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Abstract 

Luce and Fishburn (1991) derived a general rank-dependent utility model using an operation @ of joint 
receipt. Their argument rested on an empirically supported property (now) called segregation and on the 
assumption that utility is additive over @. This note generalizes that conclusion to the case where utility need 
not be additive over @, but rather is of a more general form, which they derived but did not use in their article. 
Tversky and Kahneman (1992), conjecturing that the joint receipt of two sums of money is simply their sum, 
criticized that original model because @ = + together with additive utility implies the unacceptable conclu- 
sion that the utility of money is proportional to money. In the present generalized theory, if @ = +,  utility is a 
negative exponential function of money rather than proportional. Similar results hold for losses. The case of 
mixed gains and losses is less well understood. 
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1. Introduction 

A theory of preferences was proposed for binary gambles by Luce (1991), and a closely 
related one for general finite gambles that led to a general rank- and sign-dependent 
utility representation was proposed by Luce and Fishburn (1991). This representation is 
essentially the same as that proposed, independently, by Tversky and Kahneman (1992) 
and axiomatized by Wakker and Tversky (1993). Ours was novel primarily because it 
included an additional primitive of receiving two things at once, called joint receipt. This 
made the derivation of the rank- and sign-dependent form rather natural and easy 
without, however, imposing on the axioms properties that only make sense if one already 
knows the intended representation (as appears to be true of the axiomatization of Wak- 
ker and Tversky (1993), which rests upon the not very intuitive concept of co- 
monotonicity). 

The difficulty with our derivation is that it was carried out under the restrictive as- 
sumption that the utility U is additive over joint receipt, i.e., if x @ y denotes the joint 
receipt of both x andy, 
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U(x @y) = U(x) + U(y). (1) 

As Tversky and Kahneman (1992) remarked, if the joint receipt of money is simply the 
sum, i.e., 

x @ y  N x  + y ,  (2) 

then, necessarily, the utility for money is proportional to money, i.e., for some constant 
k > 0 ,  

U(x) = (3) 

Since there is ample evidence against (3)--e.g., evidence for diminishing marginal util- 
i t y - o n e  is forced to reject either (1), (2), or both. 

Thaler (1985) (see also Thaler and Johnson, 1990; Linville and Fischer, 1991) studied 
x @Y in a context of somewhat naturalistic scenarios and concluded that Eq. (2) held for 
losses, but not for gains or for some cases of mixed gains and losses. In the framework of 
a gambling experiment using certainty equivalents, Cho and Luce (in press) studied (2) 
and concluded that it was sustained, confirming Tversky and Kahneman's conjecture. If 
so, then we know that Eq. (1) cannot be correct. 

Luce and Fishburn (1991) actually provided an argument for a more general form 
than (1). Assuming commutatMty and associatMty of @, 

x @ y - y @ x, (4a) 

x @ ( y ( ~ z )  -- ( x@y)@z ,  (4b) 

which, of course, follow from (2), and monotonicity of the operation, that is, 

U(x) ___ U(y) U(x |  _ u(y |  (5) 

the more general form becomes: 

U(x)UO') C > 0. (6) U(x @y) = U(x) + U(y) C ' 

In deriving the rank-dependent (or cumulative) utility representation, we elected to use 
the special case of (1) rather than the full form of (6), because we believed, without 
actually verifying it, that the effect of the added multiplicative term in (6) would lead to 
an enormous increase in the complexity of the resulting representation. Our intuitions 
were wrong, and the purpose of this note is to establish, to the contrary, that the final 
rank-dependent form is unchanged. We believe that this conclusion undercuts to a 
considerable degree the Tversky and Kahneman objection to our approach to rank- 
dependent utility. 
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The note is organized as follows. The next section states more fully the conditions that 
lead to (6). Section 3 explores the implications of (2) and (6) for the form of U(x) and 
how (6) generalizes to the joint receipt of three or more things. Section 4 rederives from 
(6) the general rank-dependent representation. Section 5 points out some of the unre- 
solved issues when mixed gains and losses are involved. Finally, section 6 provides a 
summary. 

2. Segregation and the form of U(x ~ y) 

Let (x,p;y) denote a gamble that paysx if an event with probabilityp obtains, and paysy 
otherwise. We consider only gains (x,y > 0) and 0 for the moment. Several years before 
publication of the preceding references, Luce and Narens (1985) demonstrated that the 
most general form for the interval scale (cardinal) measurement of utility U of binary 
gambles is: 

U(x,p;y) = ~ W>(p)U(x) + [1 - W>(p)lU(y), x _> y 

( W<(p)U(x) + [1 - W<(p)]U(y), x < y, (7) 

where U is strictly increasing in the outcomes and the two weighting functions W> and 
W< map [0, 1] onto [0, 1]. Assuming 

(x,p;y) - ~,1 -p ;x ) ,  (8) 

where - denotes indifference, it follows that there is but one function, because 
W>(p) + W<(1 - p )  = 1. 

We suppose, as did Tversky and Kahneman (1979), that the status quo 0 is a singular 
point, 1 so that 

U(0) = O. (9) 

For a fairly general theory of singular points, see Luce (1992). 
We generalize the concept of joint receipt (~ to gambles, so that g @ h, where g and h 

are gambles, means that one receives both of the gambles, g and h. An example is the 
purchase, at the same time, of tickets to two different lotteries. This generalized operator 
includes, as a special case, the joint receipt of sums of money. Suppose further that the 
following property holds, which was called distribution in the original publication, but was 
subsequently renamed (binary) segregation: forx, y > 0, 

(x,p; O) @y = (x @y,p; 0 @y), (lOa) 

y | (O,p;x) = (y | O,p;y | (lOb) 
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This has the very simple interpretation that receipt of a gamble whose outcomes are a 
gain and the status quo jointly with a positive sumy is seen as indifferent to the gamble 
formed from the original one by substituting for each outcome the joint receipt of that 
outcome and y. It is a highly rational property. Binary segregation has been studied by 
Cho and Luce (in press) in a lottery experiment and appears to be sustained. 

Under the assumptions of (7)-(10) with U strictly increasing and certain density re- 
quirements that are fulfilled when U is onto a real interval and Wis a function from [0, 1] 
onto [0, 1], Luce and Fishburn (1991, Theorem 1) showed that U over money must satisfy 

U(x @y) = AU(x) + BU(y) + DU(x)U(y). (11) 

As was noted above, in developing our generalization of rank-dependent theory to 
arbitrary finite gambles, we did not use the full generality of (11), but rather assumed the 
special case of additive utility, namely, A = B = i andD = 0 in (11) resulting in (1). It is 
easily verified thatA = B = 1 (with or without D = 0) corresponds to @ being commu- 
tative and associative, (4). But we had little justification for setting D = 0 beyond math- 
ematical simplicity, because we presumed that D ~ 0 would make the representation 
very complex. As noted above, a major purpose of this note is to establish that, to the 
contrary, exactly the same representation arises with D ~ 0. 

3. An extensive model for joint receipts 

Suppose that @ is commutative and associative and (11) holds. Then, as noted, A = 
B = 1. We suppose also that U(x + y) < U(x) + U(y) for positivex andy, as required by 
diminishing marginal utility. It follows thatD < 0 in (11), which we rewrite as (6) above. 
Note that this means U is bounded unless C = ~ .  

The first two theorems characterize a familiar negative exponential form for U and 
develop the equation for the utility of n-fold joint receipt for gains. 

Theorem 1. Suppose U(x) is strictly increasing at a decreasing rate in x _ 0 and (2) and 
(6) hold with C < oo. Then 

U(x) = C(1 - e-k~), k > 0 (12) 

Proof. Assume the hypotheses of the theorem. Because U(x + y) = U(x @y) > U(x) for 

x,y > 0, (6) implies U(y) 1 - > 0, hence that I - ---C-- > 0. Let 

ln(l 
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Then it is easy to verify from (2) and (6) that 

V(x + y) = V(x @ y )  = V(x) + V(y), 

and so with the monotonicity of V, which follows immediately from that of U, we have 
V(x) = - k x  for some k > 0, from which (12) follows. [ ]  

Theorem 2. Suppose U(x) is strictly increasing at a decreasing rate in x - 0, (6) holds, 
and S} n) denotes a typical subset ofj elements from {1, 2 . . . .  , n}. Then 

n 

U(Xl (~X2 @ ... (~)Xn) = S~l(- 1/Cy-12 ~H~.U(xi). (13) 
= s~. i ~  

Proof (13) is simply (6) for n = 2, and (6) implies associativity, i.e., (4b). We proceed by 
induction: 

U(x1 (~X2 (~ "" @Xn) = U[(x 1 ( ~ x  2 (~) .--  @ X n _ l )  @Xn] (4b) 

g(xl @ x 2 ( ~ - . .  ( ~ X n _ l ) ( 1  

/ 

U(x,,) I 
C I + U(xn) (6) 

n-1 
= ~" ( -  1/C)J- a ~" [ I  U(xi) (Induction hypothesis) 

j=l s).-l~ i%~.-1~ 
n-1 

+ ~'(-1/C)JU(xn)~" I t  V(xi) "1- V(x.) 
j=l S} n-l) i@S~ n-l) 

el ( 2  
= 2 ( - 1 / c ) J - 1  H U(xi) (Rearrangement) 

j=2 s5n-1) iES~ n-l) 

"k V(Xn) 2 H U(xi) ) 
~4 n 11) i@S}n_-it ) 

n-1 
+ (-1/c).-~U(x.) I I  u(~) + XU(xO + U(x.) 

i <-n-1 i=1 
n 

= 2 ( - 1 / C ) J - 1 2  ~ (Rearrangement) 
j=l S} n) iES) )u(xi)" 

[] 

4. The general form for rank dependence 

Supposeg is a gamble o fm nonnegative outcomesxi, orderedxl > x2 > " > Xm >~ O, 
with probabilitypi > 0, for i = 1, . . . ,  m, and ~Pi = 1. This gamble we denote symbol- 
ically as 

m 

g = ~'~(xi, Pi). 
i=1 
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Note that if m = 1, then Pl = 1 and g = Xl, and if m = 2, we use the abbreviated 
notation (xl,Pl; x2). We say that g is stricttypositive ifx m > O. 

Generalizing (7), we say thatpreferences are rank-dependent of order n if for each m _ 
m 

n and every strictly positive g = ~]i= l(xi, Pi) 

m 

U(g) = 2 U(xi)[W(Pi) - W(Pi_ I)], (14) 
i = l  

where Pi = Y~=ap],Po = O, Pm = 1, W(0) = 0, and W(1) = 1. For a general survey of this 
class of models, see Quiggin (1993). 

Our goal is to show that this form arises under fairly reasonable assumptions. We let 
CEfg) denote the so-called certainty equivalent of gamble g, defined as the monetary 
amount indifferent to g: 

CE(g) ~ g, where CE(g) is an amount of money. (15) 

Theorem 3. Suppose the following are true for gambles composed of monetary gains and 
their joint receipt. There exists a constant C and a function U: ~t § U {0} onto [0, C) and 
W: [0, 1] onto [0, 1] such that: 

1. U is strictly increasing over gambles, money, and joint receipts, U(0) = 0, and forx, 
y > O, U(x GY) > U(x), U(y) and U(x + y) < U(x) + U(y). 

2. Gambles are monotonic in the consequences. 
3. O is associative. 
4. G is a monotonic operation in the following sense: 

g Q x  - CE(g) @x. (16) 

5. Binary rank dependence, (7), holds. 
6. Binary segregation, (10), holds.m (xi ~ )  
7. Supposem > 2,g = ~.i=l(xi,Pi),Xm > 0, andg'  = ~]im~ 1 , . Then 

g - ( g ' , l  -pm;Xm). (17) 

Then (6) holds and preferences are rank-dependent of order n, as in (14). 

Before giving a proof, a few words of comment are in order. Assumption 2 has been 
brought into question by Birnbaum (1992) and Mellers, Weiss, and Birnbaum (1992), 
but as von Winterfeldt, Chung, Luce, and Cho (submitted) have argued, it may be valid if 
CE is determined by an appropriate choice procedure, although possibly not when 
judged CEs are used. As noted earlier, Assumption 3 appears to be correct. Assumption 
4 was shown in Luce (1995) to be equivalent in the presence of Assumption 1 to 
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monotonicity of @ in the usual sense. Although plausible, Assumption 4 may be incor- 
rect, as Cho and Luce (in press) have argued. They studied it empirically, using money 
lotteries, and found that it was not sustained for gains, although it appears to be for 
losses. So Assumption 4 is in some doubt. Assumptions 5 and 6 were discussed earlier. 
Note that, by Luce and Fishburn (1991, Theorem 1), one may replace either Assumption 
5 or 6 by (6), if that seems more natural. Assumption 7, which was made in Luce and 
Fishburn (1991), simply says that a gamble of order m can be thought of as a binary 
gamble, the first outcome of which is the renormalized gamble in the first m - 1 elements. 

Five lemmas are useful in proving Theorem 3. 

Lemma 1. Suppose assumptions 1, 3, 4, 5, and 6 hold. Then (6) holds, as well as the 
following generalization, where g is a gamble andx is a sum of money: 

u(g | = u @  + u(x)  u(g)U(x) c > o. 08) 
C ' 

Proof. Luce and Fishburn (1991, Theorem 1) prove (11), and the argument given earlier 
establishes (6). Using this and the other assumptions, 

U ( g |  = U[CE(g) |  = U[CE(g)] + U(x) 
U[CE(g)IU(x) 

C 

= U(g) + u(x) U(g)U(x) [ ]  
C 

The following concept of "subtraction" is useful: 

g @ h  = f i f f f @ h  = g .  (19) 

Lemma 2. Suppose Assumptions 1, 3, 5, and 6 hold. Then: 

U(x) - v~y) 
(i) Forx >_ y, U(x @y) - 1 -  U(y)/C" 

(ii) x @ x  - 0 
(iii) ( f @ h )  @ (g@h) = f@g .  

(20) 

Proof. 

(i) By Lemma 1, apply (6) tox = (x @y) @y and solve. 
(ii) By Assumption 1, U is monotonic and U(0) = 0. So from (20) we have 

U(x |  = o = u(o)  <~ x |  - o. 

(iii) Set u = f @ h, v = g @ h, w = u @ v. Thus, by definition, u = w @ v and 



12 R. DUNCAN LUCE/PETER C. FISHBURN 

f =  ( f O h ) ( ~ h  = u (~h  = (w(~v) (~h  = w(~ (v (~h )  = w(~g, 

and so by definition w = f Q g. [ ]  

I_emma 3. Suppose Assumptions 1 and 5 hold. Then: 

U(x,p; O) = U(x)W(p). (21) 

Proof Trivial. [ ]  

Lemma 4. Suppose Assumptions 1, 2, 4, 6, and 7 hold. Then the following generalization 
of segregation holds: Ifg = Y~i m l(xi, Pi) is strictly positive, then 

g ~ (x i @Xm, Pi ) @ x  m. (22) 

Proof. Using the notation of Assumption 7, 

g N (g,, 1 - pm;Xm) (Assumption 7) 
(CE(g'), 1 - pm;Xm) (Assumption 2 and (15)) 

- (CE(g') GXm, 1 - Pm; O) (~Xm (Assumption 6) 
N (g, Q X m ,  1 -- Pm; O) ( ~ X  m (Assumptions 2 and 4) 

[rn~ll (X i P i ) l _ p m ; O ] ( ~ x  m (assumption2, Induction) = QXm, 1-pm ' 

~ (xi @Xm,Pi) @Xm. (Assumptions 6 and 7) [ ]  

Lemma 5. Suppose Assumptions 1, 2, 5, and 7 hold. Then, for 0 < p -< q -< 1, 

~ P  )w(q) = W(p). 

Proof 

U(x)Wfp )  = U(x ,p;  o, 1 - p )  

= U[~,P; 0, 1 - P) ,q;0]  

G{CE~, p" P),q; = ~ , 0 , 1  - 0] 

= b~CE~, P ; o ) ]W(q) 

= U(~,P;o)W(q) 

(Lemma 3) 

(Assumption 7) 

(Assumption 2) 

(Lemma 3) 

((15) and Assumption 2) 

(23) 
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Dividing by U(x) > 0 yields (23). 

(Lemma 3) 

[] 

Proof of Theorem 3. Lemma 1 establishes that (6) holds. To prove that preferences are 
rank dependent, we proceed by induction. By Assumption 5, binary rank dependence 
holds. Suppose preferences are rank dependent of orc~er n - 1. Let g = ~,iml(xi, Pi) be 

�9 > , m -  1 Pi strictly positive, Le., Xm 0, and g = Y~i=l l[xi, ~ }. Then 
--/Yrn 

] ] U(g) = _ (x i @Xm,Pi ) @x m (Lemma 4) 

= [1 -- U(xm)/C ] (x i (~Xm,Pi) -F U(xm) (Lemma 1, (6)) 

~m~ll(x Pi ) ] 
= [1 - U(Xm)/C l = i@Xm, l~-pm , l  --pm;O 

+ U(xm) (Assumption 7) 

~{ mizll (X s )] = [1 - U(Xm)/C] i@Xm, 1 W(1 -Pro) + U(xm) (Lemma 3) 
= --/J/TI 

= [1 - U(Xm)/C] 7, U(xi @Xm) Pi 
i=1 

- +  ,xm) 

m-1 
= [1 - U(xm)/C]7~ U(xi@Xm)[W(ei) - W(ei_l )  ] -t- U(xm) 

i=1 
m-1 

= 2[U(x i )  - g(xm)l[W(Pi) - W(P/_l) ] + U(Xm) 
i=l 
m 

= 7,U(xi)[W(~) - W(Pi-1)]. 
i=1 

(Induction hypothesis) 

(Lemma 5) 

(Lemma 2) 

[] 

5. Issues concerning mixed gains and losses 

An entirely parallel development holds for the domain of losses with (6) as before, 
except that C for losses is negative. However, the issue of mixed gains and losses is much 
more problematic. The problem is as follows�9 Does (2),x @y = x + y, continue to hold 
forx > 0 > y? The only data bearing on the issue are those of Thaler (1985), Thaler and 
Johnson (1990), and Linville and Fischer (1991), which suggest that it is not true in 
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general. 2 However, data from these same experiments suggested that (2) was not true for 
gains, whereas the Cho and Luce (in press) experiment using simple lotteries and sums 
of money concluded otherwise. Unfortunately, they did not study the mixed case. If we 
do suppose that (2) continues to hold, then the relation of U(x @y) = U(x + y) to U(x) 
and U(y) becomes very problematical, as we shall see. 

Luce and Fishbum (1991) made the assumption that if g + is a gamble of gains and so 
is preferred to 0, which in turn is preferred to g -  a gamble of losses, then 

U(g + @ g - )  = U(g +) + U(g-). (24) 

They were not able to give any compelling argument for this form aside from the fact that 
if (6) holds, with appropriately signed constants C ( + )  and C ( -  ) for gains and losses, 
then (24) retains the additive terms, and it is sufficient to maintain the monotonicity of 
@. Moreover, this assumption, when coupled with the only nonrational assumption of 
the theory yields the same formula for the utility of a mixed gamble as does Kahneman 
and Tversky's (1979) prospect theory. Our nonrational assumption was that any gamble 
of mixed outcomes is perceived as indifferent to the following duplex decomposition: 
receiving the gamble that is obtained by replacing all losses by 0 jointly with the indepen- 
dently run gamble that is obtained by replacing all gains by 0. Empirical data, such as 
those of Slovic and Lichtenstein (1968) and Cho, Luce, and von Winteffeldt (1994), 
sustain that postulate. 

But as we now show, one cannot have all of (2), (6), and (24). From (2) and (6), 
Theorem I establishes 

U(x) = C(+)(1 - e-k(+)x), C ( + )  > 0, k ( + )  > 0,x > 0, 
U(x) = c ( - ) ( 1  - c ( - )  < 0 , k ( - )  > 0 ,x  < 0. 

Suppose x > x + y > 0 > y. Then 

U(x + y) = C(+)(1 - e-k(+)(x+Y)) = C(+)(1 -XY ' ) ,  

whereX = e-k( +)x and Y' = e-k(+)Y. Moreover, 

U(x) + U(y) = C(+)(1 - X )  + C ( - ) ( 1  - Y), 

where Y = ek(-)Y. Thus, for (24) to hold we have 

C( + )X(1 - Y') = C( - )(1 - Y). 

But, since for anyy, we can makex anyvalue such thatx + y > 0, this cannot be satisfied 
except for Y = Y' = 1, which is impossible. So the three equations are incompatible. 

There seems to be a major issue here. We need to check (2) in the mixed case and to 
check the implications on @ if (24) is correct. 
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6. Conclusions 

The  major  poin t  of  this note  is to establish that  one  can derive the r ank-dependen t  form 
of  utility, (14), f rom binary  rank  dependence  (7), segregat ion (10), and  a commutat ive  
and associative (4) b inary  opera t ion  of  joint  receipt  using the fully genera l  form for 
U(x @ y )  of  (6), ra ther  than the addit ive specialization,  (1), used by Luce and F ishburn  
(1991). Somewhat  incidental  to that,  we der ived the negative exponent ia l  form for utility 
of  money  when  Q is simply addi t ion  for money,  (2). Al though  this theory deals  with 
r ank -dependence  for gains and losses separately,  it does  not  tell us about  the  mixed case 
w h e n x  > 0 > y. The  form for U(x @ y )  in that  case is an open  problem.  
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No~s 

1. Defined formally, a point is singular if it is invariant under all automorphisms of the structure, which in this 
case means those mappings that correspond to multiplication by a positive constant in the representation. 

2. Indeed, they argued that utility should satisfy the hedonic rule: U(x OY) = max{U(x + y), U(x) + U(y)}. 
With U concave for gains and concave for losses, the second term holds for gains and the first for losses. 
The mixed case is much more complex, and Thaler's (1985) discussion of where the boundary lies at which 
U(x + y) = U(x) + U(y) was informal. Fishburn and Luce (1995) work it out in detail as well as axioma- 
tizing the hedonic rule. 

Note added in proof:. Mr. Liping Liu of the University of Kansas has improved Theorem 3 greatly by weakening 
some assumptions and eliminating others entirely. 
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