values 
as low as 0.25 (with appropriate changes in Ko, so that K D 
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Fig. 2. Comparison between the simple Rayleigh and exchange 
equilibrium (a= 1) isothermal fractionation profiles for a minor com- 
ponent with various values of 2 and the corresponding KD: 2=45, 
KD=48.2; 2=23, KD=24.6; 2=12, KD=12.8; 2=5, KD=5.3. A 
=2624 cm -3 for all curves. Although barely observable the exchange 
profile is the upper curve at high concentrations then crosses the 
simple Rayleigh profile to become the lower curve near the 2 weight 
percent position 

=a2)  to yield a fractionation profile (MnO core concen- 
tration is approximately 7 wt. %) with deviations no greater 
than 0.02 wt. % from the profile obtained with a equal to one 
and the same value of 2. Similar behavior occurs for greater 
Mn core compositions. For  example, if the core MnO com- 
position is 47 wt. %, the deviations between the profiles are 
not more than 0.04 wt. % whether a = 1 or a = 0.25 at constant 
2 values. Clearly, the a term is not a major influential param- 
eter in the exchange equilibrium fractionation model except 
to relate K D and 2. 

The small difference between the two theoretical curves 
suggests that Hollister's model is appropriate in describing 
the MnO zoning of the British Columbian garnets and that 
MnO partitioning is adequately described by a trace element 
partitioning term (Eq. 2). Figure 2 exhibits the theoretical pro- 
files generated by both models for four different fractionation 
factor values. Excellent agreement occurs between each case. 

Application of the same models for a major component, 
however, results in greater disagreements. Figure 3 shows the 
profiles for a zoned component initially at 47 wt. %. Here the 
exchange equilibrium model disagrees with the simple par- 
tition model by concentration differences of up to 4wt. %. 
The difference between the two models increases as the frac- 
tionation factor or distribution coefficient decreases. For frac- 
tionation factors less than unity, concave upward profiles 
would be produced. In this case, the disagreement between 
the models decreases as the fractionation or distribution term 
decreases. It is apparent that the exchange equilibrium frac- 
tionation model is more appropriate than the Hollister par- 
tition model in describing the chemical zoning of major com- 
ponents (>  10wt. %). The compositional dependency of the 
partition fractionation factor of a component is dealt with 
successfully by the incorporation of a constant but nonlinear 
exchange equilibrium coefficient. 

It is interesting to note that as the weight fraction terms, 
M G and M0, approach trace element proportions, the ex- 
change equilibrium model (Eq. 13) reduces to the simple par- 
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equilibrium (a= 1) isothermal fractionation profiles for a major com- 
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tition fractionation model. Thus, if M~ and M o are much less 
than unity and KD=a2 , as demonstrated earlier, the first 
factor of the right hand side of Eq. (13) reduces to unity, 
leaving: 

1 

1--~d-= a2Mo+MoMo(1-a2) 

The second term of the denominator is negligible because it 
involves the product of two numbers much smaller than one. 
Upon rearranging, we obtain an expression identical to the 
usual fractionation model: 

MG=2M ~ ( l _ W ~  ~-1 
W ~ / �9 

(18) 

The exchange equilibrium fractionation model can be very 
useful in describing the major element zoning profiles of 
metamorphic garnets. It can also be applied to magma crys- 
tallization processes for monitoring major element distri- 
butions in phenocrysts and in the magma. This application 
would extend the work of Neuman et al. (1954), McIntire 
(1963) and Albarede and Bottinga (1972) who used the linear 
partition fractionation model for observing trace element dis- 
tributions in the crystallizing magma. 

Temperature and Growth Dependent Fractionation Model 

The previous section indicates that use of 2 rather than K D is 
correct for minor cations (e.g., < 10wt. ~). However, there 
are other additional important corrections to the simple Ray- 
leigh fractionation model. The normal zoning pattern of man- 
ganese in garnet, decreasing from core to rim, is usually 
explained by the simple Rayleigh model. This model fails, 
though, when attempting to describe an increase of MnO 
towards the rim, as found in some metamorphic environ- 
ments (Birk 1973; Kretz 1973). A fractionation factor less 
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than unity would be required to produce the latter MnO 
profile using the isothermal Rayleigh model. This is highly 
unlikely since the large Mn 2+ cation has a preferential af- 
finity toward the cubic site of garnet relative to the octahe- 
dral sites of the matrix minerals. This was observed by Hollis- 
ter (1969) who determined the initial MnO fractionation fac- 
tors, 2o, as ranging from 22 to 42 for metapelitic garnets. 
Therefore, the wide variety of MnO zoning profiles under- 
scores the important influence of the growth process as well 
as temperature changes upon the fractionation process. 

Recent papers have qualitatively explained the observed 
chemical zoning by allowing for temperature changes during 
the crystal growth (Tracy et al. 1976; Thompson etal. 1977). 
Increasing temperature during a prograde growth event 
would alter the distribution term and therefore change the 
equilibrium concentration of the cation being fractionated 
into the garnet edge. Similarly, a decrease in temperature 
would alter the distribution term but in the opposite direction 
and produce the reverse zoning profile. (It is assumed that 
cation diffusion will be ineffective in maintaining a homo- 
geneous garnet.) The chemical composition of garnets from 
metamorphic terranes would probably reflect effects of both 
temperature changes and the depletion of the matrix minerals 
during crystal growth. 

The role of time during growth is handled implicitly in the 
derivation of the isothermal fractionation model by use of the 
extent of crystallization term. However, if temperature also 
changes with time, we must treat the time dependence of the 
growth in a more explicit manner. To proceed, therefore, the 
initial differential equation (Eq. 5) is divided by the time 
interval, dt: 

dW R dW• (19) 
dt  =MG dt 

Dividing both sides of Eq. (19) by W f and using Eqs. (2) and 
(8), we obtain: 

1 dw~ ~(t) dw~ 
W~ dt WR(t ) dt 

(20) 

The same notation as used earlier is continued here. Note 
that the weight of the reservoir, WR(t), and the fractionation 
factor, 2(0, must now be given as functions of time. Integrat- 
ing the left hand side of Eq. (20), we obtain the general form 
of the solution to our new time dependent model: 

' x(tl ( e w . ]  
In l&f=ln Wf~ \ dt / dt. (21) 

W if~ represents the initial weight of the cation in the reservoir 
minerals. 

The temperature dependent fractionation factor, 2(T) (a 
precursor of 2(0), will be treated as a linear partition term. 
We have already shown in the previous section that this 
usage, which is certainly valid for trace element concen- 
trations, can also be used to satisfactorily monitor minor 
components (approximately 10wt. ~ or less). The tempera- 
ture dependence of the partition term is given by the stan- 
dard thermodynamic formula: 

2(T) =20o exp (_A H ~ 1 (22) 
\ R T /  
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where 20o is the pre-exponential term and A H ~ is the stan- 
dard molar enthalpy of the cation exchange between the 
reservoir mineral and the garnet. A H ~ is generally a function 
of pressure and temperature as well as of the composition of 
the considered phases. Within certain ranges of these three 
parameters, however, A H ~ can be considered as a constant 
during the growth process. Equation (22) can be rewritten as: 

A T  exp t ] 
where 2 o represents the value of the fractionation term at 
some initial temperature T o. A T  is defined as T o - T .  The 
temperature history is introduced by assuming a linear varia- 
tion of temperature with time: 

T = T O - s t. (24) 

s, as used here, represents a cooling (retrograde) rate if posi- 
tive or a heating (prograde) rate if negative. If A T is small 
relative to To, T is approximated by T o and Eq. (23) therefore 
reduces to: 

2(0 = 20 exp ( -  a t) (25) 

where 

A H ~  
- R To 2 " (26) 

The time dependence of W R is obtained by considering the 
growth rate of garnet crystallizing from the reservoir: 

d W ~ d W R d r (27) 
dt dt 47rrZ Pg d t  

where r is the radius of the garnet at time t and pg is the 
garnet density. Equation (27) follows from the conservation of 
mass during the conversion of reservoir material into garnet. 
For  the present case, let us assume a constant growth ve- 
locity, v, for the garnet. This condition is relaxed in a later 
section of this paper. W e  can generalize our solution and the 
earlier isothermal models by allowing for several stages of 
garnet growth as during successive metamorphic events. The 
radius of the garnet would then he given by: 

r = r 0 + v t (28) 

where r o represents the initial radius of the garnet at the 
onset of the growth event. Combining Eqs. (27) and (28) we 
obtain: 

_ d W R = 4 ~ (r 0 + v t)  2 pg/3. (29) 
dt 

WR(t ) is obtained by integrating the previous expression: 

Wa(t ) = W 0 _ 4 ~ pg((ro + v t) a - ro 3) (30) 

where W ~ is the initial weight of the reservoir. 
Substituting Eqs. (25), (29) and (30) into Eq. (21) we ob- 

tain: 

t 
In Wm a = In Wf ~ -- ! (20 exp ( - ~ t)) (4 ~z (r o + v t )  2 pg V) 

(WO_4  ~Z(ro + vt)3 pg + ~ nr3op~) dr. 
(31) 

This expression can be integrated numerically, or analytically 
once the exponential term is expanded. Appendix B provides 
details of the analytical evaluation of the integral. 

To obtain the cation content at the garnet edge, Eqs. (2) 
and (8) are combined to give: 

M~(t)=2( t )  WR(t) 
wR(t) 

o r  

Wm%) 
Me( t  ) = 2 o exp ( -  at) - -  

WR(t) 

(32) 

(33) 

where the reservoir weight terms are given by Eqs. (30) and 
(31). 

Equation (33) is an exact solution to the problem of 
partitioning cations from a homogeneous mineral reservoir 
into the edge of a growing garnet in the presence of a linear 
change in temperature. We have generalized this solution to 
account for any precrystallized garnet and for either a heating 
or cooling event. However, the crystal growth rate has been 
constrained to be constant. The required input parameters for 
evaluating Eq. (33) include those given below: 

M ~ initial weight fraction of cation in garnet G, 

Mo, initial weight fraction of cation in reservoir 
20, initial fractionation factor, M ~  
A H  ~ enthalpy change for fractionation process 
s, heating or cooling rate for growth event 
To, initial temperature of system 
v, radial growth rate of garnet 
ro, initial radius of garnet 
W ~ initial weight of reservoir required for growth of any 

one garnet 
W~ ~ initial weight of cation in reservoir, M 0 W ~ 

Garnet chemical zoning profiles generated during growth 
can be modeled by Eqs. (30), (31) and (33). The correspond- 
ing radial position will be given by Eq. (28) for each time 
increment. The application of this general model to garnets 
grown during a retrograde event is presented in the next 
section. 

Applicat ion of  Temperature  and Growth  Dependent  Model  

In this section we apply the growth model derived in the 
previous section to the garnets of the Phillipston area of 
Massachusetts. The rock units of this area were subjected to 
high grade regional metamorphism during the Acadian orog- 
eny with peak conditions at 675 ~ and 5.0kbar (Thompson 
1974). A summary of the metamorphic terrane of the area 
and the locality of the particular outcrop (well past the sec- 
ond sillimanite isograd is provided by Fig. 1 of Lasaga et al. 
(1977). 

The high grade rock contains large crystals of almandine- 
pyrope garnet. The major matrix minerals include biotite, 
cordierite, plagioclase, quartz, sillimanite and graphite. The 
garnets themselves are filled with randomly distributed in- 
clusions of quartz, ilmenite and to a lesser extent biotite. 
These garnets possess a dodecahedral (roughly spherical) crys- 
tal habit and range in size from less than 1 mm to almost 
15 mm in diameter. We will be concerned with only the larger- 
sized garnets in the present application. Richardson (1982) 
provides a thorough analysis and discussion of the mineralo- 
gy and geochemistry of the particular outcrop. 

An ETEC automated electron microprobe analyzer was 
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Fig. 4. Compositional profile across garnet A3 from Phillipston, Mas- 
sachusetts. Analytical uncertainties are represented by the brackets 
on the right of the profile 

used to obtain step scan analyses across selected garnets. 
Data reduction was performed using the correction scheme of 
Bence and Albee (1968) with the correction factors of Albee 
and Ray (1970). A typical zoning profile for the major cations 
is presented in Fig. 4. The iron and magnesium profiles com- 
plement each other across the grain; iron increases while 
magnesium decreases from the core region to the outer rim. 
Calcium and manganese, which are present in much smaller 
concentrations, exhibit only slight zoning behavior at the 
edge of the garnet. Silicon, aluminium and titanium remain 
unzoned in all of the garnets analyzed. The zoning patterns 
exhibited by the large garnets are spherically symmetrical as 
determined by several profile scans across each grain and 
appear to be uninfluenced by the immediately adjacent ma- 
trix minerals. As a good approximation, the zoning profiles 
can be considered within the binary system of the iron and 
magnesium end members. The mirror image profiles of these 
two cations are the result of maintaining charge balance in 
the eight-coordinated site of the garnet crystal lattice. The 
small fluctuations exhibited by iron and magnesium in their 
profiles probably represent analytical error or, in some cases, 
local exchange and diffusion effects between the garnet and a 
nearby inclusion. In addition, the microprobe electron beam 
produces an excitation volume which may encounter these 
inclusions to produce modified garnet analyses. 

Lasaga et al. (1977) determined that the smaller and more 
numerous Phillipston garnets, those with diameters less than 
1 mm, developed their zoning properties during a retrograde 
exchange and diffusion of iron and magnesium with the 
neighboring ferromagnesian minerals. These zoning profiles 
are similar in pattern to those of the larger garnets but are 
restricted to only the outer 30 p.m of the garnet and only 
when in contact with cordierite or biotite. Similar iron and 
magnesium zoning behavior has also been noted in other 
high grade almandine garnets (Gable and Sims 1969; Grant 
and Weiblen 1971; Hess 1971; Tracy etal. 1976). All of these 
studies hypothesized the development of this zoning during a 
high temperature retrograde cation exchange process. 

The major portion of the literature reporting garnet zon- 
ing describes both magnesium and iron as increasing from 
center to rim. Manganese antithetically decreases from the 
center producing a bell-shaped profile (Harte and Henley 
1966; Hollister 1966; Atherton and Edmunds 1966, Linthout 
and Westra 1968). This normal zoning behavior is common 
to the low and medium grade pelitic rocks and probably 
represents a primary formation without interference by 
chemical diffusion. The high grade Phillipston garnets, on the 
other hand, will be more apt to homogenize by chemical 
diffusion and produce an unzoned crystal with a concomitant 
lowering of the manganese concentration. This latter point 
has been supported by the observed decrease of garnet man- 
ganese content with increasing metamorphic grade (Miya- 
shiro 1953; Maller and Schneider 1971). 

The effect of a temperature change during garnet crystalli- 
zation must be considered in an analysis of the zoning pro- 
files of the large Phillipston garnets. The iron-magnesium 
exchange distribution term (KD) between garnet and a react- 
ing phase (cordierite or biotite) will be altered by any temper- 
ature trends and will naturally be dependent upon the actual 
continuous reaction (see Thompson 1976). If chemical dif- 
fusion is ineffective in the garnet, cation zoning profiles will 
develop during growth. Cygan (1980) determined a definite 
trend in F e - M g  Kv's (between core and rim of garnet and 
the neighboring ferromagnesian phase) which indicated a re- 
trograde growth process for the large garnets. Similarly, 
Grant and Weiblen (1971) relied upon a decrease in tempera- 
ture but suggested resorption of garnet to produce their zon- 
ing profiles, which are similar to those of this study. They 
proposed a continuous reaction involving the equilibrium 
assemblage garnet + biotite + cordierite + anthophyllite _+ hy- 
persthene. The cations were redistributed from the resorbed 
edge of the garnet uniformly throughout the rest of the garnet 
volume. Presumably, they attributed this redistribution to 
chemical diffusion. We believe that these distances (up to 
40 ~o of the initial radius) are usually much too large to allow 
simple lattice diffusion to keep up with resorption, as re- 
quired by their model. It therefore seems that resorption is an 
improbable mechanism for generating the desired profiles. 
These data imply that the large Phillipston garnets grew 
during a retrograde event so as to produce a magnesium 
profile decreasing from core to rim as iron increases. 

A reexamination of the large garnet zoning profiles (see 
Fig. 4) suggests the existence of an essentially homogeneous 
core region surrounded by an outer region comprised of steep 
concentration gradients in magnesium and iron. Cygan and 
Lasaga (1979) suggested initial garnet growth during the pro- 
grade metamorphic event followed by homogenization of the 
garnets by volume diffusion at the peak temperature. During 
the cooling event several of the garnets continued to grow 
and developed the outer region of zoning characteristic of the 
larger garnets. The smaller grains were probably prevented 
from further growth due to the lack of reacting materials or 
some other kinetic factor and therefore were only capable of 
cation exchange with neighboring minerals during the re- 
trograde event. This hypothesized growth history satisfac- 
torily predicts the chemical zoning behavior exhibited by 
both sizes of garnet from Phillipston. 

The large garnets provide a good example for the appli- 
cation of the temperature and growth dependent fractionation 
model which was derived in the previous section. We will 
only be concerned with generating the theoretical magnesium 
concentration profile in the garnet for several reasons. The 
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mirror-like profile of iron is obtained from the magnesium 
profile as a result of charge balance in the binary substi- 
tution. Also, the microprobe analyzer has improved absolute 
precision in the analysis of smaller concentrations, in this 
case, the magnesium concentration. This is the result of the 
restrictions imposed by the counting statistics for each ele- 
ment and the individual standards used. Finally, the tempera- 
ture dependent fractionation model assumes a linear fractio- 
nation factor which has already been shown for the isother- 
mal case to deviate from the exact distribution fractionation 
solution at high concentrations of the cation. These de- 
viations are kept to a desirable minimum by using the mag- 
nesium concentrations which are no greater than 6wt. 
MgO. 

Several parameters must be specified for inclusion in the 
model. Lasaga et al. (1977) determined a minimum cooling 
rate, s, of 100~ per million years for the Phillipston area. 
While the exact nature of the growth reaction is not clear at 
this point (see Richardson 1982), it is reasonable to estimate 
the enthalpy for the fractionation, A H ~ at 6.5 kcal/mole as 
taken from the exchange reaction evaluated by Lasaga et al. 
(1977). The initial cation concentration of the garnet was 
taken as the average value of the homogeneous core region 
and the initial radius, ro, is denoted approximately by the 
sudden onset of zoning in the magnesium profile. The initial 
cation concentration of the reservoir was obtained by averag- 
ing the magnesium analyses of the neighboring homogeneous 
cordierite minerals. We are assuming in this application that 
the retrograde growth of garnet was at the expense of cor- 
dierite or some other similar ferromagnesian reservoir phase. 
The initial fractionation factor at T0=675~ is calculated 
using Eq. (2) assuming that the initial cation concentrations 
in the garnet and the reservoir minerals were preserved 
through geologic time and are given directly by the micro- 
probe analyses. The simplifying assumption is that chemical 
diffusion was negligible throughout the retrograde growth 
process but yet was responsible for the homogenization at the 
peak metamorphic temperature (see below). 

The garnet growth rate, v, is an unknown quantity. Crys- 
tal growth data for garnet, or for that matter any metamor- 
phic mineral, is lacking in the geologic literature. An impor- 
tant study of metamorphic mineral growth rates is provided 
by Fisher (1977) in which the diffusion-controlled growth of 
andalusite-biotite segregations was examined. It is interesting 
to obtain an approximate value for a min imum growth rate by 
assuming a simple lattice diffusion-controlled growth for gar- 
net. We are ignoring any possibly enhanced growth rates 
created by fluid infiltration or intergranular diffusion. Nielsen 
(1964) gives the following equation for the growth velocity of 
a spherical grain as limited by the transport of one com- 
ponent to the grain interface through a solution or mineral 
reservoir: 

dr DV(C~-Cs) 
v = - - =  (34) 

dt  r 

where D is interpreted as the binary diffusion coefficient for 
the reservoir mineral, e.g., cordierite as given by Lasaga et al. 
(1977). F is the molar volume for the garnet. (C~-Cs)  is the 
difference between the bulk concentration of the one com- 
ponent in the reservoir and the concentration of the com- 
ponent at the surface of the growing garnet. A value for C~ 
was obtained from the cordierite exchange data for the small- 
er Phillipston garnets (see Lasaga et al. 1977). Therefore, for 

the larger-sized garnet A3 from Phillipston, Eq. (34) gives a 
limiting velocity of 0.0024 cm/million year at 675 ~ For the 
case of garnet growth from biotite, the diffusion-controlled 
growth rate will be slightly higher based on the faster dif- 
fusion rates in this mineral. These diffusion-controlled growth 
rates are only crude limiting cases and should not be accept- 
ed as representative of the actual growth mechanism. Coi'- 
dierite and biotite generally do not occur completely sur- 
rounding the Phillipston garnets, therefore limiting this possi- 
ble mode of crystal growth. In fact, we show below that the 
model yields much higher growth rates suggesting another 
growth-limiting mechanism. 

Having determined the initial values of the parameters s 
and r 0 to be used in the growth model for the Massachusetts 
garnets, the values of the standard enthalpy for magnesium 
exchange, A H ~ the initial weight of the reservoir, W ~ and 
the garnet growth rate, v, are obtained from the best fit to the 
observed profiles. A theoretical composition profile for mag- 
nesium in garnet A3 as generated by Eq. (33) is presented in 
Fig. 5 along with the observed data points. The calculation 
uses the values W~ v=0.040cm/m.y, and A H  ~ 

=4.0kcal/mole. The growth occurs during cooling from 
675~ to 475~ The fit of the theoretical curve to the 
measured profile has been optimized by varying the W ~ v 
and A H ~ parameters. Their physical significance and their 
influence upon the theoretical zoning profile will be discussed 
later. Note that, if all W ~ were converted into garnet, a 
spherical crystal 5 mm in diameter would form. Although the 
present model does not provide an ideal fit to the observed 
data, the incorporation of a cooling rate in the model does 
yield a fractionation profile that is the reverse  of the profile 
that would be generated by the isothermal Rayleigh model. 
This clearly shows the importance of considering the temper- 
ature change in any growth event. 

The difference in curvature between the measured profile 
and the temperature dependent model is primarily due to the 
constant velocity assumption. Realistically for a drop in tem- 
perature from 675 ~ to 475 ~ there will be a corresponding 
decrease in growth velocity. A decreasing velocity could pos- 
sibly reverse the curvature and provide a better fit to the 
measured profile. We treat this time dependent velocity 
growth process in the last section of this paper. 

None of the fractionation models presented in this paper 
allow for modification of the garnet by chemical diffusion. At 
high enough temperatures this process plays an important 
role in determining the extent of compositional zoning (An- 
derson and Buckley 1973, 1974; Anderson and Olympio 
1977; Lasaga 1979; Lasaga et al. 1977). Any zoning patterns 
which may have initially existed in the Phillipston garnets 
were effectively smoothed out by diffusion at the peak me- 
tamorphic temperature of 675~ Certainly, the diffusion 
rates would still be effective during the early parts of the 
retrograde growth. This process is neglected in applying the 
temperature dependent fractionation model to the large-sized 
Phillipston garnets. However, it should be noted that the 
growth distances are typically 1,000 gm while the penetration 
distances due to exchange and diffusion alone are only on the 
order of 30 gm (see Lasaga et al. 1977). Thus, in the case of 
retrograde growth our assumption may be reasonable. A 
numerical model including the effects of diffusion, exchange 
and growth will be presented in a forthcoming paper. 

A growth rate of 0.040 cm/m.y, was required in Fig. 5 to 
approximate the measured garnet profile. This velocity, con- 
siderably greater than the rate suggested by the diffusion- 
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controlled growth mechanism, is capable of producing the 
desired volume of new garnet for an allowed growth period of 
2 m.y. Reasonable approximations of the other large Phillip- 
ston garnet profiles were produced utilizing the same growth 
rate. The greater velocity required stresses the importance of 
intergranular transport in the reservoir. Utilization of grain 
boundary diffusion coefficients (see Fisher 1978) in Eq. (34) 
provides similar order-of-magnitude values for the growth 
rate as that determined from the temperature dependent frac- 
tionation model. The best fit growth rate can eventually be 
linked to the actual rate of the garnet-producing reaction and 
may be representative of the rates of numerous metamorphic 
growth processes. Certainly, such kinetic data are important 
to the petrologist in understanding the generation of meta- 
morphic terranes. 

It is very important to analyze the effect of varying the 
major parameters involved in the temperature dependent mod- 
el. The initial weight of the reservoir, W ~ limits the extent 
of zoning produced during the garnet growth. Figure 6 de- 
monstrates the decrease in zoning produced by increasing the 
amount of material available in the reservoir. This result is 
reasonable considering the lesser extent of crystallization al- 
lowed for the same crystallization time. Figures 7 and 8 show 
the zoning relationships for similar changes in the growth 
velocity and fractionation enthalpy, respectively, for crystal 
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growth during the temperature drop from 675~ to 475~ 
Initial retrograde growth is not necessarily restricted to the 
peak temperature at 675 ~ and may have started later in the 
cooling event at lower temperatures. The effect of increasing 
the growth velocity will be to increase the extent of the 
chemical zoning in the garnet in addition to the obvious 
result of producing larger crystals. This effect is accountable 
by the greater rate of incorporation of a cation into a grow- 
ing garnet for a given crystallization time, thereby depleting 
the reservoir faster to produce the greater amount of zoning. 

Finally in Fig. 9, we demonstrate a special case where the 
depletion of the reservoir during the fractionation process 
gradually overrides the temperature effect. The growth rate is 
fast enough relative to the cooling rate so that the mineral 
reservoir is quickly depleted of material causing the profile to 
reverse itself towards higher concentrations and approach the 
isothermal Rayleigh model curve. This process demonstrates 
a possible mechanism which under appropriate conditions 
can generate a reversal in the zoning pattern. 

The temperature dependent fractionation growth model is 
completely general and can be applied equally well to pro- 
grade and retrograde growth events. This model does reduce 
to the simple isothermal Rayleigh model with the incorpo- 
ration of a zero temperature change rate. In this capacity, the 
model allows for the complete monitoring of crystal growth 
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with time as dictated by a given growth rate. In addition, the 
temperature dependent model is not restricted to the con- 
tinued growth of preexisting crystals. The model satisfactorily 
generates the zoning of a complete crystal by assuming an 
infinitestimal initial radius (i.e., r o =0) in the calculations. 

Time Dependent Velocity Model 

In natural systems we expect the growth rate to vary as a 
function of temperature and therefore of time. For example, a 
200~ temperature drop could possibly decrease the velocity 
term to such an extent so as to prevent any appreciable 
garnet growth in the Phillipston garnets. Therefore, we should 
incorporate this variation in the growth rate. In particular, a 
decreasing growth rate could reverse the curvature of the 
constant velocity chemical profile presented in Fig. 5. Any 
increased agreement between the theoretical and measured 
profiles would provide further evidence in support of the 
retrograde growth theory for the large Phillipston garnets. 

To study the effects of varying growth rates, three growth 
rate-time relationships are introduced into the fractionation 
model: linear, exponential and square root behavior: 

v(t) = v o - k t, (35) 

v(t) = v o exp ( -  k t), (36) 

v(t) = v o - k t 1/2. (37) 

v 0 is the initial growth velocity at temperature T o and k is an 
undetermined constant which is related to the rate of change 
of velocity during the growth process. The forms chosen in 
Eqs. (35)-(37) are based on the expressions used for v in 
various types of crystal growth theories (see Nielsen 1964; 
Jackson 1967). Corresponding to Eqs. (35)-(37) are three 
radius-time expressions: 

r ( t ) = r  o + v o t - � 8 9  2, (38) 

r(t) = r o + v~ - v~ exp ( -  k t), (39) 
k k 
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decay, v o = 0.090 cm/million year, k = 0.057 cm/million year 3/2. d H ~ 
= 4.0 kcal/mole and W ~ 0.20 g for all curves. The dots represent the 
measured profile of MgO in weight percent 

Equations (35)-(37) are each separately introduced into 
Eq. (27) (for dr /d t )  which represents the change in reservoir 
weight with time for the temperature and growth dependent 
fractionation model. The resulting expression is integrated to 
obtain the expression for the weight of the reservoir anal- 
ogous to Eq. (30). The new reservoir weight expressions are 
then inserted into Eq. (21). A preliminary investigation avoid- 
ed the direct solution to the now complex integral of Eq. (21) 
by the use of a numerical integration scheme. The calculation 
of the cation content in the garnet edge is then obtained 
using the same procedure described in the constant velocity 
model. 

Figure 10 presents the profiles obtained for the three 
numerically evaluated models. The square root-t velocity mod- 
el provides the best fit to the measured profile, but this 
result cannot be taken as proof of a diffusion-controlled 
growth process. Such simple growth velocity behavior may be 
useful in modelling crystal growth but its use must be cau- 
tioned for completely describing the complex nature expected 
of natural garnet growth. 

The exponential growth velocity numerical model is ca- 
pable of providing an additional source of kinetic data. The 
growth rate, described by Eq. (36), is an exponential function 
of time and should be representative of a thermally activated 
process. It is possible to extract activation energy values for 
the growth rate from the exponent. An activation energy of 
20kcal/mole is obtained employing the k value determined 
from the best fit of the model profile. Values of this energy 
may provide some additional help in understanding the 
mechanism of metamorphic crystal growth. 

It will be beneficial to investigate the square root-t ve- 
locity model in detail in view of the best fit to the measured 
data. To derive the exact solution to this model, we require 
the analytical integration of the time term in the W d ex- 
pression: 

ln  W d = l n  W d ~  J ( 2 ~  (dWR] d t  (41) 
o WR(t) \ dt ] 

r ( t ) = r o - k V o t - ~ k t  3/2. (40) where 
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dWR 2 / # t 3 / 2 1 2  =4n(ro+Vot-5,~o j pg(vo-kt  1/2) (42) 

and 

W - a r  dvot-arovot  - a (g rok  +sv0) t  W R ( t ) =  O 2 2 2 4 2 1 3 3 

-~ak2vot4 + 2 arg kt3/2 +~arokvo t5/2 

+ ~a V~o k t 7/2 + ~ a k 3 t 9/~ (43) 

and where now 

a ~- 4 n pg. (44) 

The analytical evaluation of the integral in Eq. (41) can be 
done in a similar fashion, although more complex, as the 
evaluation of the integral in Appendix B. Finally, the cation 
concentration in the garnet edge, Ma, is obtained by the use 
of Eq. (33) but now using the reservoir weight relations given 
by Eq. (43) and the integrated form of Eq. (41). 

The resulting profile for magnesium is presented in Fig. 11 
along with the corresponding isothermal model. The initial 
growth rate, v0, incorporated in this application is similar 
to the rate used in the earlier constant velocity model. The 
value of the k term was initially chosen arbitrarily and then 
altered appropriately to determine its effect upon the zoning 
profile. The final k value incorporated in the model provides 
the optimum fit to the measured profile of garnet A3. The 
equation for the growth rate is now: 

v (t) = 0.090-  0.057 t 1/2 (cm/m. y.). (45) 

Hence, in the time it takes to cool through 200~ (2m.y.), v 
changes from 0.090cm/m.y. to 0.009cm/m.y. Figure 12 pre- 
sents an analysis of changing the values of k in this model 
and its effect upon the generated chemical profiles. 

An important conclusion to be made from these results is 
that the incorporation of varying growth rates into the model 
can significantly improve the modeling of zoning profiles. The 
values obtained for v 0 and k in our calculations are optimized 
to yield the best fit. The generality of these values for metape- 
litic or metavolcanic assemblages must await further appli- 
cation of our model to other garnet localities. 

Conclusion 

We have developed several extensions to the simple isother- 
mal fractionation growth model. These additions provide the 
refinements required in applying crystal growth theory to 
natural minerals. The complicated growth history of certain 
minerals, primarily the metamorphic garnets, can now be 
properly deduced from the exhibited chemical zoning pro- 
files. 

We have found the assumption of a linear fractionation 
term adequate in describing the profile of certain major com- 
ponents. Limitations on this assumption can be determined 
by consideration of the analytical uncertainties and their re- 
lationship to the disagreements between the simple partition 
and exchange equilibrium isothermal models as shown in 
Figs. 2 and 3. 

The temperature and growth dependent fractionation mod- 
el provides a sound basis for quantitatively examining com- 
positional profiles of minerals. This general model enables 
one to monitor several stages of crystal growth as dictated by 
the system size, bulk composition, temperature range, growth 
rate and cooling or heating rate. The importance of consider- 
ing the temperature change during a fractionation growth 
process was demonstrated by the reverse profile obtained in 
applying the model. The internal balance between tempera- 
ture change and fractionation and their effect on the growth 
process is determined by the selected parameters. The extent 
of crystallization term, WG/W ~ can be instituted for monitor- 
ing the depletion state of the reservoir and the compositional 
gradient created in the garnet. The incorporation of a time 
dependent growth rate greatly refines the fractionation model 
and provides a good foundation for its application in com- 
plex geological environments. 

The application of the theory is not limited to growth 
of metamorphic garnets. Fractionation growth processes can 
be modeled in numerous geological instances, including 
additional igneous and metamorphic refractory minerals, 
crystallization of magmas, isotope distributions and geothermo- 
metry. The use of these fractionation growth models, or geospeed- 
ometers, will lead to the eventual understanding of the complex 
disequilibrium processes found in geological systems. 
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Appendix A. Solut ion of i sothermal  exchange equi l ibr ium 
fract ionat ion model  differential equa t ion  

To obtain the solution of the exchange equilibrium model differential 
equation (Eq. 9), an integrating factor is required. Let: 

MR = Vr . (A1) 
w. 

Actually, this expression is equivalent to the weight fraction of the 
cation in the reservoir as given previously by Eq. (8). Taking the 
derivative of this quotient we obtain: 

d ti~RJ = - t W g )  W f + N  =aMR (m2) 

which upon rearranging produces: 

dW~ iwf~ dUR 
dW K = i N  ) + W R y .  (a3) 

Inserting Eq. (A3) into Eq. (9) and rearranging to separate variables 
we obtain Eq. (A4) where the reservoir weight terms have been re- 
placed by MR: 

dWR MR(1 --KD)--a 
- -  -- dM R (A4) 
W R MR(K o - a ) ( M  R - 1) 

o r  

dW R 1 - K D a 
W R - ( K  D - a ) ( M e -  1) dMR MR(KD--a)(MR-- 1) dMR. (A5) 

The last term of this equation can be written in terms of simple 
partial fractions, which produces an easily integrated equation: 

RdWR 1 -- K D M~ 1 

o W R = K D - a ~ o M R - 1  
dMR 

a m~ 1 a M~ 1 
- -  ~ - - d M R + - -  I - - d M ,  (A6) 

K o - a Mo MR -- 1 K D - a Mo M~ 

o r  

[WR] = 1 -- K D In ( M ,  - 1 I 
l n \ w o ]  KD--a \ M o - - l l  

- - - l n  +K~ga_a In . (A7) 
Ko-a 

After rearranging Eq. (A7) and then exponentiating both sides of the 
resulting equation, we obtain the final form of the solution to Eq. (9) 
as given below: 

i --KD --a a 

WR (MR-- I ]  ~ (MR] R;-" (A8) 
W ~ =  ~ M ~ -  1! \M 0 / " 

Appendix B. Evalua t ion  of integral  
for t empera ture  dependent  f rac t ionat ion model  

With the assumption of changing temperature during garnet growth, 
as given by Eq. (24), we have introduced several complicated func- 
tions of temperature and, hence, time. The limiting mathematical 

maneuver required in the temperature dependent fractionation model 
is the evaluation of the integral in Eq. (31). The integrand can be 
rewritten as: 

t 
INT_=av~ (2~176 +vt)2 dt  (B1) 

where 

a=-47~pg. (B2) 

It is desirable to alter the form of the exponential term, 2(0, to a 
polynomial in order to simplify the integration. Expanding Eq. (25) as 
a quadratic in t, we obtain: 

2(t)=2o--f l t  + yt 2 (B3) 

where 

fi-=2o, (B4) 

and 

7~-�89 (B5) 

This approximation is very good for applications, including those of 
this study, where the absolute value of at  is less than one. Introduc- 
ing the new form of 2(0 in place of the exponential term in Eq. (B 1) 
we obtain: 

' (2~ 2)(r~ dt  

o a a " I N T = a v  S (WO-3(r~ r~) (B6) 

Expanding both numerator and denominator polynomials, we ob- 
tain: 

v27t4 +(2roV])-- flv2)t 3 

i N T = a v  i +(2oV2+TrZ-Zflrov)tZ+(Zrov2o-f ir~)t+r22o 

_ a v 3 t 3 _ a r o v 2 t 2 _ a r g v t +  W ~ 
3 

dt. (]37) 

Synthetic division of the improper polynomial fraction reduces the 
integrand to: 

3 INT=av~  [ - ' ~  t-~ 3r~ 
o k av av 2 

q A t 2 + B t + C  

where 

A ~ r 2 7 +  ~ovZ +roflV, (B9) 

_ 3ro3y 37W ~ 
B=-2r~fl+2rov2o+ + - - ,  (B10) 

a v  

C---~22o, o 3r~176 3/~W~ (Bll)  av 2 av 

The first two terms of Eq. (B 8) are easily integrated whereas the third 
term requires reduction to partial fractions before integrating. This 
third term, defined as L(t), can be rewritten with its denominator 
factored, giving: 

A t 2 + B t + C  
L(t)~-(t_k)(ltZ + rnt + n) (B12) 

where 

k = l  _ " 3 ,1/3 ( 4 + S )  ro (B 3) 
- - / )  9 '  
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a u  3 

l-= - ~ ,  (B 14) 

kay 3 
rn~ -aro v 2 - - ,  (B15) 

3 

W 0 

n -  = - - - .  (B16) 
k 

Using partial fractions to reduce Eq. (B 12) we obtain: 

D t + E  F 
L(t) lt2+mt+nq t - k  (B17) 

where 

mA nA C 
t +~T-~ -B 

D_ 
m n 

T+E+k 
(B 18) 

1 
E=- ~ ( n A - n D - C  I), (B19) 

1 
F=-7(A -D). (B20) 

The first term of Eq. (B17) can be integrated by means of a simple 
substitution. Combining the result with all of the integrated forms of 
the simple terms from Eqs. (B8) and (B17), we obtain the final form 
of the integrated Eq. (B 1): 

INT=-~Yta+(~@~+3fl) t+avFln(1-~) 

+ / ~  t E - ~ - ) [ t a n  \ 7 / - t a n - :  ( 2 / ~ )  (B21) 

rg/ 2 

+ c  j 

where 

/~ /T~ 2 

G-= - - -  (B 22) 
l 4 / 2  
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