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Continuum theory for nematic liquid crystals 

F. M. Leslie 

This paper presents a formulation of continuum theory for nematic liquid 
crystals based upon the balance laws for linear and angular momentum, 
that derives directly expressions for stress and couple stress in these 
transversely isotropic liquids. This approach therefore avoids the introduc- 
tion of generalised forces or torques associated with the director describing 
the axis of transverse isotropy. 

1 Introduct ion 

Continuum theory for nematic liquid crystals has its origins in the work early 
this century by Oseen [1] and Zocher [2] who laid the basis of the static ver- 
sion, later reformulated more directly by Frank [3] and within a mechanical 
framework by Ericksen [4]. Ericksen [5] extended his work to propose general 
balance laws, for which Leslie [6] derived constitutive relations to complete 
dynamic theory. This theory in both its static and dynamic forms models many 
phenomena in nematic liquid crystals very well, as described for example in 
the books by de Gennes [7], Chandrasekhar [8] and Blinov [9], or in the 
reviews by Stephen and Straley [10], Ericksen [111, Jenkins [121 and Leslie 
[131. 

Our aim here is to present a derivation of continuum theory for nematics 
based upon the more familiar balance laws for linear and angular momentum, 
without appeal to generalised forces and moments associated with the director 
that describes the local axis of transverse isotropy. To do so, we consider the 
rate of work of body and surface forces and moments, and equate this to the 
rate of increase of the Frank-Oseen stored energy and kinetic energy, as well 
as the rate of viscous dissipation. In this way we recover the static theory in 
a manner not so dissimilar to the approach adopted by Ericksen, and 
thereafter, employ the residual form of this relationship in the form of a 
viscous dissipation inequality to derive dynamic theory in a way rather 
analogous to that employed by Leslie [13]. 
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Given that continuum theory is now well-established, one might be tempted 
to question the need for yet another derivation of  these equations, but several 
reasons can be advanced for our doing so. Firstly our present derivation is 
in many respects more direct being based simply upon conservation of linear 
and angular momentum and conventional forces and moments. Also such an 
alternative formulation provides some insights into the theory and its inter- 
pretation, or into proposed generalisations for that matter. At the end of this 
paper we give an example of  the latter. More generally, however, further 
motivation for this paper at this particular time stems from current interest 
in formulating similar mathematical models for other classes of  liquid crystals, 
and in this respect the present more compact derivation does have advantages. 

Throughout the paper we employ Cartesian tensor notation, so that a com- 
ma preceding a suffix denotes partial differentiation with respect to the cor- 
responding spatial coordinate and the summation convention applies. 

2 Balance laws 

For most purposes it suffices to assume that the nematic is incompressible, 
and in this event conservation of mass reduces simply to a statement that den- 
sity is conserved, being constant in a homogeneous liquid. Consequently, if 
we ignore thermal effects, our conservation laws reduce essentially to two, ex- 
pressions for the balance of linear and angular momentum. Here, for a volume 
V bounded by a surface S the former takes the familiar form 

d ~ P v i d v =  l p F i d v +  l t i d s ,  (2.1) 
d t v  v s 

wherein p denotes density, v velocity, F body force per unit mass, and t surface 
force per unit area, the time derivative being the material time derivative. 
However, the balance law for angular momentum includes additional terms 
generally omitted (cf. [14]), and is 

d_ ~ Peijkxjvk dv = ~ p(eijkxjF~ + Ki) dv + I (eijkxjtk + li) ds, (2.2) 
d t v  v s 

where x represents the position vector, K external body moment per unit mass, 
1 surface moment per unit area, and eiik the alternator. The inertial term 
associated with local rotation of  the material element is omitted because in 
general it is negligible. 

If  v is the unit normal at points of  the surface S, one may show by the 
usual tetrahedron argument that the surface force and moment are expressible 
in terms of stress and couple stress tensors, respectively, 

t i = tijv j, li = l~jvi, (2.3) 

and consequently the above balance laws become in point form 

pi~ = pFg + tij d, pKi + eijktkj + l~j,j = 0, (2.4) 

the superposed dot denoting the material time derivative. 
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3 Static theory 

A common starting point for continuum theory of nematic liquid crystals is 
the assumption of  a local stored energy associated with distortions of  the 
uniform equilibrium alignment of  these transversely isotropic liquids. Thus, 
employing a unit vector field or director n to describe their axis of  anisotropy, 
Oseen [1], Zocher [2], Frank [3] and Ericksen [4] all assume the existence of 
a stored energy density W such that at any point 

W = W(n i ,  ni,j) , (3.1) 

this function being subject to the invariance and symmetry requirements 

W ( n  i, hi,j) = W(Qipnp,  aipajqnp,q) = W ( - n i ,  -h i , j )  , (3.2) 

where Q is any orthogonal tensor. If one assumes a quadratic dependence 
upon the gradients, the function takes the form proposed by Oseen [1] and 
Frank [3] 

2 W  = K 1 ( ni, i) 2 -i- K 2 ( nieijknk,j) 2 4- K3ni,pnpni, qn q 

+ (K 2 + K4) (ni,jnj, i - (ni, i )2) ,  (3.3) 

the K's being constant coefficients. As Ericksen [4, 5] shows, whatever the 
choice of  the function (3.1), it must satisfy 

eip q np an~q + np,lc anq,~ + nk'p = 0 (3.4) 

this being a consequence of the invariance requirement in (3.2). 
Ericksen [4, 5] was the first to give a mechanical interpretation to equili- 

brium theory for nematics by employing a virtual work formulation. Here we 
present a somewhat similar derivation that considers the rate at which forces 
and moments do work on a volume of nematic, and assumes that this work 
goes into changes in either the above stored energy or the kinetic energy, or 
is lost in viscous dissipation. Our basic postulate is therefore 

S S 1 S p ( F i v  i 4- Kiwi)  dv  4- (t iv i 4- liwi) ds = dt PViVi + dv + D dv,  

v s v v (3.5) 

where w denotes the local angular velocity of  the material element, and D the 
rate of  viscous dissipation per unit volume. In point form the above reduces to 

tijVi, j "t- lijwi, j -- wieijktkj = W-t-  D ,  (3.6) 

a result that we exploit below to obtain the equilibrium forms for the stress 
and couple stress. 

Given that the vector w represents the angular velocity of the material ele- 
ment, one has 

hi = eipqWprtq, (3.7) 
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and noting that 

hi, j = ( / ; l i ) , j  - -  rli,kVk,j, 

it follows in turn that 

O W  O W  
W = Onp ftp q- Onp, k np, k 

= eiq p nq - -  nq, k w i -1- nq OnP, k wi, k OnP, k np, qVq, k 

(3.8) 

0 _w 0w ) 0w 
= eiq p nq Orlp,j Wz'J -- nk'q Onk, p wi Onp,j l~P'iVi'J' (3.9) 

the latter manipulation using the identity (3.4). Combining the above with 
(3.6) yields 

tij + Onp,j rip, vi, j + lij - eiqpn q Wi, j 

-- wieiq p tpq Onk,p nk, = D .  (3.10) 

Clearly the terms in the above linear in the angular velocity and the gradients 
of the velocity and angular velocity must be zero, given that the rate of 
dissipation is necessarily positive. One therefore concludes that 

O W  O W  
tij : --Pe~ij -- ~Onp,~ rtp'i + ~j '  lij : eipqnP --Onq,~-~ + [iij, ( 3 . 1 1 )  

where p is an arbitrary pressure arising from the assumed incompressibility, 
and i and ] denote dynamic contributions. The relationship (3.10) thus reduces 
to 

ti/vi,j + i i jwid - wie i jk~ j  > O, (3.12) 

given that the rate of viscous dissipation is positive. This inequality is exploited 
below to impose restrictions upon the dynamic terms. 

The above equilibrium forms of the relationships (3.11) for stress and cou- 
ple stress are of course identical to the expressions obtained by Ericksen [4, 5]. 
Also, we show below that the balance of moments (2.4)2 reduces to the 
familiar Euler-Lagrange equation of static theory. 

4 Dynamic theory 

To continue our derivation of nematic theory it is now necessary to derive con- 
stitutive relations for the dynamic contributions to stress and couple stress. 
Here we assume that any material point at any instant 

~j and ~/j are functions of ni, vi,/, w i ,  (4.1) 
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evaluated at that point at that instant. However, since no dependence upon 
gradients of the local angular velocity is included, it follows at once from the 
inequality (3.12) on account of this gradient occurring linearly that 

//j = 0. (4.2) 

This result is analogous to that obtained by Leslie [6]. 
The above and invariance to superposed rigid body motions lead to our 

assumption (4.1) being reformulated as 

{/j is a hemitropic function of ni, Dij, 60i, (4.3) 

where the rate of strain D and the relative angular velocity w are defined by 

1 
2 D i j  = 1)i, j -1- vj, i ,  co i = w i - ~ e i jkVk, j ,  (4.4) 

For nematic liquid crystals, material symmetry further requires that the above 
functional dependence be isotropic, and also even in the director. With the 
assumption that the viscous stress is linear in the velocity gradients and the 
angular velocity, and noting that the latter is an axial vector and also the iden- 
tity 

eijk60 k = nie jkq60kn q -.[- njeiqk60knq-.[- ei jqnqrlp60p,  (4.5) 

one ultimately obtains from (4.3) 

{ij = ~XlnpnkDpkninj + cx2Ninj + ~ + ~ 

"-k ~ 5 D i p n p n j  -k ot6Djprtpn i q- o tTei jpnp60,  (4.6) 

where 

N i = e ipq60pnq,  60 = 60pnp.  

In the present context the o?s are simply constants. This dissipative stress dif- 
fers from that given by Leslie [6] only through the presence of the final term. 

Straightforwardly, the axial vector associated with the asymmetric viscous 
stress can be written as 

e i j k ~ j  = eij lznjgk + gni, (4.7) 

where the vector ~ and the scalar g take the forms 

gi = - - y l N i  - -  ) )2Oipnp ,  Yl  ~- 01.3 - ot2, ))2 = or6 - od5, 
(4.8) 

g = --))3 O~ ))3 = 2C~7" 

Also it follows from the latter equations (4.6) that 

60i = eijknjNk + 60ni, (4.9) 

this and (4.7) simply decomposing the respective vectors into components 
perpendicular and parallel to the director. 
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In view of the result (4.2) the inequality (3.12) reduces to 

{iijvi, j -- wiei jk~ j >= O, (4.10) 

which noting (4.4) may be written as 

{ijDij - r j >- O. (4.11) 

Given (4.7) and (4.9), however, this is equivalent to 

{iijOij --  giNi  -- gO) >- O, (4.12) 

which differs from the corresponding form derived by Leslie [6] solely through 
the final term. 

To complete our derivation of nematic theory it is necessary to examine 
to what extent if any our conservation of angular momentum differs from the 
generalised director balance law commonly employed. This we do in the 
following section. 

5 Angular momentum 

The present formulation of nematic theory differs from earlier derivations 
primarily through a direct appeal to conservation of angular momentum rather 
than indirectly through generalised forces or torques. Consequently, it is 
natural to turn first to this balance law. 

Recalling the constitutive relations (3.11) and the result (4.2) the balance 
law (2.4)2 becomes 

eip q np ,j  -- eip q Onk, p nk, q + eipqtqp q- p K  i = O, (5.1) 

or after some re-arrangement employing the identity (3.4) and the definition 
(4.7) 

eipqnp 'J -- On~q q- gq -[-gn i -k p K  i = 0. (5.2) 

However, for a nematic liquid crystal the body moment due to an external 
magnetic or electric fields is generally assumed to take the form [4] 

PKi = eipqnpGq,  (5.3) 

where for a magnetic field H 

Gi = A znpHpHi  (5.4) 

with s the diamagnetic susceptibility anisotropy, and for an electric field E 

Gi = Ae, npEpEi ,  (5.5) 

As denoting the dielectric permittivity anisotropy. As a consequence the equa- 
tion (5.2) can be written as the sum of two parts, one perpendicular and the 
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other parallel to the director, 

eipqnP 'J -- On~q + gq + Gq -t- gni = O, 

from which one immediately concludes that 

g = 0 ,  

and 

,j On i '}- gi + Gi yn i ,  

y being an arbitrary scalar. Recalling (4.8), the former requires that 

1 
co = 0 o r  Wpnp = 2 npepj~Vk,j, 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

so that in this theory the local spin about the director must always be equal 
to the local component of vorticity in that direction. 

Given the result (5.9), the viscous stress tensor reduces to its familiar form. 
Also, equation (5.8) is simply the director balance law of nematic theory, in 
its static form being equivalent to the Euler-Lagrange equations of a varia- 
tional formulation. It is therefore evident that our present approach simply 
reproduces the theory proposed earlier by Ericksen and Leslie [5, 6]. 

6 Second order elasticity 

In this final section we consider a slight modification of the above theory pro- 
posed by Nehring and Saupe [15] that has within the last few years led to some 
controversy [16, 17], and show that within the context of the present formula- 
tion the various problems encountered are not unexpected. 

By rather plausible reasoning Nehring and Saupe [151 argue that one 
should replace the assumption (3.1) by 

W = W ( n i ,  ni , j ,  n i , j k ) ,  (6.1) 

this function as before quadratic in the first gradients, but linear in the second 
partial derivatives. For our purposes there is no need to restrict the energy in 
this way, and we therefore proceed more generally. A repetition of Ericksen's 
argument leads to 

. . . .  -t- 2nj,kp = 0, (6.2) eip q np Onq -}- np'k Onq, k -t- nk, p Onk, q + np,jk Onq,j k 

as consequence of the usual invariance assumption. Also, as for the result (3.8) 
one finds 

1 

ni,jk : (n i ) , j k  -- Vp,jni,pk --  Vp, kni,pj -- ni,pVp,jk. (6.3) 
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With the above a somewhat tedious calculation ultimately yields 

W :  eip q lip Onq,-- + 2np'k wi ' jk  
m 

Wi, j "t- eipqli p Oliq,J k 

OW 
Onq,jk nq'iVi'jk 

(0s ) 
--  nk, i + 2 - -  nq, ki vi, j -- - -  

Onq,kj 

- -  eip q lij,p + 2 - -  nj, kp w i .  (6.4) 
On:,kq 

While the extra terms involving the angular velocity and the first gradients 
of velocity and angular velocity cause no problems, those involving second gra- 
dients present new difficulties. Clearly, in order to accommodate the latter, 
some modification of our assumption (3.5) is necessary, this requiring the in- 
troduction of terms involving higher order forces and moments of the type 
discussed by Green and Rivlin [18, 19], and associated additional conservation 
laws. 

Thus the modification proposed by Nehring and Saupe proves to be rather 
more than it first appears, requiring concepts with which we have little ex- 
perience. Not surprisingly from this viewpoint, it does lead to difficulties with 
regard to the interpretation of additional boundary conditions required. While 
Hinov [20] does at tempt to address such complications, it may be wiser to 
await some sound evidence that such complexity is necessary before consider- 
ing such generalisations. 
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