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Abstract. The origin of chemical chirality is probably associated with a difference in the initial concentra- 
tions of two separate populations of primeval organic molecules and possibly even two types of primeval 
organisms and amplified by nonlinear kinetic processes leading to the death of one population. This theory, 
as originally developed by F. C. Frank of the University of Bristol, is reviewed in this paper with additional 
derivations, discussions and generalizations. 

The possible effect of asymmetry in the rate constant is compared to the role of statistical fluctuations, 
and it is shown, that within the simple model investigated here that the role of statistical fluctuations is 
much more important for the death of one isomer. In the unlikely absence of any fluctuations, the non- 
linear kinetic processes amplify the asymmetry in the rate constant and lead to the death of one enanthio- 
morph. 

The role of spatial diffusion is discussed, and it is shown that in the presence of a local excess of one 
enanthiomorph this excess would have spread in space and grown, destroying the opposite enanthiomorph. 
If the total population of both enanthiomorphs was exactly composed of equal parts of both types, but local 
fluctuation increased one type at one place and decreased the same type at a different location, the 
diffusion and growth rate would have caused spatial separation in the population of both enanthiomorphs. 

For general nth order nonlinear symmetric rate processes (incorporating multitudes of reactions and 
general diffusion), it is shown that if initially two populations of enanthiomorphs were exactly the same 
at all locations, then for all times both populations would have increased and remained equal to each other. 

Mathematical model was constructed for stereoscopic autocatalysis suggested by Calvin. It was found 
that under certain special local conditions in the presence of large fluctuation it is possible indeed to'have 
growth of only one type of isomer. 

Various approximate methods and numerical solutions are presented in order to facilitate the handling 
of nonlinear rate equations. 

1. Introduction 

In  this sec t ion  we will a t t e m p t  to o rgan ize  a n d  ca ta log  va r i ous  hypo theses  for the  

poss ib le  m e c h a n i s m s  for the  or ig in  of op t ica l  ac t iv i ty  in  l iv ing  o rgan i sms ,  or m o r e  

precisely chiral i ty ,  i.e., c o n f i g u r a t i o n a l l y  left (L) or r ight  (D) h a n d e d  e n a n t h i o m o r p h s  

p re sen t  in  l iv ing  o rgan i sms ,  e.g., L- or D - a m i n o  acids. M o s t  or  all  of  these m e c h a n i s m s  

have  been  p rev ious ly  pos tu l a t ed ,  a n d  for the  a p p r o p r i a t e  references  we po in t  to the  

la test  sys temat ic  review of  the o r ig in  of  m o l e c u l a r  ch i ra l i ty  by  B o n n e r  (1972). 

1.1. FORMATION OF ORGANIC MOLECULES ON THE EARTH 

C u r r e n t l y  it is a s s u m e d  tha t  the E a r t h  c o n d e n s e d  f rom stel lar  mat te r ,  b e c a m e  very ho t  

f rom c o m p r e s s i o n  a n d  r ad ioac t ive  decay,  a n d  that  o n l y  after  the surface a n d  a t m o -  

* Based on the paper presented at the International Symposium on Generation and Amplification of 
Asymmetry in Chemical Systems, 24-26 September 1973 at Kernforschungsanlage in Jtilich, F.R.G. 
** On leave at Physical Dynamics, Inc., and the University of California, San Diego, La Jolla, California. 
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sphere were sufficiently cooled, stable organic molecules were produced from the 
primeval atmosphere. A multitude of processes have been suggested for this produc- 
tion: lightning (Beutner, 1938; Dauvillier, 1938; Bernal, 1949; Urey, 1952; Miller and 
Urey, 1959; Oparin, 1924); ultraviolet radiation (Oparin, 1924); radioactive decay 
(Calvin, 1969); quenching reactions from shock waves due to falling meteorites 
(Hochstim, 1963, 1971); lightning on water surfaces (Park et al., 1971, 1974; Park, 
1973); shock waves from thunder (Bar-Nun et al., 1970); etc. 

It is assumed that all of these processes produced an equal amount of L and D 
amino acids. Up to now, no processes have been found to indicate definite asymmetric 
synthesis on the earth, i.e., no definite preference for the formation of L amino acids 
(Bonner, 1972). 

Even if there were some unexplained, yet asymmetric, production of one type of 
amino acids, the normal racemization, ~e., slow conversion of L to D and D to L, 
would have taken place in the relatively short time of a few hundred thousand years 
(e.g., Bada, 1972; Hochstim et al., 1975). 

Recently, much interest has been aroused by the continuous discoveries by radio 
astronomers of more and more complex organic molecules in interstellar space, e.g., 
CN, C2N 2, HCN, H2CO, HC3N, CH3OH, CH202, CH3CN, H2CNH, etc. (e.g., 
Gordon and Snyder, 1973; Metz, 1973). These molecules were probably formed by 
atoms condensing on dust particles. These discoveries have led many to suggest that 
because this material was condensed to form the Earth, it was also the carrier and 
source of the organic molecules found on the Eartk First, if the Earth were formed 
by such material, subsequent heating of the Earth due to gravitational pull and radio- 
active decay would have destroyed the original molecules. Second, if the primeval 
Earth contained any atmosphere, the frictional heating and ablation of any small 
particle (meteor) entering the Earth's atmosphere at high velocities (v> 11 km s-1) 
would have evaporated and destroyed the original organic molecules. Large meteor- 
ites, however, with simple organic molecules contained inside could have partially 
survived (Hochstim, 1971). An analysis of the Murchison meteorite indicates equal 
amounts of L and D amino acids (Ponnamperuma, 1972). On the other hand, me- 
teorites with associated shock waves would have produced much more organic 
material in the primeval atmosphere (Hochstim, 1963). 

Thus, one can assume that in the early stages (before life started) amino acids were 
formed in exactly equal mixtures of D and L amino acids, with only small local 
fluctuations from the mean. 

1.2. FORMATION OF L AND D MOLECULAR POLYMERS 

In this phase, the peptide chains were probably formed in a primitive 'soup' of an 
equal mixture of D and L amino acids. The most abundant peptides would have been 
small mixed ones with D and L amino acids joined together, with a very small con- 
centration of pure chains of L and D amino acids linked together. It is known that D 
and L mixed chain polymers are unstable (Blout et ai., 1957, see reviews by Wald 
(1957) and Bonner (1972)). Therefore, after a long time there should have been high 
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concentrations of configurationally homogeneous pure D and pure L peptides (e.g. 
Wald, 1957). 

Simultaneously, with the formation of proteins from peptides, there were probably 
processes leading to the formation of sugar polymers (polysaccharides), lipids and 
nucleic acids (e.g., see Calvin, 1969). Then, somehow (the big step !) processes led to 
living organisms containing L amino acids and D-sugars. It may be impossible to 
give a meaningful answer to the question of why such symmetry was chosen, but we 
can catalog various hypotheses and try at least to speculate on possible mechanisms 
and simple models. 

Most of the arguments presented in the rest of the paper with respect to organisms 
can also apply to the growth and destruction of large molecules. 

1.3. FORMATION OF THE FIRST LIVING ORGANISM 

Below, we group various hypotheses into separate categories. 

1.3.1. Hypothesis: The Germination of the First Living Organism is an Extremely 
Rare Event 

When a living organism, capable of reproducing, is formed from all the required 
molecules, there is an equal chance for this event to create an L or a D organism 
(defined here as consisting only of L or D amino acids*). Even if the event were 
extremely improbable, once the organism had formed at a certain location and sur- 
vived, it would not be surprising to find that it was only L-type and that there was no 
other life in the universe (see Figure 1, case 1). The consequence of such a very rare 
phenomenon, had it occurred, would be very predictable. 

In all literature on the origin of life, this theory is rejected on the basis of an estima- 
tion of the extremely small probability of a purely random event. Small probability, 
however, does not necessarily imply that it would be a purely random event. It is 
doubtful that this question can ever be settled unless in the future: (a) we can reject 
it by experiment (e.g., by detection of L or D life on Mars or elsewhere in the Uni- 
verse), or (b) we find out that once all the required molecules and special conditions 
were given, the formation of a reproducing primitive organism was a very highly 
probable event, leading to a virtual explosion of life in the primitive soup (e.g., 
laboratory synthesis of D organisms). Then we will be able to understand that within 
a relatively short time in the history of the Earth, i.e., within about 500 million years of 
accumulation of organic molecules on the surface of the Earth, living primitive or- 
ganisms of L-type and/or D-type evolved. 

1.3.2. Hypothesis of Likely Origin 

Let us assume that the occurrence of the first living organism in the primeval soup was 
highly probable. The following subcases are then possible: 

* It is not cleat" if the presence in the proteins of only L amino acids leads to another stereoselectivity: the 
incorporation of D sugars in nucleic acids (e.g., D-ribose and deoxy-D-ribose) and vice-versa. For discus- 
sion, see Eyring et  al. (1962). 
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Probability of first cell occurrence is 
extremely small, but if occurred-grows. 

w r 

2, Probabil i ty of f i rs t  cell is highly probable 

( a )  L or D type cell formed 

(d.} Explosive rate of growth : 
~ L 

. .  ~ TIME 

f (13) Slow rate of growth : 
~ ~ 4 / L ~  / L(orD 

v ~ TIME 

( b )  L and D type form concurrently. 

(d,) Explosive rate of growth : 

(I8) Slow rote of growth: 

w 
~-'- TIME 

~-~ TIME 

~r 

Local winner due to ampl i f icat ion of s tat is t ica l  f luctuations in nonlinear 
rote processes. Dif fusion and mixing leads to f ina l  winner. If  asymmetric 
synthesis favoring L is present , then  L >  D ,everywhere.  

Fig. 1. Simplified catalogue of various models for the origin of optical activity. 
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(a) L and D type organisms formed separately, with 
(o~) Explosive Rate of Growth (Spontaneous asymmetric synthesis). The first 

organism formed and quickly multiplied before any other organism had 
time to be formed. If the first organism happened to be L-type, all life on 
Earth is descended from this organism (see Figure 1, 1.3.2 (ae)). or 

(~) Slow Rate of Growth. The organisms formed at various times at different 
locations with slow rate of growth. L and D type living organisms appeared. 
Diffusion and various mixing (e.g., rain) must have facilitated wars between 
D and L populations (see Figure 1, 1.3.2 (a[3)). 

(b) L and D type organisms formed concurrently, with 
(o 0 Explosive Rate of Growth (Spontaneous asymmetric synthesis). The first 

organisms formed at the same place and time and were of L and D type, 
with subsequent fights between species (see Figure 1, 1.3.2 (b~)). or 

(~) Slow Rate of Growth. Same as (a13), but due to certain mechanisms equal 
amounts of L and D organisms formed (e.g., Wald, 1957) at the same time 
and the same place and occurred at different times and different places. 
Diffusion and mixing were probably important and led to wars between D 
and L populations (see Figure 1, 1.3.2 (b[3)). 

1.3.3. Application of Generalized Frank's Model 

In cases 1.3.2 (a[3), 1.3.2 (b~) and 1.3.2 (b13), both self-reproducing L and D populations 
coexist initially. We assume that mutual antagonism was either developed or became 
noticeable with higher concentrations of L and D organisms. The generalized Frank's 
model, with which we wilt deal at length in this paper, is applicable to these cases. 
Then if there was some small excess of L (or D) population over D (or L) population 
due to statistical fluctuations, the L (or D) population would have increased and even- 
tually won because of the amplification through nonlinear chemical rate processes. 
The multiplying winner was assisted by the death of the opposite enanthiomorpl~ 
Diffusion and mixing would have brought winners from various areas into contact 
with each other, leading to the final L winner. Similarly, if there were some asymmetric 
rate process present favoring the L population, the L enanthiomorph would have 
grown and won quicker because of amplification through nonlinear chemical rate 
processes. 

Statistical fluctuations in general (e.g. via spontaneous asymmetric synthesis 
(Havinga, 1954; Calvin, 1969) would have lead to the formation of two spatially 
separated L and D colonies of protocells. Ritchie (1947) and also Bonner (1972) were 
critical of the concept of both colonies for the origin of chirality. In our opinion 
the discrepancy is completely resolved by adding mutual antagonism of the two popu- 
lations at least with diffusion (obviously also rain, flow and mixing would have also 
facilitated bringing together the two populations into a contact). For detail see p. 365. 

The remainder of this paper will deal with a model of two separate populations of 
primeval organisms (or polymers), one based on L- and one on D-amino acids. 
Possible interactions between those two separate, self-reproducing, and mutually 
antagonistic populations will be discussed. 
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2. The Local Growth and Death of L and D Cells* 

2.1. INTRODUCTION 

Let us consider a population of primeval cells composed exclusively of L or D 
amino acids and let us designate them by the letters L and D, respectively. If one 
L-type cell absorbs L-amino acids (from an infinite reservoir (open system) of or- 
ganic materials containing L and D amino acids) and divides itself, we may write for 
the self-reproductive reaction: 

L-~L + L, (1) 

where kx is the rate constant for this first order process. A similar expression can be 
written for the D cells, 

D-L~ D + D, (2) 

where the fundamental principle was used that the rate constant ka in first reaction is 
the same as in second (in Section 2.4, we discuss the case in which these might not be 
equal). This follows from the conviction that molecular collisions, and all statistical 
processes, have the same dynamic time sequence as mirror events under identical 
externally symmetric conditions. If we assume that the L and D organisms die at the 
same rate and let X denote the concentration of dead organisms resulting from the 
interaction of L and D organisms, i.e., assuming simultaneous processes 

L-L~L + L; L ~ X  

D3-~D + D; D~--~X, 

we obtain the description of simple linear rate processes in the absence of diffusion 

(k 1 > k]), 

dL k~) L I 

I 

~t=(k l_k ,1 )O,  [ (3) 

with the solutions** 

and 

L= Lo e(k~ -kl) t, D =  D o e (ki-kl)t 

L -  D = (L o -  Do) e (k~ -k,) t, 
L L o 

D D O 

where L o and D O are the concentrations of L and D at time t = 0. If L o = Do, then in 

* We will be discussing here primitive cells or organisms, but the same model can be applied to organic 
polymers. 
** On molecular level the rate constants are temperature dependent and temperature may vary with time; 
however, we are assuming throughout this paper that all rate constants are time independent. 
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this model, L = D at all times. If due to initial conditions (e.g., statistical fluctuations), 
L0>Do, then the difference L - D  will grow exponentially in time. Many similar 
schemes have been proposed, which lead essentially only to the growth of IL-DL, if 
L o r  o (see Bonner, 1972). In this simple linear system there are no instabilities, no 
destruction of one species. In the rest of the paper, we will use kl for both kl and k[, 
i.e., for an effective rate of population increase. 

Let us consider the case of an asymmetric rate constant, i.e. kl r k* (for further 
discussion see Section 2.4)0 

L ~ L + L  

D ~ D + D ,  

where kl and k* are effective rate constants for the L and D population growths, 
respectively. Thus, 

where 

dL dD 
dt kxL; ~ = k * D  

L = L o  eklt ; D=Do ek~tt (4) 

L -  D = Lo ek~t-- Do ekV = Lo ekat-- Do ek't + Do ektt-- Do e kv = 

= (Lo -- Do) ek't+ Do ek~t(1 -- e-~k,t), (5) 

k l  - k* 

kl 

Here again both population grow exponentially, with the difference increasing, but 
there is no mechanism of destruction of one population. 

We see that if L o > D  o and kx > k*, the difference L - D  will grow due to an initial 
disproportion from fluctuation (the L o - D o  term) and due to asymmetry in rate 
constants. Initially 

V/Lo - D o \  q 
L - D ~ - ( L o - D o ) + D o L ~ - ~ o  ) + e J k l t .  (6) 

ffLo < Do and kl > k* the two processes would counteract and result will be depending 
on the value of e vs D o -  Lo. 

2.2. STATISTICAL FLUCTUATIONS 

The chemical rate constant can be deduced by averaging over a statistical process, 
i.e., over the collision probability (cross-section) and the relative velocity during 
collision (or duration of collision). Strictly speaking the cross-sections for the specific 
process (and not the rate constants) must be equal for chiral reactions under identical 
symmetric (mirror) conditions. Because of the statistical variables in the description 
of the rate constant (e.g., yielding temperature dependence) we may expect at a given 
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time and location, slightly different amounts of L and D, i.e., we may expect that at 
some location L - D  is fluctuating in time around zero value. For living organisms 
reaction rates are even more complicated and represent overall rates of many chemical 
processes. They are thus affected by internal statistical variables and external variables 
(e.g., accidental deaths). Further cause of the fluctuations can be due to statistical 
averaging in the transport motion (diffusion~ to non-uniform flows (e.g., turbulence), 
to non-uniform mixing, etc. 

In the following we will review statistical estimates of the magnitude of the fluctuations in number of L and D 
cells (or polymers). If NL=NI:+4NL and No=ND+AN9, where NL and ND are total numbers and 4NL 
and A N D  are the fluctuations, then the average fluctuation are given by (e.g., see Landau and Lifshitz, 
1958) 

(ANL)2=NL, (4ND)2=No, ANz=AND=O, 

where bar over the quantity signifies averaging, and expectations of N L can be given by 

N r = ~ J l q - ~ l  ~, ND=:Vo(I+ 1 ~ ' 1  (7) 

and one can show that* 

(NL - -  ND) 2 = (NL - ND) 2 + NL + N-D (8) 

and if N- L = ND 

(NL-- ND) 2 = 2NL, 

SO that on the average (rms) 

N L -  N D = 2X/~L 
or 

L--D N L - N .  ~_~ 
- ~  - -N/~L L. (9) 

It is interesting to note that once in a while fluctuations will reach an extremely high 
value, and that these extreme values, although purely random in magnitude and in 
time of arrival, satisfy some regular properties. If one plots the largest amplitude 
reached up to a given time vs logarithm of time, one gets usually a nearly straight line 
(e.g., see Gumbel, 1954, 1958). The slope depends on a particular law of distribution 
of amplitudes. It can be shown that under the assumption of independance and sta- 
tionary property of extreme random variables a distribution function of extrema can 
be derived for general class of exponential functions (e.g., Gumbel, 1958; Montroll, 
1974). The straight line relationship vs In t has been verified on various data obtained 
from largest floods, largest snowfalls, greatest earthquake, oldest ages of men, etc., 
wherever there were large statistical sources of information (e.g., Gumbel, 1958). 

* (N L -  No) 2 = (NL++_ A NL-- ND -T- AND) 2 
= (/~L - ND) 2 + (A N L - AND) 2 -T- 2 (NL -- N.) (A N L -- AND) 

=(~L- RD) 2 + (ANL- 4Wry 
= ( ~ -  R . y  + (4N~y + (ANDy -- 24N~4N., 

since the NL'S are independent from AND's, A NL4 ND = 0 and 

(NL - -  ND) 2 = (*#L -- ~rD)2 + NL + ND' 
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Thus, we see that although on the average the fluctuations can be expected to oscil- 
late around rms values, if we wait a sufficiently long time fluctuation of much larger 
size can be available. 

The possible role of fluctuations in the origin of optical asymmetry was first dis- 
cussed by Pearson (1898a, b). For other references, see Mills (1932) and an excellent 
review by Bonner (1972 l The chemical instabilities due to fluctuations in general 
were discussed by Prigogine (1967). The model for the role of fluctuations in the 
origin of optical asymmetry with growth and destruction was first expressed in a simple 
mathematical model by F. C. Frank (1953), which we will review first and extend in 
the next section. In the Section 5 we will analyze another model (stereoscopic auto- 
catalysis) suggested by Calvin (1969). 

2 .3 .  FRANK'S MODEL FOR MUTUALLY ANTAGONISTIC, SELF-REPRODUCING SYSTEMS 

Now let us consider the simple pairing of L and D cells ('eating', fighting between) 
which we assume leads to death*, i.e., let 

L + Dk--~X. 

Combining the previous processes with this as the only death mechanism, i.e., as- 
suming simultaneous processes (kl includes the natural death k]) 

L-~L+L;  D-~D+D; L + D ~ X ,  

one obtains two coupled nonlinear** differential equations: 

dL 
= k l L -  k'2LD (10) 

dD 
~-~ = kiD - k'2LD. (11) 

This system of equations was first suggested as a model for the origin of optical activity 
by F. C. Frank (1953). These equations are of the Lotka-Volterra type (Lotka, 1920, 
1924, 1932; Volterra, 1930; Leigh, 1966; Goet et al., 1971), except for the signs in front 
of the k's and therefore have no oscillatory solutions as are present in the normal 
Lotka-Volterra equations. 

The behavior of the solutions can be studied by plotting lnL vs lnD. To do this one 
combines Equations (10) and (11) (eliminating time) to obtain (L # a), 

d lnL D - ~  

d l n D = L - ~  ' 

where ~ = kl/k 2. The slope is positive when D > ~ and L > a (or when D < a and L < a) 
and negative when D < c~ and L > c~ (or when D > a and L < a). Furthermore, the slope 

* In polymer formation:  instability of DL chain, e.g. DL helices. 
** Because of LD product in equations. 
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is zero when D = a  and is infinite when L = ~. Thus, the sketch below o f lnL  vs lnD can 
be traced simply to satisfy the preceding conditions. 

I 
I 

.1. 
' , ~ Z E R O  SLOPES 

I n L  . I . ~  
I 

+ SLOPES ~ - SLOPES 
4- ', __,~+_ cO SLOPES 
f 

Ind, - - " I - - - - - I ' -  - - I ' -  - "-I- - -  "I- - -  

( L = ~  I 
I 

+ SLOPES + - SLOPES 
I 
I 
I h , . . _  

Ina,  InD 

(D = d,) 

Figure 2 shows dependence of L vs D. Through any point in this plane (except at the 
stationary (singular) point, L = a, D = a) there passes a curve which indicates the path 
followed in time by the representative point (L, D) in the direction indicated by the 
arrow. 

If at some time* (e.g., t=0)  L o < Do (indicated by a dot in Figure 2 on curve a), as 
time progresses (indicated by an arrow in Figure 2 on curve a), D will decrease initially, 
L will decrease and the ratios D/L will increase. The variation of the same case is seen 
in Figure 2, curve b, with L initially undergoing a maximum and again with D/L in- 
creasing all the time. 

If L o > Do, the opposite occurs. 
If L o = D  o and if we assume no fluctuations, L=D at all times and either both 

decrease or both increase as they approach steady state (Figure 2g). The slope at t = 0 
of lnL  vs time is ki(1-Lo/a), and if Lo>a=ki/k' 2 the slope is negative, L=D and 
both will be decreasing in time, while asymptotically approaching L = D = c~. Similarly, 
if L o < a  the slope is positive, L =  D, and both will be increasing in time while 
asymptotically approaching the same steady state solution L = D = e (see Figure 2h). 

We note from Equations (10) and (11) that if L o < D, D passes through minimum 
when L =~  (see Figure 2a), and L has a maximum when D = e (see Figure 2b). If 
L o > Do, L has a minimum when D = ~ and D passes through maximum when L = c~. 
Subtracting Equation (11) from Equation (10) yields 

d 
dt ( L -  D)= k 1 ( L -  D) (1 la) 

L -  D = (L o - Do) e hi, (1 lb) 

* We assume in this section that we have only initial disproportion, i.e., that at subsequent times when L 
or D grow, the fluctuations are no longer significant, which is the case when the time between occurrence 
of consecutive fluctuations in number  of L and D is greater than the time of reproduction 1/k 1 (see 
Section 2.3.6, p. 331). 
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~n L 

2n o~ ...... ? ; S  

2n ol ~ n D 

Lo 

D 
/ 

J 

Lo< Do 

..-.<. 
t 2 a .  

�9 .t 
OoLY "~176176 

" - t  2 d .  

L o , D ~ L  = D 

- t  
2 g .  

Fig. 2. 

D O Do Lo< Do 

t t 
2b. 2c. 

DoL F 'x~. Lo>D~ DoL~ D Lo>D O 

t =-t 
2e. 2f. 

l Lo : Do<0C 

2 t .  

lnL vs inD and L and D vs times for various initial conditions. 

where L o and D o are values of L and D at t = 0. Dividing Equation (10) by L and 
Equation (11) by D, and subtracting Equation (11) from Equation (10), one obtains 

d 
dt  ln (L /D)  = k'2 (L  - D ) =  k'2 ( Lo - Do) e hr. 

Integrating again gives 

in (L/D)  = K (Lo - Do) e h '  + A ,  

where K = k'2/k 1 = 1/~. A t  t =  O, 

ln(Lo/Do)  = K (Lo - Do) + A .  

(11c) 

( l ld)  
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Subtracting Equation (1 l c) from (1 l b) yields 

In (L/D) = In (Lo/Do) + K (L o - Do) (e k~t _ 1) 
and 

L = ( L o ~  eK(Lo-Do) (eklt- 1) 

O \Do/ 
Because of the identity 

L - D  L L L - D  
D =  ; L = - - . D -  - - ,  

L D D L  
- - - -1  - - - 1  
D D 

we can explicitly write these equations in a symmetric form: 

2.3.1. L 0 > D  o (see Figure 3) 

I000 

(12) 

(13) 

KLo - KDo =0.1JKDo 
~ ~ - L  / D 

I00 

IO 
KL 

O. 
KD 

Fig  3. 

0.010  I I - -  ~I,  I I I 
I 2 ~  4 5 6 

"c2 ~i 

T :  k~t 
KL, KD and LID vs normalized time z for a particular initial condition. Note the growth of 

L and LID and very quick decay of D. 
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As t--> oo 

L= (L~ -Do) ekl* Lo e~(Lo_Do) (j, It_ 1) (14) 

L~ e K(L~176 (eklt-1)--1 Do 
Do 

D - (L~ - DO) ekJ 
(15) 

L~ e K(r~ D~ (ek'*-1)- 1 
Do 

L-*( Lo - Do) e k'* (16) 

D ~ o  ~ (L o -Do) e -*(Lo-,o)~,~, (17) 

i.e., L will grow exponentially but D will disappear (the 'death' rate) much faster than 
exponentially. This means that if a small fluctuation from D = L exists at any time, the 
nonlinear processes perform strong amplification of the fluctuation, leading to the 
survival of one population and the rapid destruction of the other.* Since fluctuation in 
concentration must occur in nature because of the randomness of all collisions rate and 
flow phenomena, this makes, after a while, the state of equal concentration of D and L 
cells very improbable, and occurrence of only L (or D) type organisms very probable. 

The opposite case, when Do> L o can be obtained from Equations (14) and (15) by 
changing L 0 -  Do to - ( D  o - L o )  and rearranging the terms. D will be found to grow 
exponentially but L will disappear much faster than exponentially. 

It is possible that in isolated places on Earth, a D colony won in one place, and an L 
colony in another. Subsequently, wars between these colonies could have resulted in 
the triumph of L colony (to be discussed later in Section 2.4 when diffusion will be 
included). 

2.3.2. Lo--D o 

If L o = D  O at one time, then L = D for all times 

From Equation (11 a), if L o = Do 

d lnL D - a  
= 1, (L~a )  (18) 

d lnD L - a  

and 

dL 
~ = k , L - k i L  z, (19) 

d L  

- -  = k 1 dt 
L ( a - L )  

* It is clear that in this model L and D can co-exist until concentration of L and D increases sufficiently 
so that the non-linear product LD becomes significant (see Equations (10) and (11)) and from then on the 
destructive mechanism for one population begins rapidly. 
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which, after integration, becomes 

L L ~  - ~ -  L o e k't, 
L - o~ 

and solving for L, 

0c 

L = , a = kl/k'2, 

1- (1-• e- l' 
(20) 

in agreement with the solution to a similar equation for population growth by Lotka 
(1924). We see that if Lo>a ,  L > a  at all times, and as t~oo,  L ~ a  (see Figure 2g). If 
Lo < a, L < ~ at all times, and as t ~  0% L ~  (see Figure 2h). 

In examining Figure 2 we see that this condition of L = D at all times is very im- 

probable, because this solution is very unstable to any fluctuation in L and in D, i.e., 
to any deviation from L = D. 

2.3.3. General Relation Between L and D 

From Equations (10) and (11), 

and integration gives 

L - e  l n L = D - e  l n D + A  

e L g - ~ = e  D D-~ e A ,  

and rearranging yields the general relation between L and D at any time (except for 
L = a )  with K =  1/a=k'2/kl" 

L L~ e KEL-D-(L~176 (21) 
D D o 

2.3.4. Linear Solution for Short Times 

Let ~ = kit, then from Equations (14)-(17) we obtain for z ~ 1, 

L"~Lo [-1 +(1 - K D o )  z], 

D~-D o [1 + ( 1 - K n 0 )  z], (22) 

L L o -  
D---Do [1 + K ( L  o - D o )  z]. 

We see that for short times, the behavior is linear with time, with an initial increase or 
decrease in L and D depending on the value of K L  o and KD o. Only afterward does the 
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nonlinear amplification and destruction take place. We also see that LID for Lo > Do 
and D/L for D o > Lo always increase in time. 

2.3.5. Characteristic 7~mes 

First Stage (ki t< 1). Linear solution (see Equation (22)). Decrease or increase in one or 
both. 

Second Stage (t >>. t~). One of the types (L or D) begins to disappear. We can write for 
e-fold increase in L over D (or D over L), 

L L o et" 
D D o 

Then from Equation (12), if Lo r Do, 

K ( L o -  Do) (e k in -  1)= 1 
and 

1 ln(1 kl/k'2 "~ 
t l = ~ l  \ "~- 1~0 ~ 0 (  ) (23) 

(different from that defined by Frank (1953)). 
Third Stage (t> ta). One component increases only, e.g., if Lo >Do, D practically 

vanishes, and from Equation (l lb) 

L~_(Lo-Do) e k~t. 

ff we define time t 2 as the time it takes for L to roughly double, i.e., 

L"~ (L o - Do) e k~'2 = L o + Do (or 2Lo), 
then 

t 2 = l  In L~ + DO . (24) 
kl [Lo-Dol 

This is the same quantity as that defined by Frank (1953), but we have not found this 
quite as useful as t~. For small L o - D o ,  L and D may undergo changes of many 
orders of magnitude before one of them begins to die out (e.g., see Figure 4). 

2.3.6. Role of Continuous Fluctuations and Effective L o - D  o 

One may ask if the previous results were correct at all, since we only assumed one 
fluctuation at t = 0, when L o e D  o. Let us take At as the time during which one fluctua- 
tion in the number of L or D is expected to occur. Let at t -  0 the initial disproportion 
be L o - Do = qo, then at t = A t, from Equation (1 lb) L -  D = qo ea, where a = kxA t, a > 0. 
Let us further assume that at t=At ,  another fluctuation in the number of L or of D 
occurred (e.g., from diffusion, mixing, etc.) so that at t = A t, L -  D = qo e" + ql, where ql 
is the fluctuation in L - D .  Then at t = 2A t (assuming fluctuation occurring in equal 
spaced times At; can be easily generated to different At's). 

L - D = ( q  o ea +ql) e" +q2=qo e2a +ql ea +q2 . 
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After nAt times, 

t=nAt, L - D = q o  ena +ql e(n-1) a +q2 e(n- 2)"-b " ' +  qn_ l e" +q,. 

Replacing nAt with t 

L - D = e k " [ q o + q i  e-a+q2 e - 2 " + . . - + q , _ l  e-("-i) a+q, e-"a] .  (25) 

We see that  this is the same equat ion as Equa t ion  (1 lb), if we write 

( L o  - -  Oo)dfeetive = L o  - D o  q- ql e -a  + q2 e -  22 + . . .  + q, e - "  = constant. 
(26) 

Since a is positive, ql, q2,-.., q, are r andom positive and negative numbers  f rom a class 

of distr ibution (e.g., normal)  weighted with decreasing exponential  factor. We see that 

the role of  later fluctuations is smaller and smaller, a l though it is always a chance that, 

for example [q2 e-2a[ > lqo[ and that even the sign of  (L o -Do)eff~ctiv e will reverse (e.g., 

14 

12 

8 

;nl_ 

6 

4 

2 

0 

- 2  

I I I I I I I I I I I I I 
-2 -I 0 I 2 5 4 5 6 7 8 9 I0 II 

fnD 

Fig. 4. lnL vs lnD for an initial condition of very slight excess of L. Note that it takes almost 11 magni- 
tudes change in growth of L before 'the memory' of the excess of L takes place and then D rapidly 

disappears. In this calculation only one fluctuation was used. Arrows indicate the time sequence. 
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q2<0). If a=klAt>>l, then 

(Lo -Do)effective '~-L 0 - D  o. 

This is the case considered in previous sections and corresponds to the condition that 
At >> 1/kl, i.e., the time between occurrence of fluctuations need to be longer than the 
time of reproduction 1/kl. Thus under this condition all results of previous initial 
disproportion, are correct. In general, we see that we can interpret an 'initial dis- 
proportion' (Lo--Do)effective t o  signify weighted sum of many fluctuations in the be- 
ginning of growth only (e.g., neglecting q2 e-2a etc.). 

If on the other hand, a =  kiAt ~ 1, 

(Lo - D o ) e f f e c t i v e  =" qo Av q l  "-[- q2 + . . . .  ~ ,  ( q l )  ~ 0 ,  

since there are equal number of positive and negative fluctuations. This means that if 
fluctuations occur in times so frequently that the system cannot adjust itself (e.g., can- 
not grow or die by the kinetic mechanisms), then obviously L =  L o +__ I~lil, D = D o +  
+_lfDi], and on the average L=D at all times. 

The effect in L/D and in L and in D is highly nonlinear and can be studied numerical- 
ly by placing random fluctuations at random times, while solving Equations (10) and 
(11). The results, however, are expected to be the same as with only initial dispropor- 
tion (L o vaDo) if klAt>> 1. 

2.3.7. Conclusions 

We have seen that for the process of reproduction of L and D polymers (or cells-) with 
the same rate constant kl, i.e. for 

L-~L+L, D~D+D 

the L and D enanthiomorphs will grow exponentially in time. The presence of an 
initial disproportion, due to fluctuation, (e.g., L o > Do) will also cause an exponential 
growth of the difference L - D .  In case when kl for both processes are not equal, due to 
some external conditions, both initial disproportion and the difference in rate constant 
will contribute to an increased difference of L - D .  In this simple system there is no 
instability and no sudden death of one component (e.g., D). 

By adding the additional process of lethal interaction (F. C. Frank, 1953) whenever 
L encounters D (death rate with rate constant k~) 

L+D-~X (X is a 'dead' object) 

the equations become nonlinear, i.e. the rate of production k~L and k~D is counter- 
acted by the rate of destruction k2LD (see Equations (10) and (11)). The system is now 
only stable if initially L = D, exactly. If at any time L will exceed D by a small number, 
due to a fluctuation, L will increase exponentially, but D after some time will die faster 
than exponentially (as e -AekIt, see Equation (17)). If at any time D will exceed L by a 
small number, due to a fluctuation, D will grow exponentially and L will be destroyed 
extremely fast. Frank's comparison of a marble rolling downhill, starting on the crown 



334 ADOLF R. HOCHSTIM 

of the road is very appropriate. The marble is likely to continue toward the side where 
it happens to be at the moment, even if it is only slightly offthe center. The probability 
that L will grow and that L = D at all times is extremely small and the situation is very 
unstable. Since in Equations (10) and (11) the product LD appears, the equations are 
nonlinear and the fluctuation is said to be amplified by a nonlinear kinetic process. 

It was shown that if rate of reproduction is greater than the rate of destruction and if 
fluctuations occur very rarely, L and D may grow from an initial fluctuation through 
many orders of magnitude (Figure 4), and then suddenly (when k2LD become ap- 
preciable in comparison with klL and kiD, see Equations (10) and (11)) the long 
memory will cause the destruction of one (e.g., D). 

It was shown that if the time between fluctuations is greater than the time of 
reproduction, initial disproportion (fluctuation) predominates over consecutive 
fluctuations, leading to growth of one and death of the other isomer. 

ff the fluctuations are very sm~/ll and occur very frequently, (faster than rate of 
reproduction) L and D will become nearly equal But due to the fact that after a long 
time, greater and greater fluctuations are probable (Gumble distribution), one of the 
forms (L or D) will take over and the other will be destroyed. 

2 .4 .  EXTENSION OF FRANK MODEL TO THE CASE WITH ASYMMETRIC RATE CONSTANTS 

We are going to generalize Frank's model by considering the following reactions * 

L-~L+L, D~D+D, L + D ~ X ,  

where k~ ~ k~, due to some unspecified external asymmetry. We are interested in 
comparing such an effect with the effect of fluctuations, i.e., L o r D o. Thus 

dL 
- - =  kl L - k'2LD (27) 
dt 

dD 
dt k*D-k'2LD. (28) 

The case k I = k* was discussed earlier. There does not appear to exist a solution in a 
closed analytic form. Series expansion exists by Abate and Hofelich (1968, 1969), and 
a straightforward Taylor series expansion (Milne's Method) to be derived later, is also 
applicable for a numerical solution. We will also derive here close form approximate 
solutions, which are convenient for general conclusion comparing effects of asym- 
metry in k (kl vs k~) with the effect of fluctuations (i.e., L o ~ Do). 

2.4.1. General Relation Between L and D 

Eliminating time, we obtain (if L ~ k*/k'2) 

d l n L  kl-k'2D 

d lnD k~-k'2L 

t See text after Equat ion (2), p. 322, and the Conclusion of this section. 
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and we can sketch lnL vs lnD, similar to the previous case, when k 1 = k~. We see that 
the character of the curves and solutions is the same, except that the singular (station- 

, t ary) point is moved from D=kl/k'2 and L=kffk'2 to the same D but L = k l / k  2. In- 
tegrating and rearranging, we obtain an exact expression: 

D-Oo G (29) 

where we define ~ as 

kl -kT  
e = - 1 - fi (30) 

kl 

K=kl/kl. (31) 

2.4.2. Short Time Approximations 

(a) f irst  Method. Subtracting Equation (28) from Equation (27) gives 

d 
dt ( L - D ) = k l  ( L - D ) + ( k l - k ~ )  D 

~-ka ( L - D ) +  eklF), (32) 

where we have used 

D(t)= D + (5(t), 

and where we have neglected the e~5 term. Integrating, we obtain 

L -  D ~- (L o - D O + eD) e kit-  ~?L). (33) 

Combining with Equation (29) and rearranging exponents yields 

L Lo ( L y eK(Lo_Oo+~, (eklt_ i ,  (34) 

For short times, we can set/) ~-D o. When k~ = kl, e = 0 and we obtain exactly Equation 
(12). If e<  1, we can neglect e/) [also after long time L will be dominant and D(t)~-b 
will be very small], so that 

and using approximately Equation (16) for L, with L o >Do and z = kit, 

L ~ L o ee,+K(Lo_l)o ) (~_ 1) (36) 
D D o 

The conclusion is that the asymmetry in the rate constant (e) contributes to the ex- 
ponential increase of L/D, whereas the statistical fluctuation in the initial condition 
(i.e., Lo-Do)  contributes exponentially in the exponent. Thus, the fluctuations have 
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much faster amplification than asymmetry in the rate constant. It is not relevant how 
fast L increases, but how fast D is 'dying out', i.e., L/D ratio is more relevant than just 
L. For short times, 

L L~ e tkl-k~+ks(L~176176 (37) 
D D O 

and the effect of asymmetry has the same role as the effect of fluctuation.Thus, initial 
fluctuations are more significant if 

k l  - k* 
Lo - Do > - -  (38) kl 

(b) Second Method. Using Montroll's technique (1972) of extended nonlinearization 
approximation, 

d 
d~ ln(L/D)= k 1 - k* + k'2 (L - D) = 

, , / L  D~ tj--;)- 
~- ekl + ck'z ln(L/D). 

in (L/D) ~- B e ck~t- ek~ 
ck'2 

ln(L/D)=(lnLO +ekl ~ e~k~,_ ek' 
\ Do ck'2J ck'2 

and 

L L o exp{Iln(Lo/Do)+~c~,21(eck~t_l)}. 
D D O 

From the example in the previous case where k 1 = kT, we believe this to be a good 
approximation for short times, i.e., 

oo 

At initial times to the fluctuation L o - D  o 
(kl - k~') Do and if we use as in the previous case, 

ln(Lo/Oo)~-L~176 and c=Do,  

then 

L..~ Lo e[kl  _k~ + k~ ( L o _  Do)] t 

D Do 
which is the same as Equation (37). 

(or D o ln(Lo/Do) is added effectively 

(38a) 
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2.4.3. Taylor Series Expansion 

A suitable expression for numerical evaluation is obtained from Taylor series expansion of lnL and lnD 
(Milne's method): 

lnL(~ + A z ) = l n L  + (1 - KD) A z - � 8 9  K L )  (A~)2 + 

+ [ -  K D ( f l -  KL)Z + KZ D L ( 1 -  KD)] ~ - - +  ... (38b) 

In D (~ + A z) = In D + (fl - K L )  A~ - � 8 9  - K D )  (A z) 2 + 

2 2 (A~)  ~ 
+ [--  K L ( 1  - KD) + K DL(1 - KL)]  ~ - +  ... ,  (38c) 

where fl = k~/k 1 = 1 - 8, K = k'2/kl, z = k i t  and all L and D on the right hand side of the above relations are 
evaluated at normalized time z. Subtracting, 

In ~ = In (L/D) + [~ + K ( L - D)] A �9 + �89 (L - flD) 2 (A z)2 + 

+~K [L(1 - KD) 2 - D (fl - K L )  z + K2LD (L - D)] (Az)3 + . . . .  (38d) 
If ~ = 0, 

L (A ~) ~ L_o e~ ~ + K ~Lo - Oo)l ~ + t~ <Lo - aOo~ ~ ~a~)~l/2 (38e) 
D ( A z ) - D  o 

and we see that Equation (36) agrees exactly to order At and the (A 02 term from the expanded Equations (36) 
or (38) only agrees i f f l=  1. We also see that i fL o = D  o at z =0, then L ~ D  at other times! 

2.4.4. An Exact Integral Equation 
From Equations (27) and (28), with z =  kit,  

d 
d~ (L - D) = L - D + aD (39) 

and 
d 

d~ In (L/D) = K (L - D) + ~. (39a) 

Integrating Equation (39), 

L - D = [L o - D o + ~A ('~)] e ~, (39b) 

where 
z 

A ( z ) = t  D(v') e - e  dz'. 

0 

Substituting Equation (39b) into Equation (39a) and integrating, we obtain an exact expression convenient 
for analysis: 

Lo  
In (L/D) = K (L o - Do) (e - 1) + e K B  (z) + ev + l n - -  

Do 
o r  

where 

L L o e ez+K(L~176 (e~-I)+eKB(z) 
D=D~ ' (39c) 

0 0 

We see that the previously derived approximations for short times (Equations (35)-(37)) can be directly 
reproduced by neglecting the A and B integrals. Furthermore, we see that the integral contributes a positive 
term, since A and B are positive, increasing L - D  and LID values. As ~ 0 ,  we see that we can recover 
exactly Equations (12) and (13). 
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2.4.5. Approximation for Lon9 Times 

If L o > D O and/or e > 0, then after long time, L will increase and D will rapidly decrease, so that the integral 

(~) = [ D (T') e- ' ' dv'~A = constant. (39d) A 

0 

Because of the rapidly decreasing integrand, we may assume to the first approximation, 

~] -~ Do (39e) 
and 

B(v)-~ / e ~" Do d~"=Do(e ~- 1) (390 
q /  
0 

and 
L - D-~ (L o - D O + sDo) e ~ (39g) 

L Lo e~+Kr(ro-Do)+~Dol (~-i) (39h) 
D D O 

2.4.6. Comparison of Role of Fluctuations with Possible Asymmetry in Rate Constants 

In  this sect ion we will present  an a rgumen t  m show the p r o b a b l e  d o m i n a n c e  of f luctua- 

t ions over  a s y m m e t r y  in ra te  constants .  

In  E q u a t i o n  (37) we have shown that  shor t  t imes f luctuat ions  are  more  i m p o r t a n t  

t han  the a s y m m e t r y  in the ra te  cons tan t s  when (e.g., kl  > k* and  L 0 > Do) 

kl  (L ~ _ Do ) > s = k~ - k~' (390 
kl kl  

N o w  from E q u a t i o n  (9), we have for the  rms ini t ia l  cond i t ions  

o o 
L o - D o = N L - N D ~ - g  , (39j) 

V V 

where  N ~ and N ~ are  to ta l  ini t ial  numbers  of L and  D, respect ively in the vo lume V and  

9 is a factor,  g ~> 1 due to G u m b e l  d i s t r ibu t ion  of ex t reme f luc tuat ions  (see p. 324). 

Def ining the rate  of p o p u l a t i o n  g rowth  as R] L) and  Ri ~ and  the ra te  of popu l a t i on  

des t ruc t ion  as R2, we have 

dL dD _ R(D) _ R 
_ _  = R ( L ) _  I~ �9 

dt  1 ~-2, d t  - -  1 2 

so tha t  

we ob ta in  

R~L)= klL , RIO)= kiD, R 2 = k'2LD 

D R~ L o -  Do R ~ N ~  N ~ ' --k'2L~176 ( L o -  o 1 - ~  
(L~176  klLoOo Do - R  o N ~ 

RO 24 o R ~ / 2 ,  
=RZ g No = g ~ k / N o  

~To ,,~ ~ro = No. where  R ~ and  R ~ are  ini t ial  rates, ~, L - - "  o 

(39k) 

(391) 

(39m) 
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Thus the initial disproportion (fluctuation) is more significant than the difference in 
the rate constants (kt # k*) if 

R~ ~ 
g X/~o ~ > 8. (39n) R o 

In Figure 5 we have plotted approximately Equation (39n). For example, had we 

L - O  
Lo 
1 0 %  - 

I %  
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~ o - % ' o  

E 
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Fig.  5. R o l e  o f  f l uc tua t i ons  a n d  poss ib le  a s y m m e t r y  in r a t e  c o n s t a n t s  as a f u n c t i o n  o f  R1/R2, N o a n d  e. 

measured a value of e = 7 x 10-1 o, then as long as (for R1/R  z = 20, i.e. for twenty times 
faster rate of reproduction then destruction) total number of L's and D's is less than 
1016, the fluctuations are more important, and for R1/R  2 = 104 as long as N <  1011. In 
order to estimate e we can make the following analysis. Let us consider only simple 
linear system with L ~ L  + L, D ~ D  +D and L o =D 0. Then 

o r  

dL  dD 
~-[=-klL, - - = k ~ D  (390) 

dt 

L = L o e k~, D = L o e kv (39p) 

L - D  
e k i t -  e k~t= ek't(1 -- e-~k~t) (39q) 

Lo 

s - ~ 1  l n F 1 - L - D  -kl~']~ e - k l t L - D  -- - -  e (39r) 
k i t  L Lo _1 kat L o 

If we consider any experiment ofracemization (e.g., via crystallization) we can consider 
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kit=2 (L and D increase by a factor of 7.4), then 

L - D  
e-~0.07 - (39s) 

L0 

In seeking through literature we could not find any conclusive data on the effect of 
external sources on asymmetric growth of any L and D isomers. Assuming the opti- 
mistic laboratory results (L-D)/L o ~< 0.1%, we obtain 

L - D  
<10 -3 and s~<Txl0 -5. (39t) 

L0 

For fluctuations to dominate, if R1/Rz--'20 we get No < 10 6+ and for R1 = Rz, we get 
N O < 10 9 +. Since we expect No to be small and ~ to be extremely small, if not zero, we 
may assume that fluctuations probably played a more significant role than any 
possible asymmetry in rate constants. 

2.4.7. Conclusions 

In Equation (37) we showed that for short times, the effect of asymmetry in rate con- 
stants (kl # k*) is only important if 

kl - k* 
e= kx ~ > K ( L  o-Do). 
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In Figure 6 we see the validity of Equation (36) (or Equation (37)) for short times for 
the cases when e = k ( L o - D o )  , e=0, L o r  o, and er L0=D 0. Statistical fluctua- 
tions are more significant then the asymmetry in the rate constant, when 

R ~ /T 
R~ ~/ N o" 

Thus we conclude that, in our model, even if there were some small effects of asymmetry 

in the rate constants clue to some external conditions, the statisticaI fluctuations would 
have been most likely to dominate. Again, we should point out what we stated in the 
introduction, that until now, no definite mechanism has been proposed for any 

I000 
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I0 
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K(Lo-~}=0.1 KV~o 
kl :k~" (~ -: 0 ) 
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KLo= 0.2447 
KWo=0.2 

e = ~ =  K(Lo-Do) 

:0.I KV~o =0.0447 
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(CASE B) 
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O.Ol 
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~ . , , - - . D  (CASE C) 

iiiiii 
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T2 ~'l 

Fig. 7. Similar to Figure 6 for longer times for 3 different cases. 
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Fig. 8. KL vs KD for the asymmetr ic  rate constants  (k 1 r k~') and in the absence of  fluctuation (L o = Do) 
as a function of  normalized time v for three different initial condit ions.  
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asymmetry in rate constants due to natural, external processes, which could have led 
to the present dominance of L amino acids in living organisms. The fluctuations are 
most plausible source of such selection. 

It is interesting to note (see Figure 7) that the time in which one enanthiomorph 
begins to die at a significantly fast rate is roughly the same whether it is due to (a) pure 
statistical fluctuations, L o -  Do (case A); or (b) equal contribution from asymmetry in 
rate constants and statistical fluctuations (case B); or (c) asymmetry in rate constant, 
but in the (unlikely) absence of any fluctuations, i.e., L o =Do (case C). 

The absolute magnitude of growth of the winnin9 enanthiomorph is actually of no 
significance, only the death of the antagonist counts in this model; and L/D is such an 
indicator. L/D increases rapidly when D begins to die out (see Figure 7). 

Figure 8 illustrates the plot of L vs D for three cases when e # 0, but when L 0 = D 0. 
We see that when one starts with Lo = Do and e r 0, the equations are unstable and 
tend to increase* L if a > 0 (or increase D when e < 0). If Lo = Do and the asymmetry in 
the rate constant (~ # 0) is present, the nonlinear term (k2LD) will amplify the difference 
in rate constant causing the death of one enanthiomorph. 

3. Generalization of Frank's Model by Including Diffusion 

3.1. INTRODUCTION 

We are considering L and D organisms (or growing polymers) in a liquid, gaseous or 
porous medium. In the presence of diffusion from one concentration of a mixture of L 
and D organisms to another concentration of L and D cells, and in the presence of 
Frank's growth and annihilation reactions, Equations (10) and (11) are generalized to 

0L 
- -  = k, L -  k'2LD + V" (yVL) (40) & 

~D 
~t  = k i d  - k'2LD + V �9 (?VD), (41) 

where 7 is the diffusion coefficient or effective diffusion coefficient (in porous medium), 
and we have assumed no flow (stationary medium). 

Subtracting Equation (41) from Equation (40), we obtain 

0 
(L - D) = k a (L - D) + V" yV ( L -  D) (42) 

which can be reduced to a generalized diffusion equation. I f L = D  in all space at one 
time, L =  D in all space at all other times. We are going to restrict our solutions to the 
one dimensional case with a constant diffusion coefficient. The theory of nonlinear 
diffusion can be found in Montroll and West (1973). 

* Except at the stationary point, where Lo =k*/k2 and Do=kl/k2 (see Section 2.4.1 and Equation (75e)). 
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3.2. EXACT LINEAR SOLUTION FOR L - - D  

With y = constant, in one dimension Equations (40) and (41) become* 

~L ~32L 
= ktL - k'2LD + y (~X2 , 

t3D k k' 02D 
~ - =  1D- 2LD+T~-~ 

and 

t? (L_D)=kl  02 
& ( L - D ) +  y~x 2 (L -D).  

(40a) 

(41a) 

(42a) 

Let (e.g., Richardson, 1961) L - D  = e kit ~b(x, t), then one obtains the normal diffusion 
equation 

~ ~2q~ 

- ~ -  = ~) ~ X  2 �9 (42b)  

3.2.1. Infinite-Region Exact Solution 

The infinite-region exact solution is (e.g., Richardson, 1961) 

L(x, t ) -D(x ,  t)= -e*'* ~ e -(x'-~)2/4" [L(x', O)-D(x', 0)] dx', (43) 
J 

- - 0 0  

where L(x', 0) and D (x', 0) are initial (t = 0) distribution of L and D organisms. We~an 
write this expression in a different form: 

~0 

L(x, t ) -D(x,  t)= 1 ek,t f e_,2 In(u, O)-D(u, 0)3 du, (43a) 
d 

- - 0 0  

where 

Xr -- X U N i t "  u= W = x +  

If after long time L increases and D becomes very small, then Equation (43) gives the 
rate of increase of L only. We will illustrate various examples of growths for different 
initial distributions. 

(a) If a local fluctuation occurred in one place only, i.e., assume 

L(x, O)- D(x, 0)=(Lo -Do)  e -b~, (44) 

where eo = Lo - Do = positive constant. Then it follows from Equation (43) that at any other time at 

any x eklt 
L(x, t ) -  D(x, t ) = ( L o -  Oo) _ _  e b,2/,l + 4b.;,) (45) 

* An introduction to the role of chemical instabilities in some nonlinear kinetic equations with diffusion 
was discussed by Prigogine (1967). 
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i.e., the growth of the fluctuation at given x is increasing in time with reduced exponential and the 
width of the distribution spreads also in time, with the dispersion 

2 1 
a = ~ + 2 3 , t .  

(b) If a local fluctuation occurred in one place only, i.e., assume 

L(x, O)-D(x, 0)=(Lo--Do) 6(x), (46) 

where c5 (x) is the Dirac Delta function,* then 

eklr 
L(x, t)-D(x, t)=(Lo-Do) e -x~14r', (47) 

which is very similar to the previous example for t > 1/4fly and with fi = n. As t ~  ~ ,  

e k l t  
L -  D-*(L o -Do) - - ,  (48) 

i.e., at every point, its growth in time is slower than exponential. 
(c) If initially L (x, 0 ) -  D (x, 0 )=  L 0 - D  O = constant for all x, then from Equation (43) (or with fi = 0), 

L(x, t)-D(x, t)=(Lo- Do) e k't, 

in agreement with the previous solution (Equation (1 lb)) in the absence of diffusion. 
(d) Let 

L (x, 0) - D (x, 0) = a I sin (x/).). (49) 

Then 

L(x,t)-D(x,t)=al ~ e -u sin - ~ ( x + u ~ )  du 
eo 

and (e.g., see Gradstein and Ryzyk, 1963} 

L (x, t) - D (x, t) = a l e  (kl - ~' ~ '  sin (x/2). (50) 

The growth of L - D  will continue if the wavelength 2 is such that  

~ > ~ .  (51) 

We note that if we approximate Equation (42) 

c~I ~2I  2 
~ = k l I +  7 ~x2~-k~I-(7/l ) I, (52) 

where I = L -  D, 1 is some characteristic length, we get 

I~-- I o e (kl-r/lz)t (53) 

which has similar time dependence to Equation (50) with l = 2. 
(e) If 

L(x, O)-D(x, 0 ) = b l  cos(x/,~) (54) 
then 

L(x, t ) -  D(x, t)~b 1 e ~k~-z-~r't cos(x/t).  (55) 

(0 If we represent the original distribution of L - D  by a Fourier series, i.e., if 

L(x, O)- D (x, O)= ~ [a. sin(nx/,L)+ b,, cos (nx/2)], (56) 
n=0 

* 6 (x )=0  for x # 0  and so much infinite at x = 0  that ~o~ 6(x) d x =  1. One of the properties used here is 
JToo f(x) 6(x-a) dx=f(a). 
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then 

L(x, t)-D(x,  t )= ~ e(k~-"2'a-~)t x [a, sin(nx/2)+b, cos(nx/2)], (57) 
n=0 

and for all integers n<2x/~l/~=g , amplitudes will grow. i.e.. all lower harmonics (n<g) will cause a 
spatial separation of L over D, and higher harmonics (n > g) will be quickly damped out. 

(g) If initially L = D for all x, then exactly L = D at all times. 
(h) Let us assume 

I I 
I i l  

- X I - X  0 

-Lo+IALI 

-Lo-IALI 
I ' 
, I 

x o x1 
r •  

We assume 

D(x, 0)=Do for all x 

L(x, 0 ) = L o = D o  for all x except: 

L(x,O)=Lo+IAL[ for -xl<~x<~-Xo, 
L(x,O)=Lo--IALI for Xo<~X<~X 1. 

and 

Thus 

L (x) dx = D (x, O) dx. 

-oo -m  

-xo xl 

ek~t ( f  f ) L ( x , t ) - D ( x , t ) = l A L l ~  t Q d x ' -  Qdx' , 
\ - x l  xo 

where for abbreviation 

Q = e -  ix' - :,)~/4y,. 

L(x, t) - O(x, t) =�89 e ka [ # ( u , ) -  # (Uo) - g' (u3) + #(u2)], 

where 

X' --X --X 1 - -X - -X 0 - -X 

is the error function 
a 

2 
~(~)=Tr  e-"2 du. 

For t~oo ,  u ~ 0  and ~(u)~- ~ 2  e-U2u~- 2 ~  (1 - u  2) u, and thus 

L(x, t)--D(x, t) '~% IALI ekl,(u ~ --U a +u~ --u3~) 

X o - - X  X l - - X  
R 2 -- ~ U3 -- 

6AL e k't 

(58) 

(59) 

(60) 

(61) 
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This means  that 

L - D  will increase with time for x < 0  
D - L  will increase with time for x > 0. 

L - D  will increase with time for x < 0 ,  with subsequent destruction via nonlinear reaction of D 
and then with L growing alone. D - L  will increase with time for x > 0 ,  with subsequent destruc- 
tion via nonlinear reaction of L and then with D growing alone. We obtained interesting separation 
in space of L and D. The reason that L increases on the negative axis is that at t = 0  we took Lo >Do 
on the negative axis. 
Let an initial excess of L at x = - a  and exactly the same excess of D at x = a be represented by 

L(x, O)-D(x, O)=~o6(x +a)-ao6(x-a  ). (62) 

Then (see Figure 9) 

ek~t 
L ( x ,  t ) -  D ( x ,  t ) =  % - -  [e  - (a+x)214r* --  e -{a-xVl4rt]  (63) 

[_-D 

12 -r- 

Fig. 9. 

- , .o -o .o  -0.4 

k I 
-- = i0 
4y 

= 4yt 

The growth in time of L-D in space (as a function of x) for an initial excess of  L at x = - 1 and 
exactly the same excess of D at x =  + 1. k l / 4 y =  10, z=4y t .  

For x =  • ~ ,  L-D=O, at x = 0  L - D = O  and for any x for t>x/4~, 
for x < 0  

t ~  4aeo ekl t 
J~x, t ) -  D(x, t ) ~  Ixl ,/~ (4~) 3'~ 

for x > 0  

t ~  4aeo ekl r 
o(x, t)-L(x, t)--~ 

" , ~  (4703, 2 x. 

(64) 

(65) 
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After nonlinear interaction L will survive for x < 0 and D for x > 0. Thus, the result of initial separa- 
tion causes spatial separation of L and D populations. 

(j) In a similar process, but with 

L(x, O)- D(x, O)=sl5(x + a ) - ~ z f ( x - a ) ,  (66) 

and if ex>ez, i.e., there is an excess of L - D  at x =  - a ,  then as t--*oo 

t ~ m  ek l  t 

L(x, t ) -D(x ,  t)-----~ le 1 - e z l - - ,  (67) 

i.e., there will be growth increasing L - D  (and L subsequently through nonlinear interaction) for 
all x. 

(k) If 
L(x, O)-D(x,  O)=ex6(x-b)+e25(x + a ) - e 2 b ( x - a ) ,  (68) 

then 

(1) 

ek l  t 

L(x, t ) -  D(x, t) '~| e l - -  (69) 

i.e., the excess of L over D at x =  - a  will cancel the equal decrease at x=a,  and only the initial 
perturbation at x = b  will increase L - D  and subsequently L for all x. 

Lo-IALI 
Do= Lo 

r 
0 x 

Let t = 0 ;  
D = D o = L  o 

L(x ,O)=Lo+ldL I for 

L(x, O)=Lo-IAL[ for 
then 

where 

x < 0  (70) 
x>O,  

o m 

If f ] L(x, t ) -D(x ,  t )= [ALl e -(~'-x)~/4rt d x ' -  e -(~'-x)=/4~' dx' = 

- m  o 

= IALI e -"~ d u -  e -"~ du , 

- m - xlv4~,,t 

X I - -  X 
U ~  

x/ 4 Z ~t 
eklt ! 

L(x, t ) -  D(x, t )= - 2  [ALl e -"2 d u =  -IALI ek"cb(x ) 

A s  t - +  

L(x, t )-D(x,  t)= -IALI e k'' 2_ e_X2m, 
x e kit 

=2 I A L I  e-X2/'~'(-x). 

(71) 

(72) 
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For  Ixi < ~  and for x<O: 

L(x, t)~-L(x, 0-O(x, t) ' ~ ,  2 IALI 

and for x > 0 :  

D(x, t)~-D(x, t)-L(x, t ) ~  2 ] A L l -  

ekl t 

-Ixl 

(73) 

ekl t 
X.  

The numerical example is plotted in Figure 10. We see that for x < 0 (where L o > Do) L - D  increases 

. . . . . .  Z - - t o O  . . . . .  

'5 - 0 ,  

L--D 
[ ~ L i  

T - |  

0,5 X 
I 

. . . . . .  - T = o  

= 0 , 1 6  

" ~ =  0 3  

Fig. 10. The growth in time of L-D in space for an initial excess of  L for x < 0  and initial equal decrease 
of  D for x > 0 .  

with time, and for x > 0 (where D O > Lo) D - L increases with time. As time increases the near straight 
line behavior for small x has increasing slope, approaching in the limit at x = 0  the same step function 
shape as at z = 0. 

3.2.2. Finite Slab Solution 

If I(x, t)=L(x, t )-D(x,  t) vanishes at the boundary of a slab at x = 0  and x=a, i.e., 

I(0, t)=I(a, t)=O, 
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and I is specified initially at t = 0  everywhere within the slab, i.e., 

I(x,O)=L(x,O)-O(x,O) for O < x < a ,  

then the exact solution is given by 

a 0 I(x, t)= 2 e kit .--~o A. exp~ - ~ 7 - -  

where 

A,= i I(u, 0 ) s i n ( 7  u ) d u .  (74) 

o 

We see that I will grow in time if 

kl > a~- 

and that only lower harmonics n < (afir)x/~l/y will contribute to it. It is interesting to 
note that this is a similar solution to the infinite region solution with sinusoidal 
perturbation and wavelength 2 (see Equation (57) and discussion afterwards), where 
2 = a/~ in the finite slab solution. 

3.2.3. Stability Analysis in the Neighborhood of Time Independent Homogeneous 
Solution 

If OL/Ot = O, 8D/& = 0 and for both L = L 0 = constant and D = D O = constant 

kaLo - k'2LoD 0 = 0 

klDo- k'2LoD 0 = 0 

with the stationary solution Lo = Do = kl/k'2 (see limiting value solution in Equation 
(23)). 

Following the standard perturbation technique in the analysis of nonlinear equa- 
tions (e.g., see Prigogine, 1967), let us assume a small perturbation in space with 
wavelength 2 and frequency o~, around the Lo, Do values, i.e., let 

L=Lo+eLe '~ with [SLI'~L o t 
(75a) 

i D = D o + e  D e ~ with [eol~Do. 

Substituting these in Equations (40a) and (41a) we obtain, after neglecting the term 
containing eL~D 

eL(CO + ~-2) + eD(k'2Lo)=O 
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These equations are satisfied if the determinant vanishes, i.e., 

co+-f2 k2L~ =0 

kzLo co+~ 

and we obtain the so-called dispersion equation for co in our case 

which has two roots 
Y 

COl'= - k l  22 

0")2 = -}- kl ,~2" 

(7Sc) 

col is always negative, (.02 can be negative, zero or positive, depending on the value of 2. 
The instability will only be present if L and D will grow away fromL 0, D o, i.e., only if 
co > 0 (see Equation (75a)); this corresponds only to 

co=co2 = kl  --)~2 > 0, 

i.e., 

X/~_ 7 (75d) 2 >  , OF k l >  ~ .  

Thus, only for wavelengths greater than x/y/k, will there be instability and growth 
of L and D away from the homogeneous, stationary solution L 0 = D o = kx/k2. It is 
interesting that the same result was obtained (without small perturbations) and 
exactly for the growth of L-D (see Equation (51)) for an initial (also sinusoidal) 
variation in L - D .  

If k, • k* (see Equations (27) and (28)), then the analysis can be made in exactly the 
same way, with the conclusion that the instability from stationary solution will only be 
present if 

klx/k~-~, > 7/22. (75e) 

3.3. APPROXIMATE SOLUTIONS FOR L AND D 

3.3.1. Short Time Solution 
From Equations (40) and (41) we obtain, upon dividing Equation (40) by L, Equation (41) by D and sub- 
tracting the second from the first, 

(_1 O2L 1 6~2D~ 
0 In (L/D) = k2I + 7 \ L  ~x2J  ' (76) 

cqx ~ D 
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where 
I(x, t)=L(x, t)-D(X, t) 

is given in Equations (43)-(46). Now, if at the beginning, when L ~ D  for all x, L = L o ~ D = Do, then 

o ln(L/O)--kJ+( ~-~ f (x ,  t) 
& ~o o 

where f (x,  t) is a known function. Then for short times 
t 

ln(L/D)~ t f (x,  t') dt' +c(x) (76a) 

0 

L (x, o) 
c(x)=ln~(x, o) 

so that  t 

D(x, t)-D(x, 0) exp f (x, f) dt' (76b) 
o 

and D and L can be obtained from the identity 

I C=O .L. (76c) D-~ L , 
- - - - 1  
I) 

For  example, if I(x, 0)= (L o -Do)  e-b*~, then from Equation (44) at short times, 

L (x, t) L(x 0) f bx 1- 2by 4b2y 2 -] k, - )  
~., . ~  exp{(Lo-Do)  e -  -~ | K - ; ~ + - ~ .  x | [ e '  - lJ~- (77) 
v(x, t) 1){x, o) ( L ~Lo Lotq 3 " ) 

which reduces exactly [sic !] to Equation (12) in the absence of diffusion (~ = 0) and with b = 0 (no Gaussian 
fluctuation). 

3.3.2. Asympto t ic  Approximat ion  for  Long Times 

Let us assume that starting with an excess of L 

L(x, t)~-I(x, t)+q(t), tl<I (78) 

D (x, t)-'= tl (t), (79) 

where I(x, t)= L (x, t ) -D (x, t) was obtained in Equation (43) and is an increasing function with time. The 
correction t 1 we assume to be only a function of time, which is equivalent to an assumption that there is no 
time for diffusion of D, which is quickly disappearing due to destructive reactiort From Equation (42a) 

aI 021 
~7=k'/+~' 0x ~ (8o) 

and using Equation (41a) we obtain 

d ~ + ( I -  ~) q + ~ 2 = O ,  (81) 

with z = kzt, a = kl/k'2. This is the Bernoulli nonlinear differential equation. Let z -  1/t b Then we obtain the 
linear equation 

dz 
~ + ( a - 0  z = 1, (82) 

which has a known exact solution given by 
r 

z = e - V ( a + i  Jd"c ) , a =  l/Do, (83) 

o 
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where 
r 

0 0 

e l' D 

t/(z) = D  O (84) 

- - +  er dz ' I + D  o exp o:z"- I(x,'c')dz' dz" 
Do 

o o 0 

In agreement with Bernoulli's equation (Equation (81)). Neglecting t/2, as t~oo  and D ~ 0 ,  then L ~ I .  
If we are only interested in time development, we can use (see Equation (53)) the following approximations: 

~2L L c~2D D 
ex 2 -  l{; ax 2 -  t, ~, (85) 

where I x and 12 are some unspecified characteristic diffusion lengths. Then, 

OL 
a N - g L  + L2--- 0 (86) 

and 
~D 
c37-- hD + D z ~ O, (87) 

where z = k'2t, o: = kl/k' 2 and where 

g = a + l - , f - ~ ,  2 
k'21 x 

and (88) 

h = a - l - ~ .  

These again are Bernoulli 's differential equations, and from the previous case, we can write immediately the 
solutions 

L o  e FL 
L(x, ~)~- 

.r 

1 + L o t  erL d'c' 
tl 
o 

(89) 

where 

Do e F~ 
D (x, ~)_ 

I + D  o [ e F" dz' 

o 

o 

F D = ( c ~ - ~ f l ~ ) ' c - f  l(x,'c'}dz'. 
o 

(90) 

(91) 

(92) 
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3.3.3. Visualization of Two Dimensional Diffusion with Reproduction and Destruction 

The case of growth, destruction and diffusion can be best visualized by the following 
thought experiment. Feed by a pipet at an exponentially increasing rate drops of an 
acid at one point of a porous inert surface. At some other point on the inert surface 
we feed tiny drops of base (equal strength) with the same exponentially increasing 
rate. Let us assume acid to be of one color, base of another, and the interacting two 
drops of base and acid a third color (and neutral). 

Now if we start with an exact amount of acid and base growing with the same rate, 
these will first form colored rings around feeding points, then touch the interacting 
boundary creating color No. 3. Thus we expect: 

After a long time we expect the boundary becoming sharper and sharper, with the 
acid spreading to the one side, and the base to the other. 

If we had a slightest excess of acid to the left, after a long time there will be acidic 
environment everywhere emanating in rings from the acid feeding point. Again wave 
patterns may be created. 

The above illustration can help to visualize the growth of L and D organims (or 
polymers) and their diffusion, including 'wars' between many colonies (many acid and 
base feeding points). 

3.3.4. Conclusions 

Generalized Frank's model with diffusion, i.e. with reproduction and annihilation 
reactions was solved for few cases. Some of the results obtained are listed below. 

If at one time L--D everywhere, then at all times L = D everywhere (see Equation 
(42)). 

If everywhere L = D, except if in some region fluctuation occurred, so that initially 
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there was an increase of Es in form of a Gaussian distribution over the distance, then 
L - D  will grow in time with a rate slower than exponential and with the width of the 
distribution spreading linearly in time (see Equation (45), case 3.2.1 (a)). 

If everywhere the fluctuation in L - D  are sinusoidal with a wavelength 2, then 
IL-D[ will grow with exponential envelope, with L >~ D and L ~< D in between, and as 
long as 2 > ~ (see Equation (51), case 3.2.1 (d)), where 7 is diffusion coefficient and 
k t the rate of growth. Similar results were obtained for a finite slab (case 3.2.2) and 
from a stability analysis (case 3.2.3). 

If at a one place L > D, and at other point D > L and at all other locations L = D, 
then L-D will increase with time in such a way, that L-D wilt be increasing on one 
side and D - L on the other side, with L and D separating in space (see case 3.2.1 (h, i,j)). 

If there is an excess of L in one place and exactly same excess of D in other place, 
then after a long time the local fluctuations will disappear and L and D will grow in 
time while L=D everywhere (see case 3.2.1 (j, k)). 

If L was in small excess everywhere to the left, D in same excess to the right, then L 
and D will grow, with the L winning to the left, D to the right and with sharp boundary 
in between (case 3.2.1 (1)). 

In Equation (77) we have shown that for short times the results are similar to solu- 
tions without diffusion and that diffusion contributes to effective skewness of the 
spread of fluctuation. 

In Section 3.3.3 we have extrapolated the results from one dimensional analysis to a 
two dimensional sketch and illustrated the results with a simple analogy between 
spatially interacting acid and base. 

4. Generalization to Various n-Order Nonlinear Symmetric Rate Processes with 
Reproduction, Destruction and Diffusion 

We can also assume that in a more complicated way, two protocells (or polymers) 
could have led to multiplication (e.g., in their catalytic presence) 

k2 L+L~L+L+L 

D+D-~D+D+D 

We may even generalize that n cells could have lead to the formation of an additional 
cell, i.e., 

L+L+...L-~L+L+...L 
n n + l  

and 

D+D+...D~D+D+...D. 
n n + l  

We may also include annihilation by the presence of one different isomer ('end effect'), 
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i.e., 
k~ 

L + D - - , X  (considered earlier in Equation (9)) 

L + L + D ~ X  

D + D + L ~ X  

L + L + L . . . L + D ~ X  

n - - 1  

D + D + D . . . D + L ~ X ,  
~ _ . - ~ ' ~  

where X symbolically defines any 'dead' product. And for simplicity, we consider 
(although it is easy to extend) that no more than one different type of assimilation 
leads to the death. We may also include that under the influence of L and D cells, 
either an L or D cell is formed, i.e., 

r2  
L + D ~ L + L + D  

F2 
L + D ~ D + D + L ,  etc. 

Finally we will include the class of destruction due to natural death (k~ will be in- 
cluded in kl) 

L-~ X 

D-~ X 

and due to crowding with members of own species (as used in Frank's (1953) modified 
model). 

L + L ~ X  

ktr 
D + D ~ X .  

For all the processes outlined the overall rates are given by 

~L 
~ = k l  L + k2 L2 + . . .  k ,  iL ~ - k'2LD - 2k'3L2D - 

- k ' 3 D 2 L  . . . . .  ( n - l )  ..,,k'r. "- 1 / ~ _  _-_,,_VD~-~L+r2LD-2k"L2+V'(?VL) 

(93) 
~D 
a~ = k i d  + k2D2 +'"  "knlDnl - k'2D L - k'3L2 D -- 

-- 2k'3D2L . . . . .  k'nL n- 'D  - (n - 1) k'nD ~- ~L + r2LD - 

- 2k"D 2 + V" (?VD), (94) 

where we added the general three-dimensional diffusion term, with ? = 7 ( x ,  y, z). By 
subtracting Equation (94) from Equation (93) we obtain the n-order nonlinear diffu- 
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sion equation 

65 ( L -  O) = (L - D) (G + - G_) + V- 7V (L - D), (95) 

where G+ (L, D) and G_ (L, D) are positive quantities, namely 

G+ =kl + k2(L + D)-i-...kn,(Ln~-t + Ln~-2D+...+ on,-  2)+ 

+ k'3LD + k'~LD(L"-a +.. .  +D"- 31 (96) 

G_=2k'3LD+.. . (n-1)  k ' ,LD(D"-3+.. .+L"-a)+2k"(L+D) (97) 

Thus, if at any time in all space L = D, then at all time at all space L = D. Furthermore, 
we see that if at any time L > D  at any place, G+ will contribute to the increase of L 
over D, and G_ will try to keep the balance the other way. In any event, we see that 
the stable solutions L = D are very improbable and that the L or D will grow in time 
depending on the sign of the term G+ - G _ .  For quadratic nonlinearities in original 
equations G+ - G_ = k t + (k 2 - k") (L + D). 

In the absence of diffusion, if L r  we see that there may be numerous possible 
positive values (roots) of L and D for which OL/&= OD/Ot= O, i.e., there may be 
numerous possible steady states, corresponding to G+ = G_. In the absence of diffu- 
sion, if we divide the first equation by L, the second by D and subtract, we obtain 

d In LID 
dt = ( L -  D) (r+ - F_),  (98) 

where 

and 

F+ =k2+ . . . k . ,  (L"1-2  + ... +D"I-2)+k'z+k'3(L+D)+ ... + 

+k ' (L , -2+ ...D,-2) (99) 

F_ = + . . . ( n -  1) k',LD (L ~- 4 + . . .  + D"- 4) + r2 + 2k", (100) 

and if L e D ,  L/D will increase if F+ > F _ .  For quadratic nonlinearities in original 
equations F + - F_ = (k2 - r2) + (ka - 2k"). 

5. Mathematical Analysis of Stereoscopic Autocatalysis 

Based on the experimental results of Havinga (1954), who claimed spontaneous 
formation of optically active substances, Calvin (1969) felt that the notion of stereo- 
scopic autocatalysis could have played an important role for the origin of chirality 
in organic molecules. According to this process, equal mixtures of left-handed (A/.) 
and right-handed material (AD) due to small fluctuation would, by chance, be trans- 
formed to another material B L or BD. We will describe this model mathematically and 
show how fluctuations are important, and demonstrate when the model can account 
for significant separation of one enantiomorph. Furthermore, if one assumes that one 
type of B material (e.g. right-handed) could have been formed in one place, then one 
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must admit the other material (e.g., left-handed) at another place. In the absence of 
mutual antagonism, this model by itself cannot explain the origin on the entire Earth 
of one type of material. Bonner (1972) also points out that Havinga's experiments 
have never been repeated, nor extended to other experimental systems. It is still of 
interest to describe the model mathematically, to see under what conditions could 
have been important. We show that under certain special conditions it is indeed 
possible at one location to have growth of only BL (or Bo) and also that under more 
common conditions both BL and B D will grow simultaneously. 
Consider substance A in two chiral forms AL and AD (Calvin, 1969), with 

AL-~AD, AD~AL  

and almost equal (racemic) mixture of A L and A D and very fast rate constant kl for 
conversion from left- to right-handed and right- to left-handed forms of A. Further, 
let substance A be converted to right- and left-handed substance B by two processes: 

Slow process: 

k2 k2 
AL~BL,  AD-*BD, 

and 
Fast Catalytic Process: 

AL + BL-~ BL + Br, 

kc 
AD + BD-~ B D + Bo, 

where we assumed that the catalytic process can be represented by this reaction. In this 
process, B L is catalytic for the conversion of AL to BL, and B D is catalytic for the con- 
version of A o to BD. The assumption here is that this process is many times faster than 
the previous one and that rate constants are the same under identical external condi- 
tions due to mirror symmetry (see discussion after Equation (2)). 

The rate equations for this process are 

dBL = k2A L -4- kcALBL, (101) 
dr 

dBD 
- k2A D + kcAoBo, (102) 

dt 

dAL = k 1 (A o - AL)-- k2A L - kcALBL, (103) 
dt 

dAD 
- k 1 (A L -  AD)-- k2A D - k~AoS o. (104) 

dt 

Note that these equations are nonlinear, because of the appearance of ALB L and 
AoB D products. Because of the absence of mutual antagonism, dBLjdt and dBo/dt 
are always positive and BL and/or B D can only grow in time. Note also that (by adding 



NONLINEAR MODELS FOR THE ORIGIN OF ASYMMETRY IN BIOLOGICAL MOLECULES 359 

equations and integrating) 

AD + AL + BD o o o o (105) + B L = A L + A D + B D + B L ,  

where the superscript indicates initial concentrations. 

I f  the catalytic rate is much greater than the non-catalytic rate of conversion of A to B, 
i.e., if 

kzAL ~kcALB L and k2AD <~kcADBD, 
then 

dBL 
dt = kcALBL' (106) 

dBD 
dt = k~ADBD' (107) 

dAL 
dt - kl (AD-- AL)-- kcALBL, (108) 

dAD 
dt = kl ( A L -  AD) -  kcA~ (109) 

We will consider two different subcases: 

�9 , k . (1) Assuming that the rate of racemzzatton Of A L ~ A .  is smaller than the rate of catalytic 
formation of B L and BD, w e  get 

dA L 
dt = --kcALBL' (110) 

dAD 
dt - - kcADBD" (111) 

Comparing Equation (110)with (106) and Equation (111)with (107), we have 

B L = A ~  AL + B ~ (112) 
0 0 BD = AD - -  AD + B D , (113) 

where at t=  0 S L = S ~ BD= U ~ A D = A ~ and A L = A ~ Note that if at t=0, S~ 
B E =0 at all times. Similarly, if B ~ = 0, B D = 0 at all times. 

Substituting Equation (112)into (106) and Equation (113)into (107), we obtain 

dBL 
= kc (A ~ + S ~  BE) BE, (114) 

dt 

dBD 
- k c (A~ + B ~ - B . )  B D. (115) 

dt 
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Integrating directly from 0 to t we get, after some manipulation, 

and 

A ~  ~ 
BL=B~ o o -~ , z l = k c ( A ~  ~ t, (116) 

B L+ALe 1 

0 0 A D + B D 
BD = B ~  no----o - . ,  "r2=kc(A~ + B~ t (117) 

D D "1- AD e  2 

A L = A ~ 1 7 6  and A D = A ~  +B~ . (118) 

For t~OOBL+A~ + B ~ and BD--*A~ + B ~ 
If B ~ # 0 and B ~ = 0 there will be growth of only BL, leaving A D untouched and as 

t ~  oo B L ~ B  ~ + A ~ BD--* O. Subsequent fluctuation causing B D 5/= 0 will make B D grow 
from A~ There are no instabilities, only normal growth of BL and B,. Incidentally, if 
B ~ = B ~ = 0, then B L = B D = 0 at all times. 

(2) In this siabcase, we assume that A L = A .  for all times, which is equivalent to the rate 
of racemization of A L ~ A o  is infinite. Adding Equations (103) and (104), with 
A =AL+AI> ~LaO _--aO~o ----!~2~0, A o = A ~  ~ we obtain the following equations" 

dBL 1 k 
dt =5(2+k~BL)  A (119) 

dB__D_D = 
dt �89 + kcB.) A (120) 

dA 
- - ~ _ _  m dt [k2 + �89 + BD) ] A (121) 

Adding and subtracting Equation (119) and Equation (120) we obtain 

d (B E + B.)  = [k 2 + �89 (B E + BD) ] A (122) 
dt 

d (B E -  BD) �89 (BE-- Bo) A. 
dt 

Adding Equations (119), (120) and (121) we see that 

BL + BD+ A = B ~  + B~ + Ao=C1 

and Equations (122) and (123) can be rewritten as 

d(SL + SD) 
dt =[kz+�89162 +B.)]  [ C I - ( B L  +B.)]  

(123) 

(124) 

(125) 

Let 

d (B L -  BD) = �89 c (BL -- BD) [C1 - (BL + BD)]. 
dt 

u=BL + BD, 0 o Uo = BL + BD, 

(126) 



NONLINEAR MODELS FOR THE ORIGIN OF ASYMMETRY IN BIOLOGICAL MOLECULES 3 6 I  

then integrating Equation (A.25) from 0 to t 

a + u  - 
t(k2 +'kcC1)=ln[-c~ ~-u Cl-u~ J 

where a=  2k2/k ~, and inverting Equation (127) yields 

Clp o e~-a  
U = B L "4- B D - -  

l+po e* ' 
where 

and 

a+uo a+uo 
P O - -  

cl -Uo Ao 

(127) 

(128) 

=(k2 +- kcCl) t. 

Eliminating time from Equations (122) and (123) and with u = BE + B.,  v =B E -  B D, 
then if B ~ # B ~ we have 

du_k2+�89 a + u  (129) 
dv �89 v 

Integrating, we obtain 

a + u = C 2 v  

a + B L + B D = C2 (BL-- BD), (130) 
with 

a + B~ + B ~ 
C 2 - 

B~176 (131) 
Using Equation (128) in Equation (103) yields 

Poe ~ 
B L - B D = b - -  

1 + P o  e~' 
where 

Ao 
b=(B~176 o 

From Equation (128) to Equation (131) 

(C1 + b) Poe*- a 
B L - (132) 

2(1 +Po e~) 

B D _ ( C ~ - b )  Po e~-a  (133) 
2(1 +Po e~) 

[If B ~ = B ~ = 0, then from Equation (126) BE = Bo and from Equation (128), 

ClPo e~-a  a(e ~ -  1) 
( a ) '  (134) 

BL=BD--2( I+p~ 2 l+~ooe ~ 
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since CI = Ao, Po = a/Ao]. There are no instabilities, no mechanism of extreme separa- 
tion o f B  L from B D if B ~  and B ~  For t ~ o o :  

B L - - * C l + b l ~ 1 7 6  2 1 o o ( Ao ) (135) =~(BL + BD + Ao) + ~(BL-- BD) 1 +a + BO + BOO 

C l - b  1 ~ ~  1 0 0 ( Ao ) (136) BD~ =~(BL+BD+Ao)--~(BL--Bo) l+a+BOL+BO 

+ Bo--, B~ + Bg + Ao 

Ao 
B L - B o ~ b ( B ~ 1 7 6  (1-+ a+ ~d~L + B6) (137) 

A ~ 0 .  

If B ~  1, BOO=O, then as t ~ o o  

BL~�89 +�89 A~ (138) 
a + e  

1 1 Ao (139) BD ~ A  o -~e  a + ~" 

If B g = B ~  then as t ~ o o  

BL~�89 o, BD~IAo . 

In both cases above there is no separation of B L and B D. 
One can achieve separation of B L (or BD) if a single large initial disproportion was 

such that 

B~ a= 2k2/kc and B~ ~ B ~ 

Then indeed, as t ~ o o  (i.e. for z>> 1) 

o AoB A a o 1_ ! L 0 O. ,,, O+BO BL ~BL + 2Ao + 2~-6oo- Ao + B L - ~ -  W6- 2AL 
s "1- D L s D L 

(141) 
B 1- 1 AoB~ a - 

o --* ~./i o - ~ ~ - ..a o W6 <~ 1. 
1.1, -I- O L D L 

Thus, consistently with Calvin (1969) the requirements for stereoscopic autocatalysis 
are (see, inequalities before Equation A.6): 

(la) kcBL>>k2 or (lb) kcBo>>k 2, and 
(2) very fast rate of racemization. 

The added requirement here that the initial B ~ satisfies 

B ~ and B ~ ~ 
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for BL to grow, is consistent (within factor of two) with the requirement (la) and for Bo 
to grow 

B ~ c and BD>>BL,~ 0 

is consistent with the requirement (lb). 
The importance of only initial value of B ~ (or B ~ for a growth of B L only is that 

the conversion of A to BL be essentially completed before another fluctuation occurs. 

Series Expansion for General Solution for Short Times 

Let t=kct, K=k2/kc, o~=kl/k c and let d/dt and d2/dt 2 be denoted by primes, then 
Equation (101)-{104) become (no approximations) 

B' L = (K + BE) A L 

B' o = (K + BD) A D 

A'L = a (A o - AL)-- (K + BE) AL 

A'D = a (A L - AD)-- (K + BD) AD. 

Differentiating again yields 

B'~ = (K + BL) A'L + B'LAL 

B[~ = (K + BD) A'D + B'DAD, etc. 

Taylor series expansion gives for BL and B D at t = kcAt: 

B L (A t) = B ~ + B~ (0)" A t + �89 (0)" (A 0 2 + . . .  

B D (A t) = BOo + B b (0)" A t + �89 (0) �9 (A 0 2 + . . .  
and 

BL (A t) = B ~ + [(K + B ~ A ~ ] A t + �89 {(K + B ~ [~ (A ~ - A ~ ) - 

- (K + B ~ A ~ + (A~ 2 [(K + B~ (At) 2 + . . .  (142) 

B o (A t) = B ~ + r(K + BOo) A ~ ] A t + �89 {(K + BOO) [~ (A ~ - A ~ - 
- (K + BOo) AD ~ + A ~ [(K + BOO) ADO]} (At) 2 + .... (143) 

Note that the rate constant of racemization of A, i.e. kl (in a) contributes only to (A 02 
and higher order terms. 

BL(At)_Bo(At)=(BO Bo)+[K(AO A o)+(ALB O_ADBD)]O o At+ 

+ �89 {(A ~ - A ~ [e (S ~ - BOO) + k 2 - K (A ~ + A~ + 
0 0 2  0 0 2  +AD(Bo) _AL(BL) 0 02 0 02 +BL(AL) -- So(Ao) } (At) 2 + . . .  

(144) 

Thus B L - B "  grows due to initial disproportion both in A and in B, i.e., due to 
B ~ - B ~ # 0, and due to A~ ADo # O. 
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I f  B ~ = BOo = 0, then 

B E (A t) - B D (A t) = K (A ~ - A ~ A t + �89 ~ - A ~ K [A ~ + A ~ - K ]  (A 02 + . . .  
(145) 

We see that  the difference B L - B  D will grow due to initial d i sp ropor t ion  in A, i.e., due 
to o o AL-- AD # 0, and if A ~ > A ~ then BL > Bo. 

If  A ~ = A ~ = A0, B~ = 0, but  B ~ # 0, then 

B L = B ~  ~ A o A t + � 8 9  ~ A o [ A o - K - B ~  (At)2 + "" (146) 
and 

B o = K {AoA t + �89 (Ao - K) (A 02 + 

+~7to (A~+KZ-c~B~  (At)3 + ...}. (147) 

Thus, also B L will g row fast, B D will grow a lmost  independent ly  of B ~ If  K = k2/k c ~ 1, 
we obta in  separa t ion  (i.e. B L grows, B D-~O). This condi t ion is consistent  with condi- 

t ions (la) and (2)(see after Equa t ion  (141)). 

Summary of Asymptotic Results 

Condition: Catalyt ic  rate is much  greater  than  the non-cata ly t ic  rate of  convers ion of 

A t o B  L a n d A  o t o B  o 

k2/k ~ ~ B L and k2/k c ~ B D. 

[ & A~ ~ 

I!1; A ~ + B ~ (only A L conver ted  to BL) 

o o o B o Z; A o_+ BL + BD . (BE-- D) 2A~ "~ *** 
2 2 l + a + B ~ 1 7 6  

0 0 0 G A L + A D + B L  (all AL and AD conver ted  to BL!) 

2.~ o o I AD + Bo 

0 (AD remains  unchanged)  
BD t--, % o o ( 2AO [ a A ~ + BD + BL ( B ~  B~ 1 -~ 

2 2 a+-B~ 

[_, o a A o ~Lo r A ~ (almost  no BD). 

Conclusions 

It has been shown that  under  normal ly  expected conditions,  with non-zero  values of  

* Rate of racemization A L ~ A o is smaller than the rate of catalytic formation of BL and B~ See Equations 
(116) and (117). 
** Infinite rate of racemizatiorr See Equations (135) and (136) a=2k2/k c. 
*** If B~ and B~ ~ See Equations (141). 
** If BO#O, B~ 
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A ~ - A  ~ B ~ and B ~ B L and BD will grow and there will be no formation of pure 
B L (or Bu). 

Under rather special local conditions, when by chance, B ~ ~> 2kz/kc, but B D~ ~ BL ,o BL 
will be formed only from all A L and all Ao (or if B ~ ~> 2kz/kc, but B ~ ~ B~ B u will be 
formed only from all A L and all Ao). This condition wilt be valid only if (1) catalytic 
rate is much greater than non-catalytic rate of conversion of AL to BL and Ao to B D and 
(2) rate of racemization of A L to A D and vice versa is extremely fast, so that at all times 
A L ~ A  D. 

If the rate of raceinization is smaller than the rate of catalytic formation of BL and 
By, then one can achieve separation also due to growth ofA L to B L but without change 
in A D (or A D to B D without change in AL). Subsequent fluctuation in the remaining 
form of A will convert it to the corresponding form of B. 

A large local fluctuation is required for the separation in the above process 
(e.g. B~ If the value of 2k2/k ~ is such that normal fluctuations or initial 
disproportion (e.g., B ~ are expected to exceed it, then at different location BL 
or B D will be separated. If the value of2k2/k ~ is such that the inequality is satisfied only 
for an unusually large fluctuation (or initial disproportion), then once separation was 
achieved at one location, it will spread by diffusion and mixing. 
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