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Mathematical analysis 
of a two-phase continuum mixture theory 

E Embid and M. Baer 

In this paper, we study the mathematical structure of a continuum reactive 
mixture model of  the combustion of  granular energetic materials. We ob- 
tain and classify the wave fields associated with this description. This 
analysis shows that this system of  hyperbolic equations becomes degenerate 
when the relative flow is locally sonic. We derive the corresponding 
Riemann invariants and construct simple wave solutions. We also discuss 
special discontinuous solutions of  the system of equations. For fixed 
upstream conditions, different downstream states are possible when the 
relative velocities exceed the speed of the sound gas. 

List of symbols 

a s (solid), g (gas) subscript to indicate the phase 
va velocity of  phase a 
vsg vs - v~ 
Pa material density 
V a specific volume 

Pa pressure 
Ta temperature 
ea internal energy 
r/a entropy 
ha enthalpy = ea + Pa/Pa 
~t~ Helmholtz free energy = ea - Tarla 
~b~ volume fraction 

Ba configuration pressure = dpaPa ~,Od~a,] Pa, Ta 
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/ ~ n A  1/2 
C a speed of sound = 1~-r } 

k ~ P a ]  rla,~ a 

Fa Grtineisen coefficient-- 1 (Opa~ 
Pa lkOea/  pa,% 

Ca* rate of mass production 
ma t rate of momentum production 
ea* rate of energy production 
d drag coefficient 
h heat transfer coefficient 
ka thermal conductivity 
Pc compaction viscosity 
F dpsdPg[Ps - pg - t~s]/lz c 

1 Introduction 

To describe the combustion behavior of granular energetic materials, such as 
explosive powders, the chemical/thermal/mechanical behavior of a mixture of 
phases must be treated. Much of the foundations of current modeling have 
been based on the ideas and methods of modern continuum mechanics (as set 
forth, for example, by Truesdell and Toupin [1], and Truesdell and Noll [2]), 
and in particular on the assumption that all phases are superposed (e.g., 
Truesdell and Toupin, w 157). Unfortunately, the formulation and development 
of conservation laws governing reactive multiphase flow are not universally ac- 
cepted~ and a certain level of controversy remains in the multiphase flow 
literature. Much of this controversy stems from the use of various averaging 
methods to bypass the discrete nature of the phases. (A review of relevant 
literature for reactive multiphase flow can be found in reference [3].) 

In continuum mixture models, conservation laws are assumed for each 
phase and constitutive relations account for the exchange of mass, momentum, 
and energy between phases. Overall conservation of mass, momentum and 
energy is also required for the total mixture which results in constraints on 
the interaction between the phases. The mathematical structure of these 
descriptions has not been adequately studied in the past - indeed, multiphase 
flow models have been proposed that are now recognized to be ill-conditioned 
[4, 5, 61. 

Guided by the foundation of continuum mixture theory and experimental 
observation, Baer and Nunziato [3] developed a model for the flame spread 
and growth to detonation in granular materials. Their model treats each phase 
as fully compressible and in thermodynamic nonequilibrium. The problem of 
closure, required to produce a formally determined system of equations, is 
resolved using the entropy inequality (see [3] for details). An evolution equa- 
tion for the solid volume fraction is developed to describe compaction of the 
solid phase. In this approach, rate-dependent compaction and compressibility 
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of all phases are consistently treated. Additionally, the use of unequal phase 
pressures and intragranular stress removes the mathematical ill-posed nature of 
the equations known to exist in equal pressure multiphase flow models. 
Numerical experiments and comparison with experimental data have provided 
validation of the model. The purpose of this work is to investigate the 
mathematical structure of this continuum mixture model. Beyond investigating 
the implication of modeling assumptions, the wave characteristics are establish- 
ed as a guide for a characteristic-based numerical scheme. 

We organized this paper as follows. Section 2 introduces the model, which, 
in the absence of diffusive effects, is represented by a 7 • 7 hyperbolic system. 
This system is not strictly hyperbolic, and cannot be completely cast into 
divergence form. We find the associated eigenvalues and eigenvectors and show 
that the system becomes degenerate at points where the flow is choked. The 
different wave fields are then classified. In Section 3, simple wave solutions are 
determined for the system when the source terms are ignored. For the con- 
struction of such solutions, we derive the associated generalized Riemann in- 
variants. In Section 4 we construct centered rarefaction waves and contact 
discontinuities. Finally, in Section 5 the jump conditions for the equations in 
conservation form are discussed and used to determine special discontinuous 
solutions and to show that under certain upstream and downstream conditions 
there exist multiple discontinuous solutions of the equations. One of the solu- 
tions is a contact discontinuity in the solid phase and the other solution is 
a shock. Interestingly, these multiple jump states arise when the relative gas 
velocity exceeds the sound speed of the gas. These solutions satisfy both the 
entropy condition and Lax's geometric shock condition. Clearly, a more detail- 
ed study of the mathematical character of the multiphase reactive flow equa- 
tions is warranted, and future studies may lead to a better understanding of 
the coupling of the various modes of combustion. 

2 Characteristic analysis of the continuum multiphase model 

In describing chemically reactive two-phase mixtures, we treat a flow consisting 
of a solid reactant (s) and an interstitial gas (g). In the theory developed 
by Baer and Nunziato [3], field equations are formulated expressing the con- 
servation of mass, momentum and energy for each phase (including transfer 
effects between the phases), and appropriate mixture constraints are imposed 
to preserve conservation conditions for the total mixture. The interested reader 
is referred to reference [3] for the complete derivation of the continuum 
multiphase flow model. Following the formal derivation of the balance equa- 
tions given in [1], the field equations governing the combustion of granular 
energetic mixtures obtained in [3] are (for the meaning of the variables check 
the list of symbols): 
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Conservation of  mass 

OPs 3p~ 3% p~ 
- -  + % - -  = P s  F 
3t 3x Ox G 

(2.1) 

Opg Opg OVg pg 
+ v g - -  = - p g - -  - (v~-  Vg) 

Ot Ox Ox 6g 
04)S + & F _  ( I _ P ~ )  Cs 
Ox c~g P~ 4~g 

(2.2) 

Conservation of momentum 

v Ovsl Op~ 3 G ( 4~sPs ~OVs + = + (Pc -Ps)  - ~ + 
L at ' axJ -r  

4)gPu L at + g 3xJ -6g3xx + 3 + 2 / I  (vs -- Vg) 

~ )  (v~ - b) (2.3) 

(2.4) 

Conservation of  energy 

[oe~ v 0es] av, a ( 0~s] 
*sp, L at + "ox] = -~ 'P'Tx + ax ~" ~ )  

-h(T~ - Tg) - (Ps - ffs) F 

l-a~, Oe~l av a ( a r e )  : _ ~  = z + _  he 
% P ~  k at  + b ax d ~P~ ax ax Yxx,} 

(2.5) 

aG 
+ h ( T  s - Tg) + (Ps - f l s ) F -  (v  s - Vg)pg Ox 

+ f~(v s - Vg) 2 - (e s - eg) Cts (2.6) 

Solid volume fraction 

__ o~s G* O~S + v ~ - -  = F + - - .  
3t 3x Ps 

Closure for the system is given by the saturation constraint 

~g = 1 - G ,  

(2.7) 

(2.8) 
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and the equations of state for each phase 

Pa = Pa (Pa, ea). (2.9) 

Equations (2.1)-(2.8) correspond to equations (53)-(60) in [3]. However, we 
remark that in [3] the solid volume fraction is denoted by %, and the partial 
density by Pa, whereas here the solid volume fraction is given by 4~s, the par- 
tial density by q~aPa, and Pa stands for the material density. The ther- 
modynamic relationship for the Helmhokz free energy of each phase satisfies 
the differential relation: 

Pa dPa + fla d ~  = - r ladT  a + ~ dr (2.10) 
Pa (o~p~ 

and for the gas variable it is assumed [3] that the configuration pressure 
fig = 0. Using (2.9) and (2.10) yields the following differential relations for 
the energy and the pressure 

dea= Tadrla + Pa dPa + fla dOa, 
p2 4, opo (2.11) 

FaBo 
dp~ = paF,,Tadrla + c2 dpa + - -  d(~a. 

4~,~ 

Using equations (2.10) and (2.11) we recast the multiphase flow equations 
(2.1)-(2.7) as a 7 •  system 

0U 0U 
- -  + A ( U )  - -  = S ( U ) ,  ( 2 . 1 2 )  
Ot Ox 

where the vector U of states variables is given by 

U = (Ps, vs, rls, (~s, Pg, Vg, rlg) r. (2.13) 

Hereafter we reserve the boldface notation for vectors and matrices. In addi- 
tion, the superscript T stands for transpose and emphasizes that U is a column 
vector. A(U) is the 7 x 7 matrix 

v~ Ps 0 0 0 0 0 
c2/p~ vs FYs  (p~ - p g  + F~fl~)/(gJ~p~) 0 0 0 

0 0 Vs 0 0 0 0 
0 0 0 v~ 0 0 0 
0 0 0 pg(v s - -  V g ) / O g  ~3g pg 0 
o 0 0 o c2g/pg Vg F~Tg 
0 0 0 0 0 0 Vg 

(2.14) 



284 

and the source vector S(U) is given by 

- ~ F  

1 @+~)(Vs-V~) 
~sP~ 

~sPsTsl [ aOx \ (ks OT~'~ g/-h(rs- re)- 

F+ C 
Ps 

(1 c: 
Og r 

1 ((~--C~) (Vs--Vg) 
$~Pg 

Ps 
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(2.15) 

1 Ia{kOTg~ 
O~p~T~ ~ \ ~ a~ / + h(T~ - ~ )  + ~(~ - ~)~ 

+ (Ps - Pg - fl~) F + [eg - es + ( 1  1 )  pg] C[ 1 

For the characteristics analysis, one works with the homogeneous form of 
(2.12). Thus, we set S (U) -  0 and consider the system 

0U aU + A(U) 0. (2./6) 
at Ox 

The mathematical structure of the system is more clearly revealed and the 
characteristics analysis given below is simplified if U and A(U) are partitioned 
into blocks representing the state variables for the solid, the gas, and the solid 
volume fraction such that 

u = (u~l , s l  ug)  r,  
(2.17) 

Ua = (Pa, Va, r]a) T, a = S, g, 
and the matrix A(U) has the block structure 

A(U) = v, , (2.18) 
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where, 

A a  0 I = C  a v a F a T a  . 

0 v a / 

The special structure of the matrix A(U) in (2.18) makes it relatively easy to 
carry out the characteristics analysis for the system. A(U) consists of two 3 • 3 
block matrices A a that correspond precisely to one-phase gas dynamics for 
the a-phase in the variables p,, va, and r/a, coupled through the solid volume 
fraction terms. Since we know the wave speeds for ordinary gas dynamics, the 
eigenvalues of the two-phase system are immediately determined; expanding 
det (A(U)  - 2 1 )  along the fourth row gives 

0 = d e t ( A ( U ) - 2 1 )  = ( % - i t )  H d e t ( A a ( U , ) - i t I )  
a=s,g 

= (v~ - 2 )  Y I  (v~ - 2 )  [(v~ - 2 )  2 - c~],  
a=s,g 

and this yields the 

Eigenvalues of A(U) 

27=vs-cs ,  2~ +=vs+cs, itO=vs, 2 c=vs, 
(2.19) 

i tg = Vg -- Cg, 2 ;  : Vg + Cg, 2 0 = Vg. 

These eigenvalues give the familiar forward and backward acoustic speeds and 
the particle speeds for the solid and the gas. Since all the eigenvalues, i.e. wave 
speeds, are real, this system does not produce unphysical instabilities as other 
multiphase flow models such as the pressure equilibrium model [4, 5, 6]. The 
particle speed vs of the solid is a repeated eigenvalue and it is associated with 
two modes of propagation corresponding to entropy waves and compaction 
waves for the solid; this is clear because the compaction equation (2.7) for 
the solid volume fraction is already in characteristic form, with characteristic 
speed vs. Because of the block structure of A(U), the associated right 
eigenvectors are immediately given by those from one-phase gas dynamics, with 
the exception of the one associated with the compaction mode it = %, which 
is computed separately: 

Right Eigenvectors of A(U) 

t Cs t T r s  = 1, - ~ , 0 , 0 , 0 , 0 , 0  , 

(c; 
rs + = 1, , 0 ,0 ,0 ,0 ,0  , 
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o( rs = 1,0, - - - , 0 , 0 , 0 , 0  , 
psrsTs 

r c = (0,  0, - (Ps - Pg + Fsfls) 1, Pg(% - vg)2 
' 2 ' 

4)spsF~,Ts ~g[  (V  s - -  Vg) 2 - -  Cg] 

- - o , 

(2.20) 

rg- 0 ,0 ,0 ,0 ,2 ,  cg 0 
Pg 

( rg + = 0 , 0 , 0 , 0 , 1 , - - , 0  , 
Pg 

( 0 0 , 0 , 0 , 0 , 1 , 0 ,  pgFgTg] rg = 

The system is not strictly hyperbolic because vs is a double eigenvalue, and 
also because the wave speeds associated with the different phases change in- 
dependently of each other, so that the eigenvalues of the solid phase can coin- 
cide with any of those of the gas phase. States where the system is not strictly 
hyperbolic occur when (a) % = Vg, (b) v~ = Vg • cg, (c) vg = v~ + cs, and (d) 
vs • cs = v g  +_ Cg. Some of these conditions are more likely to occur than 
others. For example, (a) occurs in flows starting from rest, where initially 
Vs = v g  = 0. The conditions given in (c) and (d) can occur for detonation 
states in condensed phases; however, we consider flows where c~ is much 
larger than %, vg, and Cg. A very interesting condition corresponds to (b) 
where the relative flow is locally sonic. We also remark that our analysis 
assumes the existence of two phases, so that r and 4~g are both non zero. We 
are not considering the extreme case where one of the phases disappears and 
the multiphase flow system becomes highly degenerate. Although the system 
is not strictly hyperbolic, it is totally hyperbolic provided that the right 
eigenvectors constitute a basis. Inspection of the eigenvectors in (2.20) shows 
that the system is totally hyperbolic except in case (b) where Vg + Cg = %. In 
this case % becomes a triple eigenvalue with only two independent eigenvec- 
tors because the compaction eigenvector (suitably scaled) degenerates into the 
gas acoustic eigenvector: 

lim c) g. [ ( % - vg ) Z - c2g] rC = r+ . 
v s-vg-++cg pg C~g 

(2.21) 

We term V s - v g  = •  the chocked f low condition. As a physical interpreta- 
tion, flow at the pore level is analogous to the flow in a moving duct with 
a variable cross-section area (due to local variations of volume fraction). 
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Consistent with this duct flow analogy, a choked flow is reached when the 
relative velocity is sonic, or [ v s - v  g I =  Cg. 

Mathematically, when the set of eigenvectors is not complete but the eigen- 
values of A are still real, a parabolic degeneracy exists. In this case the Jordan 
form of A(U) has a nontrivial block. This is exactly the situation when 
Vs =Vg • Cg; v~ becomes a triple eigenvalue with only two associated right 
eigenvectors r ~ and r + ,  and one generalized eigenvector r .  obtained by solv- 
ing 

(A - 2I) r .  = r + .  (2.22) 

The eigenvector r .  is given explicitly as 

( 20g (ps_Pg+Fsfls) )T r,= o,o, , +  +L,o ,o  
pg Cg pg Cg Cg 

The coupling present in (2.22) suggests the possibility that strong resonant in- 
teractions of the gas acoustic and the compaction mode can occur near choked 
flow conditions. Based on the characteristics analysis presented here, Embid 
et al. [7] derived an asymptotic model for the transition to detonation in reac- 
tive granular flows in regimes near choked flow and ignition temperature con- 
ditions, and Embid and Majda [8] analyzed the asymptotic model, and showed 
how it can qualitatively predict the formation of hot spots and the transition 
to detonation in various interesting regimes previously documented [3, 9, 10]. 
We also remark that these choked flow singularities of the two-phase flow 
model do not have a counterpart in one-phase flows. 

We finish this section with the construction of the left eigenvectors and the 
recasting of the system (2.1)-(2.7) into characteristic form. The left eigenvec- 
tors lj of the matrix A(U) are defined as the basis dual to the basis of right 
eigenvectors ri, i ,j  = 1 . . . . .  7, i.e. 

lj. r i = ~ij i ,j  = 1, . . . ,  7. (2.23) 

Except at choked flow points, the right eigenvectors given in (2.20) are a basis; 
in this case (2.20) and (2.23) give the 

Left Eigenvectors of A(U) 

l ~ = (o,  o, 

p~ p~FsT~ p~ - pg + Fsfls O) 
2Cs' 2c 2 ' 2dpsc 2 , O, O, , 

ps G , P ~ - p ~ +2 r~ fls , o, o,o '~ , 
Cs ~)s Cs / 

1+= ( 1 ps psGTs p s - p g + F s f l s  ) 
' 2 c s '  2c 2 ' 26~c~ , 0 , 0 , 0  , 

ls c = (0,0,0,  1 ,0 ,0 ,0) ,  (2.24) 
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p g ( V s -  vg) 1 pg pgGTg~ 
lg = 0, 0, 0, - 20g(Vs _ vg + Cg)' 2 ' 2Cg ~C~ } 

l~ (0,0,o,0,0,0, _pgr V ) 

1 + = (0 ,  O, O, - Pg ( v s  - -  Vg) 
2C~g(V s -- Vg -- Cg) ' 

1 ,  pg ,pgFgTg~ 

Finally, we derive the characteristic form of the multiphase flow equations. 
Taking the product of  equation (2.12) with the left eigenvector lg associated 
with the eigenvalue X~ produces 

( 3 U  A OU~ 0 ( ~  t 3 U )  
l i S (U)  =Ii  ~ t  + ~x,]  =l i  + s  x , i = 1  . . . . .  7. (2.25) 

This set of  equations represents the characteristic form of (2.12). It gives 
algebraic relations for the rates of change of  the state variables along the ith - 
characteristic moving at speed )Li. For the multiphase flow equations they are 
given explicitly by 

Solid Acoustics (2 = v~ + c~) 

2 FOps ~ + ?Us 
4,sCs L o  t + (v~ + cA Ox J - LOt + (v~ ___ c~) ~ ]  

+ (% + (Ps - Pg + (Vs + c~) 
Lot Ox j [_ott - Ox J 

ca Ps - Pgl (v s Vg) g = ( p ~ - p g + F ~ f l ~ - P s C ~ ) F +  T - ~ ( v s - V g ) +  Ps _l C~-Y-Cs - 

+ Sox k o~x} - G(T~ - Tg) h. (2.26) 

Solid Entropy (A = v s, 1 = 1 ~ 

- -  + % - ks - h(Ts - Tg) - - -  C~ . (2.27) 
at ox *~ps~ L ~ )  as 

Compaction Equation (,~ = vs, 1 = !~) 

OOs + v~ - -  = F + - - .  (2.28) 
3t 3x Ps 
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Gas Acoustics (2 = Vg + Cg) 

L ot __Cg) OXJ -- L ot --Cg) OXJ 

&Cg + rg(p~ -p~ - I0  F 
= ~ ( v ~ - V g - ~ C g )  

0 ( O r  A 
+ r ~ L  \ ~ o~J + [ + ~ ( v ~ - 0  + r~ (n -  0~1 ~ 

(% - Vg) + Fg(eg - e~) + - d ~  P~d �9 cg 
Ps ( Vs -- Vg ~ Cg) 2 

+ r,p  c; + hr (v - O .  

Gas Entropy (2 = Vg) 

0~- Ox OgpgTg ax kg Ox] + h(T~ - Tg) 

-t- ~ ( V  s - -  Vg) 2 + (Ps --Pg--f ls)  F 

+ ieg--es+ ( ~ s - - 1 )  Pgl C's) �9 
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+ (vg +_ %) ax j 

(2.29) 

(2.30) 

Having established formally this mathematical foundation, sufficient 
framework has been laid for constructing a numerical method based on the 
characteristics. Many modern computational methods use embedded Riemann 
solvers (or approximate Riemann solutions) in algorithms to enhance accuracy 
of numerical solution. In the next section, we provide the necessary ingredients 
for such a method. 

3 Simple waves, classification of wave fields 
and generalized Riemann invariants 

Consider a linear, constant coefficient hyperbolic system of the form 

0U A0U 
- - +  = 0 ,  
at Ox 
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where A has real eigenvalues 21 -<_ 22.~ - ~n and a corresponding basis of 
right eigenvectors [rl, r 2 , . . . ,  rn}. The normal mode solutions of this system 
are defined by 

Uk(X, t) = ak(x, t) rk; k = 1 . . . .  , n, 

where the scalar function trk(x,t) is a solution of  the equation 

Oak + 2k Oak = 0. 
Ot Ox 

NOW consider a nonlinear system of the form 

0U 0U 
- -  + A ( U )  = 0 ,  (3 .1 )  
at ~ x  

where A(U) has real eigenvalues 21(U) . . . . .  2n(U ) and a corresponding basis 
of right eigenvectors {rl(U),.. . ,rn(U)}. There exist special smooth solutions 
of (3.1), analogous to the normal mode solutions for the linear case. They 
are called simple waves and are given by [11]: 

uk(x, t) = Uk(ak(x, t)), (3.2) 

where Uk(tr) is now a curve everywhere tangent to the vector field rk(U), so 
that Uk(Cr) solves the ODE system 

dUk = rk(Uk(O')) on O" 1 < (7 < 0"2, (3.3) 
do 

Uk(O'0)  ~--- Uk0 , (71 < (9" 0 < 0"2, 

and the amplitude ak(X, t) is a solution of the scalar PDE 

Oak Oak 
- -  + ~k(Uk(ak(x, t)))  ~-x = o, 
Ot (3.4) 

a k ( X , O  ) = a k o ( X ) ,  O" 1 < ako (X)  < (72 . 

These solutions will exhibit nonlinear behavior if the speed of propagation 
2k(Uk(a)) is a function of the amplitude ak, i.e. if 

0 .  dl2k(Uk(Cr))} = V;Lk(Uk(a))" rk(Uk(a)). 

Alternatively, the solutions exhibit linear behavior when their speed of pro- 
pagation is constant 

0 ~ d { , ' ~ k ( U k ( t T ) )  } = V , ~ k ( U k ( O ' ) )  �9 r k ( U k ( O ' ) )  . 

Lax [12] classified the wave field associated with 2k(U) as genuinely nonlinear 
if 

V~,k(U) �9 rk(U) =1: 0, 
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for all U, and linearly degenerate if 

v 2 k ( u ) ,  r~(U) - o ,  

for all U. For the multiphase flow system we will see that under standard con- 
vexity conditions for the equations of state of both phases, analogous to the 
ones given for gas dynamics [13], the acoustic modes are genuinely nonlinear, 
and the entropy modes are linearly degenerate just as for one-phase flows 
[11, 12, 14]; also the compaction mode is linearly degenerate. In fact, we have 

0 O, V (Vg "{- �9 1 0 Vvg.rg =- _Cg) rg = -[-----(pgCg),  
pg C3pg 

VV s" r 0 ~ O, 

Vv~-r c -  O. 

V(%+Cs) .r  + =  +.1  0 
ps Op~s (PsCs) ' 

(3.5) 

Thus, the wave fields are genuinely nonlinear provided that _ 0  (ffaCa) ~ O. 
0aa 

This is precisely the same condition encountered in one-phase gas dynamics 

{• by the identity and can be related to ~oV~)] 
rla, dJ a 

(02pa~ =2p3Calo~a(paCa) ) 
\ovH,,o .o 

Therefore, we make the following thermodynamic assumptions about the 
phases: 

~a,~a 
<0, 

OVa} 

/ > 0, (3.6) 
k Ol~a/ Va,qb a 

~ a )  na,~a > 0, 

for a = s, g. These are the standard convexity assumptions considered in one- 
phase gas dynamics [13]. These convexity conditions are satisfied by many 
equations of state, including ideal gases and the equations of state for the 
solid and gas phases employed in the reactive multiphase flow studies describ- 
ed in [3]. In addition, the conditions in (3.6) guarantee that the Hugoniot 
curve and the Rayleigh line intersect in at most two points [13], a fact that 
will be exploited in the last section when we discuss special discontinuous solu- 
tions of the multiphase flow equations. 
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Next we consider the construction of  the generalized Riemann invariants 
associated with the various wave fields of  the multiphase flow equations. The 
construction of simple waves outlined in (3.3)-(3.4) involves the solution of  
the ODE system (3.3) in R n. One way to construct that curve is to find n - 1 
first integrals for the ODE, that is, functions ~kj(U), j = 1 . . . .  , n -- 1 such 
that 

d 
~a~Ukj(UK(a)) = V~ukj(Uk(a)). rk(Uk(a))  --= 0. 

Functions ~(U) that satisfy the PDE 

v ~ ( u ) ,  r~(U) - 0 (3.7) 

are called generalized Riemann invariants. Therefore to solve (3.3) we need to 
determine n - 1 functionally independent invariants in (3.7). In the derivation 
of the Riemann invariants for the reactive multiphase equations we utilize 
knowledge about the invariants for one-phase gas dynamics. We will first 
discuss the invariants away from resonances, i.e. for the case where all the 
eigenvalues are distinct, and then make some remarks for the case of coa- 
lescing eigenvalues. For one-phase gas dynamics the Riemann invariants are 
well known [14]: in the state variables p, v, r/, the gas acoustic modes have 
right eigenvectors r -+=  (1,+c/p,O) T. Hence the Riemann invariants ~,-+ 
solve the PDE 

0~v--- + c 0~,--- _ 0, 

Op p Ov 

and two independent solutions are given by 
+ 

P + 
~-=vT- I#-lc(#,n)d#. 

( The entropy mode has right eigenvector r ~  1,0, pFTI  and the Rie- 

mann invariant ~0 solves the PDE 

0~, 0 c 2 0~, ~ 
= 0 ,  

Op pFT Or I 

so that two independent solutions are 

I//0 = v ,  

~0 = p .  

Now we are ready to construct the generalized Riemann invariants for the 
multiphase flow equations. Since (2.20) shows that the acoustic and entropy 
right eigenvectors in both phases are essentially the same as in one-phase gas 
dynamics, then it follows that the Riemann invariants ~,+ for the acoustic 
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fields, and the entropy invariants q/o satisfy the same PDE as in one-phase 
gas dynamics 

o : v = + + co -+ 

OPa Pa OVa ' 

2 oqjo (3.8) 
0 0~'12 Ca 

O =  V lifO a .  r a - -  
OPa ParaTa Ogia' 

for a = s, g. First we consider the acoustic and gas entropy modes because they 
are associated with only one eigenvector. Since (3.8) involves only one of the 
phases, it is is clear that the variables for the other phase and the solid volume 
fraction provide four independent Riemann invariants. Since the PDE deter- 
mines two additional independent invariants, we have computed all six in- 
variants for the acoustic and gas entropy modes: 

Gas acoustic invariants 
-4- 

g,~ = gig, 
+ 

~,~ = Vg -z- ~p~p-l cg(p, gig) dR, 
-4- 

~ = Cs, 
-4- 

Iff g4 = P s ,  
q- 

+ 
Iff g6 = gis,  

(3.9) 

Gas entropy invariants 

~ 1  = Vg , 
~/o 

g2 : Pg , 

~~ = Os, 

g/~4 = Ps,  

lye5 = Vs , 

~tOg 6 = Tls , 

(3.~o) 

Solid acoustic invariants 
A- 

~/~ = gis, 
+ 

~u;~ = vs -v- IP, p-~c~(p,  n~) dP,  
+ 

~;3 = Os, 
-t- 

f / ~  = pg,  

q/ss = Vg, 
+_ 

Iff s6 "~- gig, 

(3.11) 
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The situation regarding the invariants associated with solid particle speed 
v s is more complicated. Since Vs is a double eigenvalue the choice of  the 
eigenvectors r ~ and r~ is somewhat arbitrary. Therefore, the invariants 

0 associated with 2 o = % are first integrals of (3.3) for both choices of  r5 or 
r c. Thus the Riemann invariant ~/o must solve a system of two PDE's  

~  V ~  ~ r5 
c = 0 (3.12) V ~,o. rs 

and therefore we expect in this case to find five independent invariants instead 
of six. In order to solve (3.12) it is convenient to use the new state variables 

(J = (Ps, %,P5, dPs, Pg, vg, rig) T (3.13) 

instead of  U given in (2.13). The eigenvalues, eigenvectors, and invariants in 
the new and old variables satisfy thed following relations: 

i k ( f ; )  = ; t ~ ( u ) ,  

~k(f~) = v f J ( u )  r~ (U) ,  

~,(fJ) = ~ ( u ) .  

The reason for using the change of  variables in (3.13) is to simplify the for- 
mulas for right eigenvectors associated with the solid particle speed field. In 
fact, with the change of variables in (3.13), the right eigenvectors r ~ r~ in 
(2.20) reduce to the simpler form 

-0 01~ o rs = f f u r 5  = ( 1 , 0 , 0 , 0 , 0 , 0 , 0 )  r 

OfgrC= (0 ,0 ,  (Ps--Pg) 1, Pg(Vs-Vg)2 
r~ = 0U 5 6s ' C g [ ( % -  vg)2 _ C2g], (3.14) 

c~(vs - vp  ) r 

  t(vU= 41 '~  ' 
and the linear system of  PDE's  (3.12) becomes 

-o o~  ~ 
0 = V~~ r5 - 

Ops' 

-c p~ - p~ o~,~ 0r176 
0 = Vg, O. r5 = - + 

r Ops 0r 

+ p~(v5 - up ~ _  o.c,]_~ ~ + p~(v, - up o,7/o 
Cg [(v, - Vg) 2 - c 2] apg ~g [(V s -- Vg) 2 --  C 2] avg" 

The first equation simply expresses the fact that ~s ~ is independent of Ps- To 
investigate the second equation consider its associated equation of  
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characteristics (which is (3.3) for ~o): 

@ s _  ( p s - p g )  

dt 4~ 

d v s = O  ' 

dt  

d4~s 
dt 

dpg Pg(Vs - vg) 2 

dt Cg [(vs - Vg) ~ - %1 

(3.15) 

dt ekg [ ( v  s - -  'Vg) 2 - C2g] ' 

drlg - O. 

dt  

The equations for v s and /~g in (3.15) immediately give two invariants 

~0 
qlsl = V s 

~0 
ql s2 = rig, 

Also, using (3.15) we can derive the following equations for the gas pressure 
and enthalpy (recall /~g = 0)  : 

dpg pgC2(Vs __ Vg)2 

dt (~g [ ( v  s - Vg) z - c21 ' 

2 (v  s 'Vg) 2 dhg Cg - 
m 

dt  ~)g[(U s - Vg) 2 - c2] " 

(3.16) 

Combining (3.I5) and (3.16) it is readily verified that 

d ( O g p g ( V  s _ Vg)) = 0 ,  
dt 

d (c~sps + 4~gpg + (~gPg ('Us - Vg)2)  = 0 ,  
dt 

d (hg + ~vs - ,~g)2/2) = O. 
dt 
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Consequently, we have the 
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Solid particle speed invariants 
~0 
qlsl = V s , 

~o 
V s2 = rlg, 

~o ~ 3  = r - Vg) , (3.17) 

~04 = ~sPs + ~gPg -t- q~gpg(V s -- Vg) 2 , 

~ 0 =  gts5 (v~ - vg)2/2 + hg. 

It is known that the Riemann invariants associated with a linearly degenerate 
wave field represent conserved quantities across contact discontinuities. From 
(3.17) it follows that the particle speed of the solid and the gas entropy are 
conserved across a contact discontinuity for the solid phase. The remaining 
three invariants in (3.17) guarantee conservation of mass, momentum, and 
energy for the mixture across the contact discontinuity. 

We end this section with some comments regarding the behavior of the 
Riemann invariants for regions where different eigenvalues coalesce. Again we 
look at the cases mentioned in Section 2, with emphasis on the choked-flow 
state. In the cases when v~ = vg, v, +_ c, = Vg or Vs +- Cs = Vg --Jr- Cg we already 
know that the corresponding eigenvectors remain independent and the 
Riemann invariants cannot satisfy the orthogonality condition (3.7) for both 
eigenvectors. On the other hand, for the case v~ = v g  +_ cg corresponding to 
choked flow, the eigenvectors r~ and rg  do align and the Riemann invariants 
in (3.17) continue to satisfy (3.7). Moreover, the Riemann invariants (3.17) are 
still independent of the sonic state. In fact, the Jacobian matrix J = 

( i)~']i'~ with U given by (2.13) and g/s ~ by (3.17) is 
OUJs• 

t 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 

0 Os Pg 0 - pg V~g r v~g - r pg 0 

~sC 2 2~gpg~sg ~sPsl 'sTs Psg--pg~A2sg ~g(C2.-}-V2g) --2~gpgVsg ~gpgrgTg 

0 V~g 0 0 2c~/pg -V,g  (1 + Fg) Tg 

(3.18) 

which has full rank even at choked flow points. (Here we have simplified nota- 
tion using vsg = vs - vg and psg = p~ - p g ) .  
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4 C e n t e r e d  r a r e f a c t i o n  w a v e s  a n d  c o n t a c t  d i s c o n t i n u i t i e s  

Next we consider some special simple wave solutions of  the system. The first 
solutions are the centered rarefaction waves for genuinely nonlinear fields. They 
are solutions depending on the ratio x/t  and can be obtained as the limit of 
globally smooth solutions. The second type are the contact discontinuities for 
linearly degenerate fields. They are discontinuous solutions depending on the 
ratio x/t, and are also obtained as limits of globally smooth solutions. 

4.1 Centered rarefaction waves for genuinely nonlinear fields 

To construct these solutions, it is assumed the k-th field is genuinely nonlinear 
and rk is normalized so that V2k. r k -  1. This has the advantage that since 

~a ) L k ( U k ( a ) ) -  V2k" rk - -1 ,  the wave speed ;~ itself can be chosen as a 
da 
parameter and (3.3)-(3.4) reduce the computation of  U(x,  t) = Uk(2k(X, t ) ) ,  
where Uk and 2k satisfy 

dUg 
- r~(Uk), 

d2k 

(4.1) 

Next, consider the case of  one-phase gas dynamics. The genuinely nonlinear 
fields are associated with 2 -+ = v • c. In this case it is convenient to rescale 
r -+ so that 

r + = (+_p,c,O) T, 

02k ~ 02k 
- - +  = 0 .  
Ot xk ~x  

The centered rarefaction waves are constructed as follows. Assume UL and UR 
are connected by the solution U =Uk(;~k) in (4.1) obtained from the 
Riemann invariants and satisfying UL = Uk(A~), UR = U~(2~) ,  with 
2kx < 2u~. Then the centered rarefaction wave connecting UL and Un is ob- 
tained from the solution of  (4.1) with the initial data 

)~k(x, O) = f Zu~ x < O, 
( 2 ~  x > 0 .  

This solution is given by U = Uk(2k(x , t ) ) ,  with ;L k defined by 

)~x if x - - <  )~u;, 
t 

X x if 2 ~ < - - < 2 ~ ,  
2k(x, t) = t t 

X 
2kR if 2 ~  < - -  

t 
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for then we have V2 + .  r -+ m 1. The Riemann invariants for the gas acoustic 
determine the velocity and the entropy 

~/+ = r/L , 
+ 

V + = VL -t- ~--p--1 C(p, tlL ) do. 
PL 

However, we now have v + given in terms of  p+  rather than x and t. To deter- 
mine p+  using ).+, and hence in terms of  x, t, we integrate the equation for 
p+  in (4.1) and obtain 

+ 
,/ - 3 ;t + xL • j p-1 (pc) dp = 4 

PL op 

Notice that this last equation, although implicit, provides a unique solution 
0 

p+- in terms of  2--- because the convexity assumption 3~ (pc) > 0 guarantees 
p ,  

that ~.- is a monotonic function of  p+-. In conclusion, the centered rarefac- 
tion waves associated with 2 -+ = v +__ c are given by 

= / ' ]L ,  

+ 'i 
v -+ = vL ----- p-1 cdp, (4.2) 

PL 

P• 3 
4 +. = & +  I P- I~(pc)dp ,  

PL 

with 

I 2 L  if x - - <  5tL, 
t 

X 
x if )~L < --  < )Ln, (4.3) 

2 + (x, t) = t t 
X 

~R i f  '~n < - -  
t 

Equations (4.2)-(4.3) immediately lead to the construction of  centered rarefac- 
tion waves for the multiphase system: 

G a s  a c o u s t i c  r a r e f a c t i o n  w a v e s  

r/+ =/TaL, 
p~ 

v~ = voz + I p-1 Ca alp, 
PaL 

-t- 
Ph- 

Xa+_ = ~o~_+ Sp_ 1 0 
PaL ~ (pCa) ap, (4.4) 
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P ~  = PbL, 

Vb 5: ~_ VbL , 

4- 
rl~- = rlbL, 

where a = s, g, and b" = s if a = g and vice-versa. The wave speed 2fi is given 
by (4.3) 

r 
2aL if x -- <2aR , 

t 
x x i f  2aL < - -  < 2aR , (4.5) 

2 + (x, t) = t t 
x 

2 ~  if 2 ~  < - .  
t 

With the wave speed field given by (4.5), we can solve (4.4) for the density 
pff. Once p+  is computed, v~ is determined from (4.4) by integration. The 
remaining states variables are constant in x and t. 

4.2 Contact discontinuities for  linearly degenerate fields 

To construct these solutions, we assume that the k-th wave field is linearly 
degenerate: V2k. r k = 0. This implies that the speed of propagation 
2k(Uk(a))  for the simple wave in (3.2) is constant. Next assume that UL and 
UR are connected through the solution of (3.3) with UL = Uk(au~) and 
UR = Uk(akn) (although this assumption is not needed to construct a solu- 
tion, it is essential in showing that the discontinuous solution is the limit of 
smooth solutions). The contact discontinuity is then constructed as the solu- 
tion of (3.3)-(3.4) with the initial data 

(x, 0) = ( au ;  if x < 0 ,  
ffk 

( akR if X > 0. 

Since 2k(Uk(ak) ) = 2k(UL), ak (x , t )  is given by 

I a k t  if x - -  < 2 ~ ( U D ,  
t 

ak(x,  t) = 
a~R if X - -  > & ( U D ,  

t 

and therefore, the contact discontinuity is given simply by 

UL if x - < 2 k ( U D ,  
t 

U (x, t) = x > (4.6) 
UR if 2k(UL). 

t 
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The requirement that the states in the left and the right can be connected by 
a solution of  (3.3) guarantees that the contact discontinuity solution U ( x ,  t) 
can be obtained as the limit of  smooth traveling wave solutions connecting the 
same end states [15]: let a ( x )  be any smooth profile whose values are between 
a~z and OkR, and so that a ( x )  - akx for x < - 1 ,  and a ( x )  - a ~  for x > 1. 
Then 

U~(x, t) = Uk ( a  ( x  - ~ ( U L ) ) )  , 

is a smooth traveling wave solution and converges to U(x,  t) as e-- ,  0. 
For the gas particle speed 2 o = vg it is straightforward to determine the 

associated contact discontinuities. Since the Riemann invariants in (3.i0) repre- 
sent conserved quantities across the contact discontinuity, then in terms of  the 
state variable U = (ps ,vs ,  rl~,4)s, pg, Vg,pg) T, we have U(x , t )  given by (4.6) 
with 2k(UL) = VgL, and UL, UR satisfy 

PsR = PsL,  VsR = UsL, I~sR "~- l lsL,  

PgR * PgL,  VgR = VgL, PgR -= PgL .  

~sR ~ q~sL, 
(4.7) 

Therefore a contact discontinuity moving with the gas speed Vg is simply a 
discontinuity for the density in the gas phase, just as in one-phase gas 
dynamics. 

On the other hand, the determination of  contact discontinuities moving at 
the solid particle speed is more complicated because v~ is a double eigenvalue. 
Again, it is convenient to work with the variable U = (ps,v~,p~, (~s ,Pg ,  Vg,pg)T 
defined in (3.13) (we dropped the for convenience). The Riemann invariants 
for the solid particle speed are conserved quantities across the contact discon- 
tinuity. Therefore, for a given left state UL, the possible right states UR for 
which a contact discontinuity exists belong to the two dimensional surface in 
R 7 described by the Riemann invariants in (3.17): 

V s = VsL, 

qg = rig r ,  

dpgpg(V s - -  Vg) = rbgLPgL(Vsr -- vgL) = M ,  

4~,ps + dpgpg --}- dpgpg(V s - Vg) 2 = OsLPsL '}- 4~gLPgr + 4~gLPgL(VsL -- vgL) 2 

( v  s - -  V g ) 2 / 2  + hg = (VsL - -  vgL)2/2 + hal. = E. 

(4.8) 

= P ,  

In addition, we require that the left and right states can be connected by a 
solution of  (3.3), so that the contact discontinuity can be obtained as the limit 
of smooth traveling waves. Since we are now on a two dimensional surface, 
it should be possible to reach U n from UL by following curves defined by 

0 given by (3.14), or a successive applica- (3.3) with right eigenvectors rs or r e 
tion of both. The curves generated by the right eigenvector r ~ are given 
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by 

dU 
- rs~ = el, U(0) = UL, (4.9) 

d a  

and the solution trajectories are simply straight lines parallel to the p~ axis: 

P~ = PsL + a ,  V~ = VsL, Ps = P~L, Os = 8sL, 

Pg = PgL,  Vg -~- YgL, rig = FlgL. 

We denote the solution of (4.9) by UI(UL, a ) :  

U I ( U L ,  o -) = V L "+" o-el .  

(4.10) 

Clearly the states connected to U L through this solution simply represent 
discontinuities in the solid density as in one-phase gas dynamics. To study the 
states that can be connected to UL through curves defined by r~ in (3.14), 
it is convenient to rescale this vector field with the scalar factor p = 
dpg [ ( V  s - -  Vg) 2 - -  C2g]. Then equation (3.3) becomes 

dU 
- ztrff (U) ,  U ( O )  = UL, (4 .11)  

d a  

and componentwise it is given explicitly by 

dPS 
- - ~ 0 ~  
d a  

~s 
d a  

dpS 
- -  O g ( P s  - - P g )  [ (Vs  - -  Vg) 2 -- C2]/Os, (4.12) 

d a  

dos  
d a  -- Og[(Vs -- vg)2 -- c2 l '  

dpg = pg(Vs __ vg)2 ' 
d a  

d a  

dll g _ O . 
d a  

Call the solution of (4.11) U2(UL, O'). Notice that (4.12) is essentially the 
same as (3.15). The Riemann invariants in (3.17) are first integrals of (4.12):. 
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From (4.12) it follows that Ps, vs, and r/g are constant, the last two in agree- 
ment with (3.17). It also follows that vsg = vs - v~ and pg a r e  solutions of  the 
2 x 2 autonomous system 

dpg 2 
d a  = PgVsg' 

(4.13) 
dvsg 2 
da - -  C g V s g "  

Using (4.13) and the Riemann invariants in (3.17) we can describe the states 
U that can be connected to UL. From (3.17) it is clear that the solution of 
(4.13) has the gas stagnation enthalpy q/s ~ as first integral 

hg(pg) + v2g/2 = E ,  (4.14) 

where the enthalpy hg(pg) is given by 

pg 

hg(pg) = I P - l c Z ( p ) d p  �9 
o 

For the remaining of  this section we make the further thermodynamic assump- 
tion that the equation of state is such that 

cg(pg) ~ O, as pg ~ O, 

hg(pg) ~ O, a s  pg --~ O, ( 4 . 1 5 )  

hg(pg) --+ ~ ,  a s  pg ~ oo, 

which is certainly satisfied for ideal gases. Since hg is an increasing function 
of pg, (4.14) shows that the maximum value of the gas density is p . ,  with 
hg(p . )  = E. Also the maximum value of  Vsg is x / ~ - ,  see Fig. 1. The equili- 

Vsg Ib 

P2, v2 ) P; 

2 Fig. 1. Plot in the pg - Vsg plane showing the energy level curve a :  hg q- V,g/2, and the 
curve b: M = pg v~8 
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brium points of (4.13) are given by the axes pg = 0 and V,g = 0. With this in- 
formation we can determine the points (pg, Vsg) that are connected to 
(PgL, Vs -- v s) in (4.13): ifpgL > 0 and vsL -- vgL > 0 (resp. < 0), then the curve 
is defined by (4.14) in the quadrant pg > 0, V~g > 0 (resp. Vsg < 0). On the 
other hand, if PgL = 0 or v~--Vg = 0, then the curve reduces to the point 
(p~,  Vs - vg). 

The volume fraction is determined from the invariant q/s~ 3 expressing con- 
servation of  mass for the mixture in (3.17) and (4.8): 

% = M~ Lo s %1. 

However, the volume fraction has to satisfy the constraint that 0 < Og < 1, 
and this further restricts the admissible states to satisfy Pl < Pg < P2, where 
pl and P2 are defined by the points of intersection of the hyperbola V~gpg = M 
and the curve (4.14) (see Fig. I) 

hg (pg) + M 2/[2p ~] = E. (4.16) 

Finally, the solid phase pressure is computed from the invariant q/s ~ express- 
ing conservation of momentum for the mixture in (3.17) and (4.8): 

Ps = ~ s  1 [P - dpgpg - ~gpg(V s -- vg)2]. 

Next, we can connect other points to U L by successively using the solutions 
UI(U0, al) and U2(U0, a2) previously discussed. Notice that these solution tra- 
jectories are orthogonal because the corresponding tangent vectors r ~ and r~ 
in (3.14) are orthogonal. Also, since rs~(U) does not depend on the variable 
p~, the solution U 2 of (4.11) with data translated in the ps direction is obtain- 
ed by translating the solution by the same amount in the Ps direction with 
nontranslated data, that is, 

U2(UO + O'lel, 0"2) = U2(Uo, o-2) + o-le 1. 

But this implies that the solutions U 1 and U 2 commute: 

U 2 ( U I ( U o ,  0l),0"2) = u 2 ( e o  + alei,o'2).  

= U2(Uo, oz) + ale1 

= U~ (Uz(U0, a2), a l ) ,  

and this commutation property shows that points in the two dimensional sur- 
face can be connected to U L by using trajectories generated by r ~ and r~ in 
either order; if Ue is connected to UL by first applying the solution U 1 and 
then the solution U 2, then it follows from the commutation property that the 
connection can be done in the reverse order, first by applying U 2, and then 
the solution U 1. This analysis also shows that the set of points that can be 
connected to UL forms a two dimensional ruled surface with generators 
parallel to the p~ axis, and generated by the solution curve UZ(UL, a2). 

Now we can collect the results of  this analysis and determine all the states 
Un that can be connected to UL, and therefore the contact discontinuities 
propagating at the solid particle speed. The answer depends on whether 
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VsL--VgL vanishes or not; for two admissible states UL and UR, the contact 
discontinuity is given by (4.6) with ;tk(UL) = V~L, and the admissible state UR 
is prescribed as follows: 
a) If  vsL -- VgL = 0, then the states UR that can be connected to UL are given 
by 

PsR > O, VsR = V~L, PsR = sL, 6~R = OsL, 

PgR = PgL, VgR = V~L, PgR = PgL" (4.17) 

and PsR is arbitrary, so that in this case we have only a density discontinuity 
in the solid phase, analogous to the contact discontinuities in one-phase gas 
dynamics. On the other hand, 
b) If VsL -- VgL t O, then the states UR that can be connected to UL are given 
by 

PsR > O, 

VsR ~ VsL, 

Psl~ = 4~ ~1 [p _ dPgRPg R -b dpgRPgR( VsR - /)gR)2] , 

4~R = 1 -- OUR, 
(4.18) 

O < pl < PgR < P2, 

VgR = VsR + sign (vgL -- vsL) [ 2 ( E -  hg(Pge, rlgR))] 1/2 , 

rlgR = rlgL, 

ChgR = M~ (DgRVgR) , 

where Pa and Pz are the two positive solutions of (4.16). Therefore, (4.18) 
completely characterizes the two dimensional surface of the states UR that 
can be connected to UL, and this surface is explicitly parametrized in terms 
of the densities P~R and PgR for the solid and the gas phases, repectively. 
Finally, we remark that the six dimensional surface of choked flow states 

2 (4.t9) (V s -- Vg) 2 ~- Cg 

intersects the two dimensional surface defined by the Riemann invariants in 
(4.8) at exactly two lines parallel to the p~ axis, one line being in each of the 
regions v~ > vg and v~ < Vg. First we determine the gas density. From (4.19) 
and the conservation of stagnation enthalpy for the gas phase (4.8), we obtain 

hg(pg, rig ) "b c2(pg, rig)~2 = E.  (4.20) 

The left side of (4.20) defines an increasing function of pg (flu is constant) 
as consequence of the convexity assumption (3.6) 

o ( h g +  c~12) = C g 0 
Opg pg Opg (pgcg) > O, 
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and because of the additional assumption (4.15) about the equation of state 
we have that hg + c2/2 goes to zero when pg goes to zero, and it goes to in- 
finity when pg goes to infinity. This implies that there is a unique solution 
p~ of (4.20). Now we can determine two values for vu from (4.19) and the 
fact that vs = V,L in (4.8), that is, 

Vg Vs L -t- 2 , = __ Cg( pg ,  17gL). 

The remaining state variables Ps, (~s, and r/g can then be determined from 
(4.8), and p~ is arbitrary. This proves the remark. 

5 Special discontinuous solutions of the multiphase flow equations 

After discussing centered rarefaction waves and contact discontinuities, the 
next logical step is to investigate shock wave discontinuities for the multiphase 
flow system. However, as we will shortly see, there are problems in determining 
the jump conditions in the multiphase flow system because it is not in 
divergence form. This loss in the divergence form structure is due to the 
presence of solid volume fraction spatial derivatives in the momentum and 

04)a 04)a Technically, one energy equations for each phase, that is Pgoxx and Vgps~x. 

of the main difficulties in studying discontinuous solutions of equations that 
are not in divergence form is how to define the product of two distributions, 
and currently there exists no complete theory for discontinuous distribution 
solutions of non-strictly hyperbolic, non-conservation form hyperbolic systems 
such as the multiphase flow system considered here. According to (2.7), the 
solid volume fraction is transported at the solid particle speed Vs, so it is 
plausible that for discontinuities moving at speeds different from the solid par- 
ticle speed there is no problem in formulating the jump conditions. This will 
prove to be the case, for we will show below that in this case the volume frac- 
tion remains continuous across the shock. The problem of determining all the 
possible shock states in the case where the shock moves at the particle speed 
remains open. Here we will consider only the jump conditions for shocks mov- 
ing at the solid speed % only for the case where the solid volume fraction 
does not jump across the shock, and therefore we avoid the technical problem 
of dealing with products of distributions. Although this is a special case, it 
is interesting. In fact, in this case we can construct two different discontinuous 
solutions with the same upstrem conditions, provided that the velocity of the 
gas relative to the solid is supersonic. A deeper study of shocks moving at 
the solid particle velocity and with jumps in the volume fraction across the 
shock requires the inclusion of diffusive transport mechanisms within the 
shock layer and will be the subject of future study. 

For the study of discontinuous solutions we recast the multiphase flow 
equations (2.1)-(2.7) into the conservation form (a = s,g) 
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Conservation of  mass 

0 (~aPa) + 0 
Ot OXX ( ~ a P a V a ) =Ca* 
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Conservation of momentum 

0 0 O~a 
05 (dPaPaVa) + OXX (dPaPaV2a + ~)aPa) -- Pg OX - -  = ma t (5.1) 

Conservation of energy 

0 0 O~ba = ea* 
Ot ( dPaPaEa) + Ox ( ( dPaPaEa + dPaPa) va -{" qa) -- pgVs O X  

Solid mass density 

OPs 0 - -  + - -  (PsVs) = _ PSF, 
at Ox 4o s 

where Ea = ea + Va2/2 is the total energy of the a phase. As for one-phase 
flows, a change of variables calculation using (2.11) shows that for smooth 
solutions the systems (2.1)-(2.7) and (5.1) are equivalent. In addition, the 
solid mass density equation (5.1) is a direct consequence of combining the con- 
servation of mass equation (2.1) and the solid volume fraction equation (2.7). 

The phase interaction terms are given by 

c ;  = 

m*s = -m*g= - ( 6  + ~ r  (Vs -Vg)  + C*svs, 

ets = - e ~ =  - ( 6 +  C~) (Vs -Vg)  

-h (T~  - Tg) + EsC*~, 

v~ - (p~ - #~)  F ( 5 . 2 )  

0Ta 
qa = - ka Ox 

Additionally, for discontinuous solutions, the system (5.1) is supplemented by 
the entropy inequality for the mixture [3] 

,opo \ o  + +.oCt+ >=0. 
a 
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We discard the heat conduction term in the entropy inequality and use the con- 
servation of mass equation (5.1) to recast the entropy inequality as ) 0 (  ) 
~5 dPaParla + L ~ d~aPar]aVa e O. (5 .3)  

a 
The system (5.1) is not in divergence form because of the presence of the non- 

aq~s in the momentum and energy divergence form terms P ~ r  and pgvs 
Ox 

equation. However, the conservation equations for the mixture are in 
divergence form 

05 ~aPa "~ OXX ~ OaPaVa = O, 
a o( .) o( ) 

05 oopo + + oopo  = o. (5.4) 
a a 

O (  Ea ) O (  ) 
Ot ~ OaPa + Ox ~ [ ( 4,aPaEa + OaPa) Va + qa] = O. 

a a 
Since the conservation equations for the mixture are in divergence form, the 
standard derivation of the jump conditions can be applied to these equations 
[13]. Let [f] denote the difference of the values of f at the right and left of 
the discontinuity, [f] = f z - f R ,  v is the velocity of the discontinuity and 
Ua = v a -  v. Then (5.4) implies the following jump conditions for mass, 
momentum, and energy for the mixture across the discontinuity 

[OaPa Ua] = 0, 
a 

[4~a(pa U] +pa) ]  = 0,  (5.5) 
a 

[dPaPaUa(h a + U,2/2)1 = O. 

a 

Similarly, (5.3) implies the jump condition for the entropy of the mixture 

[dpapat~aUa] = 0. (5.6) 
a 

The conservation of mass, momentum, and energy for the mixture given in 
(5.5), as well as the entropy inequality for the mixture in (5.6) must be 
satisfied by any distribution solution of the multiphase flow system. Notice 
in particular that the jump conditions given in (4.8) for a contact discontinuity 
moving at the solid particle velocity do imply the jump conditions for the mix- 
ture in (5.5). In addition, the equations of mass conservation and the solid 
mass density equation (5.1) are also in divergence form, hence we obtain three 
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additional jump conditions for the phases 

[4'aPa UA = O, 

[p~ us] = o. (5.7) 

Therefore, if Us = v, - v .  0, i.e., if  the discontinuity does not travel at the 
solid particle speed, then (5.7) implies that [~]  = 0, and the solid volume 
fraction does not jump across the discontinuity. In this case the non-divergence 
form terms in the equations of momentum and energy are classical functions, 
and the standard derivation of the jump conditions can be applied in this case. 
The resulting jump conditions for the momentum and energy of each phase 
are 

[~a(Pa U2 q-Pa)] = O, 

[(gaPaUa(h a -{- U2/2)] = 0.  (5.8) 

The jump conditions in (5.6)-(5.8),  combined with [~a] = 0, yield the jump 
conditions for a shock not moving at the solid particle speed (Us :r 0):  

LoauA = 0, 

[po U2a +Pa] = 0, 

LOaUa(h a "-k U2/Z)] = 0,  (5.9) 

[~a] = 0 ,  

[~p~ u~ ~1 _> 0. 
a 

The first three equations in (5.9) are the well-known jump conditions for mass, 
momentum, and energy, and they hold for each phase. Therefore the classical 
analysis for gas dynamic discontinuities [13] appfies here for each phase in- 
dependently. After the right state UR has been determined for a given left 
state UL and the discontinuity speed v, the entropy inequality for the mixture 
in (5.9) needs to be verified. Notice that here the entropy may decrease in one 
of the phases across the discontinuity as long as the mixture entropy does not 
decrease. 

Next we consider the case where [UA = 0, that is, where v = v~R = Vsz. In 
this case (5.7) does not imply that [~a] = 0. However, the jump conditions 
(5.5)-(5.7) must hold for any admissible discontinuous solution, and in this 
case they reduce to 

[vA = O, 

[q~gpg(Vg -- Vs) ] = O, 

[~sPs -Jr- ~gPg q" dpgpg(Vg -- Vs) 2] = 0,  (5.10) 

[4~gpg(Vg - vA  (hg + (vg - vA2/2)] = 0, 

[Ogpg(Vg - v~) rig] >- O. 
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Equations (5.10) define a three dimensional manifold for the states variables 
in R 7. Clearly, the two dimensional surface of contact discontinuity states 
defined by (4.8) is embedded in this three dimensional manifold. However, 
since the contact discontinuities satisfy [r/g] = 0, the entropy of the mixture 
does not increase across the contact discontinuity and therefore they cannot 
be considered as shocks. This also shows that the three dimensional manifold 
defined by (5.10) contains many more points besides shocks. To elucidate 
which of these points represent shock end states will require a detailed analysis 
of the shock layer and the various transport mechanisms therein. Here we 
focus instead on the special but nevertheless interesting case where the discon- 
tinuity satisfies [qSs] = 0. In this case (5.9) reduce to 

[Os] = 0 ,  

[p~] = O, 

[v~] = 0 ,  

[pg( Vg --  VsL) ] ----- O, (5.]1[) 

LOg (Vg - v~L) a + pgl = O, 

[pg(Vg -- VsL ) (hg + (Vg - VsL)2/2)] = 0, 

LOg(Vg -- VsL) r/g] ~ O. 

The first three equations for the solid phase in (5.11) impb i that there is a 
contact discontinuity in the solid phase. The remaining four conditions are the 
gas dynamic jump relations for the gas phase, where the discontinuity is mov- 
ing at the solid particle speed. 

We conclude this section by obtaining some special discontinuous solutions 
of the multiphase flow system given by (5.11). In these solutions we assume 
that VgL-  vsL > 0, and that the upstream end state UL is given. The discon- 
tinuity moves at speed VgL, and the downstream end state U n is determined 
by (5.11). The determination of the solid phase variables from (5.11) is 
straightforward. On the other hand, to determine the downstream values of 
the gas variables we follow the classical analysis for gas dynamic discon- 
tinuities given in [13]. The downstream values of the pressure pg and specific 
volume Vg for the gas phase are determined by the intersection of the 
Rayleigh line R given by 

Pg --  PgL = - - m 2 ( V g  - VgL) , (5.12) 

where m = p g ( V g z -  V,L), and the Hugoniot curve H, that is 

eg(pg, Vg) - eg(pgL, VgL) = -- (pg + PgL) (Vg - VgL)/2. (5.13) 

Since the equation of state for the gas phase satisfies the convexity conditions 
in (3.6), the Rayleigh line (5.12) and the Hugoniot curve (5.13) intersect 
in at most two points [13]. There are different cases to be considered when 
determining the downstream values Vgn and Pg8 for the gas variable, and 
they depend on the value of the upstream relative Mach number M = 
(Vg L -- VsL)/Cg L (see Fig. 2): 
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Pg H 

3,Pg3 } 

R3 R2 R I Vg 

Fig. 2. Plot in the Vg -pg  plane showing the relative position of the Rayleigh line (R) 
and the Hugoniot curve (H) for the gas phase in the three regimes of the relative Mach 
number M. Casel:  M < I ,  R = R  1. Case2: M = I ,  R = R  2. Case3: M >  1, R = R  3 

Case 1: M < 1 (relative subsonic flow). In this case the Rayleigh line R 1 and 
the Hugoniot curve H intersect at the points (VgL,PgL) and (Vgl,Pgl) (Fig. 2). 
The point (VgL,PgL) trivially satisfies the entropy condition in (5.11), but the 
point (Vgl,Pgl) violates it [13]. Therefore in this case the upstream and 
downstream gas phase variables are forced to take on the same values, and 
the discontinuous solution given by (5.11) reduces to a density discontinuity 
in the solid phase. 
Case 2: M = 1 (choked flow case). In this case the Rayleigh line R2 is tangent 
to the Hugoniot curve H at the point (VgL,PgL) (Fig. 2). Repeating the 
analysis above for the subsonic case shows that we get again only a density 
discontinuity for the solid phase. 
Case 3: M > 1 (relative supersonic flow). In this case the Rayleigh line R3 and 
the Hugoniot  curve H intersect at the points (VgL,PgL) and (Vg3,Pg3) 
(Fig. 2). In this case the point (Vg3,Pg3) gives an increase in the entropy of 
the mixture in (5.11) across the discontinuity. Therefore in this case we have 
two possible discontinuous solutions of the multiphase flow system with the 
same upstream values of the state variables and moving at the same speed 
VsL: the first solution consists of  a contact discontinuity for the solid phase 
where only the solid density changes across the discontinuity, with the 
downstream end state Un given by 

U R = (PsR, VsL,PsL, q)sL,PgL, VsL + m/PgL,PgL) T, (5.14) 

just as in the two previous cases. The second solution consists of a contact 
discontinuity for the solid phase and a shock in the gas phase, and the 
downstream end state U R is obtained by setting Vg3 and Pr as the 
downstream values of  the specific volume and pressure for the gas 

UR = (PsR, VsL, PsL, (~sL, Vg3 I, VsL "Jr mVg3,Pg3) T. (5.15) 
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Both solutions satisfy the jump condition for the mixture entropy. For the con- 
tact discontinuity there is no increase of entropy across the discontinuity 
whereas for the shock solution there is. The motion of  the gas phase relative 
to the solid phase changes from supersonic to subsonic in the shock solution, 
but remains supersonic for the contact discontinuity. Also, both solutions 
satisfy Lax's geometric shock conditions [12]. For the contact discontinuity 
solution the v~ characteristic runs along the discontinuity whereas the the re- 
maining characteristics cross it. For the gas-shock solution the discontinuity 
seperates the Vg - Cg characteristics since VgL - CgL > Vs > VgR - -  CgR,  and Lax's 
geometric shock condition is satisfied because the Vg-Cg impinges on the 
shock whereas the Vs characteristic runs along the discontinuity and the re- 
maining characteristics cross the discontinuity. Under which conditions either 
of these solutions is the physically realizable remains the subject of  future 
study. 

6 Summary 

In this study, we have examined the mathematical character of  a multiphase 
mixture description used to model fully-compressible, nonequilibrium reactive 
multiphase flows. A characteristic analysis reveals that the system of  equations 
is hyperbolic; however, the description becomes degenerate where the flow is 
locally sonic. We have determined the left and right eigenvectors for the system 
of  equations and have recast the description in characteristic form. After 
classifying the wave field, we derived the Riemann invariants and constructed 
simple wave solutions. Additionally, special discontinuous solutions of  the 
multiphase flow equations have been determined. Having established this 
mathematical foundation, sufficient framework has been provided towards 
development of  a characteristic-based numerical method. 
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