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HIGH-ORDER SLIDING MODES IN CONTROL SYSTEMS 

S. V. Emeryanov, S. K. Korovin, 
and A. Levant 

The article considers the properties of a new type of solutions that arise in discontinuous dynamic systems. A 

specific feature of these solutions is the tangency of the phase velocity vectors to the manifold of the 
right-hand side discontinuities, instead of the transversal intersection of the manifold typically observed for 

ordinary sliding modes. The solutions identified in this case are high-order sliding modes, and the order of 

the mode is determined by the smoothness of tangency of the sliding manifold. Second-order sliding modes 

are considered in detail. Examples of systems with such modes are given; application of the theory to stabili- 

zation of uncertain dynamic systems is described. It is shown that the sensitivity of high-order sliding modes 

to small variations in the right-hand side of the discontinuous system is an order of magnitude higher than 

for ordinary sliding modes, 

INTRODUCTION 

One of the most efficient approaches to solving control problems under uncertainty involves forced decomposition of 

the control system, Formally, this decomposition is achieved by tracking as accurately as possible some special constraint on 

the system variables. This approach, in particular, is applied when the controlled plant is essentially nonstationary, and its 

parameters vary unpredictably but in a known range. The constraint lowers the dimension of the control system, and a 

properly Chosen constraint also compensates for the effect of plant uncertainty on the operation of the system. The perfor- 
mance of the control system depends directly on the accuracy with which the constraint is tracked. 

In this paper, we formulate and analyze separately the problem of defining and tracking the constraint. This problem 
is typically solved using large, and in the limit infinite, gains [1], sliding modes [2, 3], and binary algorithms [4-11]. The 
algorithms considered in this paper are binary algorithms. 

Sliding modes in control systems are characterized by controls that are discontinuous in time. Exact tracking of the 

constraint is achieved in the limit by infinitely frequent switching. Binary control algorithms use bounded, time-continuous 

controls, although the earliest control algorithms of this type ensured only approximate, and in some cases asymptotically 

exact, constraint tracking. 

The constraint is satisfied when the point is contained in a certain manifold in the phase space of the closed-loop 

control system. In the simplest case, when the constraint manifold is a hyperplane, the ordinary sliding mode has a geometri- 
cal description. 

Feedback discontinuity on the constraint manifold corresponds to a discontinuity of the vector field of phase veloci- 

ties. The phase curves approach the constraint manifold from different sides with velocity vectors that intersect the manifold. 

The phase-space image point reaches the constraint manifold in a finite time, and does not leave it after that. The motion of 
the point on the constraint manifold is described by Filippov's procedure [12]. This motion can be interpreted as limiting 
motion, which arises when switching delay tends to zero (Fig. 1). Such sliding modes [17, 18, 22] are called Ist order sliding 
modes (the order of a sliding mode is defined in Sec. 2). 

A 2nd order sliding mode also arises in discontinuous dynamic systems. However, in contrast to the ordinary sliding 
mode, it arises at the points of the constraint manifold where any phase velocity vector obtained by passage to the limit 
approaching the constraint manifold over the continuity region of the phase velocity field is tangent to the manifold. A 2nd 
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order sliding mode arises, by definition, when the set of these points of the manifold consists of phase paths of the discontin- 

uous vector field (Fig. 2). Figure 2 is an example of an unstable 2nd order sliding mode. 

Such sliding modes arise in a natural manner in binary dynamic systems [13]. It is intuitively clear that, with small 

switching delays, a 2rid order sliding mode can ensure a higher constraint tracking accuracy than an ordinary sliding mode. 

This practically important consideration has stimulated further research in this area. Below we consider the organization of 

stable 2nd order sliding modes for control under uncertainty. 

The proposed approach attains the constraint in a finite time and ensures exact tracking of the constraint by a 

time-bounded Lipschitzian control. If there are restrictions on switching frequency, the constraint tracking is 2nd order 

accurate in interswitching time. Under the same conditions, constraint tracking by the ordinary 1st order sliding mode is only 

Ist order accurate. 

I.  EXAMPLES OF SLIDING MODES 

1.1. In this section, we consider a prototype example that qualitatively demonstrates 1st and 2nd order sliding modes 

and their potential applications. 

Consider the dynamic system 

f/= g(~,,r)) + u ,  (1.1) 

where y E R, u E R are controls, the function g is continuously differentiable with bounded partial derivatives, Igl -< 1. 

The objective is to stabilize the system asymptotically at the point y = y = 0. The control should be bounded in any 

bounded region in the y, y plane. The phase coordinates y, y are assumed observable. 

To solve the problem, it is clearly sufficient to track the constraint y + y = 0. A standard approach of the theory of 

variable structure systems leads to the algorithm 

u = 2uv/2-~ -/, (1.2) 

~, = - sign (u + ~ ) -  ( l .  3) 

The control law (1.2), (1.3) ensures prevalence of control in the time derivative of the constraint function o = y + 

)~ evaluated on the system: 

6 = g + # + u = 9 + I / -  2 V / 2 +  ~'2sign a .  

The constraint function o vanishes in a finite time, and subsequently it tracks the zero constraint in a sliding mode (Fig. 3). 

However, exact constraint tracking and exact stabilization are actually possible only in the limit, with infinitely frequent 
switching. 

1.2. In the theory of binary dynamic systems, this problem is solved, in particular, by the so-called .A ~,-algorithm 

[4-I~1: 
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/2 = [ - p  for lul > z ,  
-oesign~r for [/~l < 1,  (1.4) t 

where c~ > 0. As c~ --, oo, the properties of the ,A~-algorithm approach those of  algorithm (1.3). 

The projection of  the phase curves of  system (1.2), (1.3), (1.4) on the y, y plane is shown in Fig. 4. Eventually we 

have the inequality 

I~l < c 
,,/z + ~ - ~ ' 

where c > 0 is a constant. Stabilization is achieved approximately. 

Consider the phase portrait of  system (1.1), (1.2), (1.4) in the coordinates y, y, #. Note that by (1.4) the sign of/~ is 

determined by the sign of  a, and the sign of  6 is determined by the sign of  the difference/x - tXeq, where 

P =  2 2 V / - ~  • 

The function/Zeq(Y, 3~) is obtained from the condition 

~(v, ~, u) = g + v + u 2 -¢~Zv  2 = 0 .  

notation "/z " stands for "equivalent/~" (this term is borrowed from [2, 3]). eq 

It is easy to see that for large ~ the phase path of  system (1.1), (1.2), (1.4) rotates around the curve 

o '=0 ,  6"=0,  

which is equivalent to ~ = 0, /z = ~Zeq(Y, 3~) (Fig. 5). By an appropriate choice of initial conditions we can obviously ensure 

that the phase curve is "pressed" as closely as desired to the curve o = # = 0. Thus, the curve o = 0 = 0 may be regarded 

as a limiting path of  the discontinuous dynamic system (1.1), (1.2), (1.4), and it is also a solution path of  the system [13, 

14]. Tliis argument will be mathematically justified in Sec. 4. 

The curve o = 6 = 0 is the set of  all points of  the plane o = 0 where the vector field of  system (1.1), (1.2), (! .4),  

continued from any continuity region, is tangent to the plane o = 0 (Fig. 5). lntegrality of  the set ~r = # = 0 shows that for 

large c~ the system develops a 2nd order sliding mode on the constraint o = O. 
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The motion in this mode is obviously described by the equality 9 = - y  and becomes possible (as in the case of  a 1st 

order sliding mode) only with infinitely frequent switching. The control in this case is a continuous function of time. 

The existence of  this mode, however,  is only of  theoretical interest if it is unstable. Indeed, the phase paths must 

"coil" around the sliding mode path in a finite or infinite time. We can show that in system (1.1), ( I .2) ,  ( i .4)  only "asymp- 

totic coiling" is possible (i .e. ,  in infinite time). Other algorithms are needed in order to achieve a finite transition time to a 

2rid order sliding mode. 

2. I D E A L  AND R E A L  S L I D I N G  

In this section, we consider a number of  formal definitions and concepts that will be used below. 

The controlled plant is described by the differential equation 

= f ( t , z , u )  , 

where x E X, X is a smooth finite-dimensional real manifold, t is time, u E R l is control, and f is a smooth vector function. 

A smooth constraint function is given: 

, ,  : (t, x )  --, , , ( t , ,~)  ~ ~ °  

The problem is to ensure exact or approximate tracking of  the constraint a(t, x) = 0. This problem is called the 

sliding problem in what follows. 

2.1, A control algorithm is a relationship that generates the controls in response to observations, Any exact motion 

on the constraint manifold a = 0 is called ideal sliding, and any motion in a small neighborhood of the constraint manifold 

is called real sliding. An algorithm that tracks the constraint exactly is called an ideal sliding algorithm; an algorithm that 

tracks the constraint approximately is called a real sliding algorithm. The adjective "ideal" is often omitted in application to 

sliding. 

We give a definition that makes it possible to estimate the accuracy of real sliding. Suppose that the real sliding 

algorithm A(e) depends on a small parameter  t E 1R x, and for some function 3': R x -> R xz we have 3' ---, 0 as e --, 0. 

Def 'mition 2.1. The algorithm .,4(t) is called a real sliding algorithm of order r (r _> 0) in 3' if for some c > 0 for 

sufficiently small t with any initial conditions t 0, x 0 there exists an t-independent convergence-time bound At(t 0, Xo) such that 

after the time At the algorithm A (t)  permanently maintains the inequality 

IIo(t,x)ll _< c117(¢)11 r • 

If the initial conditions t 0, x 0 are from some fixed region, and the process is viewed on a time interval of  length T, 

where At < T, we speak of  a local real sliding algorithm of order r. If  for sufficiently small t and initial conditions t 0, x 0 

from some set D we can choose a common constant At independent of  t o, x 0 and t ,  then we say that the algorithm converges 

uniformly on the set of  initial conditions D. 

In this paper, we study algorithms that provide switching from one smooth dynamic system to another depending on 

observation results. We naturally assume that smoothness of  the control is lost at the switching points. The next definition 

makes it possible to estimate the accuracy of such algorithms subject to restrictions on switching frequency. 

Dermit ion 2.2. Assume that a real sliding algorithm on the constraint a = 0 depends on a small parameter  t E 1~ x 

and generates a control that is  piecewise-smooth in time with smoothness intervals not less than r( t )  > 0, r ( t )  ---, 0 as ~ ~ 0. 

If the algorithm produces sliding of order r in r, it is called an r-th order sliding algorithm on the constraint a = 0 (without 
mentioning r). 

We similarly define the order of  real sliding for a family of  real sliding modes that depend on a small parameter,  

i.e., for a family of  paths (t, t(x)) indexed by the parameter ~. 

Under standard assumptions, real sliding algorithms using a large gain k are of  1st order in k (and not higher). 

2.2. Assume that the algorithm .,4 (~) produces r-th order sliding on the constraint a = 0, and the time intervals 

where the control is smooth are not less than r(e) (see Definition 2.2). The algorithm A(~) produces and maintains the 
inequality 

II'rll -< cr(E) r , (2.1) 
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where c is from Definition 2. I (we take 3' = r). The mode that tracks the inequality (2.1) is galled steady-state. 

Proposi t ion 2.1. Let e = [r] be the whole part of  r. Then uniform boundedness of  the e-th time derivative evaluated 

along an arbitrary path 

d g 
oc') -- ( a )  ,,(t, ~(0) 

implies the existence of  constants c t, c 2 . . . . .  c t_  1 such that in the steady-state mode (2.1) we have on the smoothness 

intervals 

DII < q , . t - , ,  tl~;tl -< c2 ~~-~ . . . . .  11'~(~-')tl < c,_,~-. 

Proposi t ion 2.2. Assume that for some 6 > 0 and integer P > 0 for any path realized by the algorithm A(e) in the 

steady-state mode (2.1) there ultimately occur intervals of  smooth control on which some of the scalar components o) of the 

vector function a: X --, R s has a p-th time derivative separated from zero: I aj6°)l >- 8. Then the real sliding is of  order r <__ 

p. 

To satisfy the conditions of  Proposition 2.2, it is sufficient to have bounded a (p+t) and to ensure the inequality 

]o4P)~ >_ 8! > 0. Both propositions follow from the results of  [15]. By Proposition 2.2, the sliding algorithms used in the 

theory of  variable structure systems have, under standard assumptions, real sliding of order not higher than 1 with discrete 

switching. We give an independent proof  of  both propositions. 

L E M M A  2.1. Let an q - smoo th  real function oa(t) be given on some time interval o f  length r. Then there exists a 

constant P > 0 independent of  the choice of  r and ¢0 such that at some point t l of  the interval we have the inequality 

Iw(')(tl)[ < F sup D[" r - " '  • 

To prove Lemma  2.1, it suffices to apply the Lagrange theorem rt( q + 1)/2 times. Proposition 2.2 follows from 

Lemma 2. I (proof by contradiction). To prove Proposition 2.1, we have to apply Lemma 2.1 for all r I _< f - 1 and then 

integrate a e successively e - 1 times. 

2.3. It follows from Propositions 2.1 and 2.2 that sliding accuracy can be increased by maintaining equality to zero 

not only of  the constraint function itself, but also of  some of its successive time derivatives along the phase curves. Below 

this conclusion is applied to def'me high-order sliding modes. 

Consider a differential equation with a discontinuous right-hand side 

~) = v(u) (2.2) 

Here y E R n, v is a measurable locally bounded function. 

Def'mition 2.3. Following [12], a solution of (2.2) is an absolutely continuous function y(t) that almost everywhere 

satisfies the differential inclusion 

~ v(y) ,  

where V(u)=  (q N convv(U6(y)\N).  
6>0 ~N=O 

Here conv stands for the closed convex hull, tt is the Lebesgue measure,  Us(y) is a sphere of radius 6 centered at y. 

Existence of a solution of Eq. (2.2) is proved in [12]. 

Given is a smooth manifold 9 included in R n. The  set of its points is called the set of  1st order sliding on the 

manifold 9. The set of  points y of  the manifold f~ where V(y) is included in the tangent space of the manifold 9 at the point 

y is called the set of  2rid order sliding on the manifold 9. 

Definition 2.4. Equation (2.2) defines in the region 79 a 2rid (lst) order sliding mode on the manifold 9 if the 

intersection of  the region "D with the set of 2nd (lst) order sliding on the manifold ~ is nonempty and is an integral set, i.e., 

consists of phase curves of  Eq. (2.2). 

Sliding nmdes discussed in the literature [2, 3] are 1st order modes. 

Let the manifold 9 be defined by equality to zero of the smooth function co: R" --, R #. Assume that for almost all 

points from 79 there is a neighborhood where r - 1 successive time derivatives of the function co exist along any phase curve 
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of Eq. (2.2), and these derivatives evaluated at a fixed point of the region "/9 are independent of the choice of tile phase curve 

through that point. This property holds for piecewise-smooth v(y). 

Definition 2.5, The set £, r of r-th order sliding on the constraint w = 0 (on the constraint function w = 0) is the set 

of points where ~o and its r - 1 successive derivatives along the phase curves 6:, ~ . . . . .  w(r-t)  (which, by assumptions, are 

functions of  y) may be defined equal to zero by continuity. 

Def'mition 2.6, Equation (2.2) defines in ~ an r-th order sliding mode on the constraint ~o = 0 (on the constraint 

function ~,,) if the r-th order sliding set t; • n 19 is nonempty and is an integral set of Eq. (2.2). 

Note that the notions of 2nd order sliding mode on the manifold o: = 0 and on the constraint function o., are different. 

They are identical for o:yJ = codim f/ = u only if 6: is representable as a function of y. 

If the solutions of  Eq. (2.2) are time-unbounded, then we naturally define stability of the sliding mode as stability of 

the corresponding integral set. Unlike the 1st order sliding mode, high-order modes can be asymptotically stable. 

A sliding mode is called "finite-time attracting" if 

a) for any initial conditions, every path of Eq. (2.2) reaches in finite time the sliding set of corresponding order and 

subsequently remains there; 

b) in some neighborhood of the sliding set, the time to reach the sliding set is uniformly bounded. 

If the initial conditions that ensure attainment of the sliding mode in finite time are taken only in the neighborhood of 

the sliding set, then the mode is called "locally finite-time attracting". 

Definitions 2.3-2.6 are of local character, and can therefore be extended to the case when the phase space is a smooth 

real manifold. We can thus speak of stability of the sliding mode if a metric is defined on the manifold. 

The definitions are extended to the nonautonomous case by introducing the artificial control i = 1. Note that the 

solution of the nonautonomous equation is not understood in Filippov's sense [12], because in Filippov's paradigm the time 

coordinate is not equivalent to the other coordinates. In most cases, however, these definitions are equivalent [12]. 

2.4. Let us return to the original control problem the problem of establishing and tracking the constraints a = 0 

during control of the equation 

= f ( t , z , u )  . (2.3) 

Let 

u = U(t, z, ~), (2.4) 

where the feedback operator U is indexed by the parameter ~ E l~ sj. The parameter is called an operator variable [5-11]. The 

variable dynamics is defined by the equation 

= ¢( t ,  ~, ~ ) .  (2.5) 

The initial value, in general, is defined by the function ~(t0) = ~0(to, X ( t o ) ) .  By default we assume an arbitrary initial 

value ~(to) from the feasible set. 

The control algorithm (2.4), (2.5) and the system (2.3), (2.4), (2.5) are called binary. The right-hand sides of (2.4), 

(2.5) may be discontinuous functions. In this case, the closed-loop system is understood in the sense of the definition from 

subsec. 2.3. 

We usually deal with binary systems with a continuous feedback operator U. In such systems, the derivative of the 

constraint function o(t, x) along the phase curve O is independent of the choice of the phase curve, and depends only on the 

point (t, x, ~) where it is evaluated. Under some additional assumptions, this also applies to the higher derivatives along the 

phase curve /~,'~,... 

Definition 2.7. Algorithm (2.4), (2.5) is called an ideal r-th order sliding algorithm on the constraint a = 0 (on the 

constraint function ~r) if in the closed-loop system (2.3), (2.4), (2.5) there is a finite-time attracting r-th order sliding mode on 

the constraint a = 0. 

In this paper, we consider 2nd order sliding modes and propose ideal and real 2rid order sliding algorithms. 

3. STATEMENT OF THE PROBLEM 

3.1. Consider the simplest version of the sliding problem, when the constraint function and the control are real 
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scalars. The results can be extended to the case of  vector controls and vector constraint functions by the standard technique 

of the theory of  variable structure systems [3, 4] and binary systems [4-11]. 

To increase the generality of  the problem, we state its conditions in axiomatic form, and the sliding problem itself is 

formulated as a control problem for a "black box ~ with one input variable u and one output variable - the constraint function 

a. It is required to ensure exact or approximate tracking of the constraint o = 0 by controls generated in response to 

observations of  the variable a. 

We make the following assumptions: 

3.1) The controlled plant is described by the differential equation 

= f( t ,  x, u ) ,  (3. t) 

where x E X, X is a finite-dimensional smooth real manifold, t is time, u E R is control. We assume that the control u does 

not exceed in absolute value the constant × > 1. The dimension of the state space X and the specific form of  the func t ionf  

are unknown. For any continuous control l u(t) I -< x the solutions of  (3.1) are infinitely continuable in time. The constraint 

function 

a : ( t , x ) ~ a ( t , x ) e R  

and the vector function f are smooth. 

In general, any algorithm may be used to drive the image point into a small neighborhood of  the constraint manifold 

O" ~ 0 .  

3.2) There exists a constant u 1, u I E (0, 1) such that for any control u(t) that is a continuous function of  time the 

inequality l ul > ul ensures that the relationship au > 0 is achieved in a finite time. 

Define the differential operator L u such that for any differentiable function z(t, x, u) 

We assume that 

Oz Oz 
Lu z ( t , x ,u )  = ~-( t ,x ,u)  + -~z ( t , x , u ) f ( t , x , u )  . 

~(t,  x, ~,) = L .  ,,(t, x ) .  

Suppose that in some neighborhood of the constraint manifold defined by the inequality [ ~ t <  %, where % = const > 0, 

the following conditions are satisfied for some positive constants u 0 < 1, K m < K M, Co: 

3.3) For la(t, x)l < %,  [ul > u0 implies Ou > O. 

3.4) For all l ul -< x we have the inequality 

0 
Kra < ~ u a ( t , x , u )  <_ KM ; 

3.5) For I~r(t, x u) l < % l ul ~ x we have the inequality 

IL, L ,al  < Co 

Condition 3.3 implies the existence of a 1st order sliding mode defined by the algorithm u = - s i g n  a. Condition 3.4 

implies sign-constancy of  #u' = ax'fu'.  In the theory of variable structure systems, where only systems linear in control are 

considered, this condition guarantees uniqueness of  motion in the 1st order sliding mode [3, 16]. Condition 3.5 is new. Here 

LuLua is the 2nd time derivative of  o evaluated on the system for a constant control. 

Note that conditions 3.2-3.5 in principle are verifiable in the process of  a "black box" experiment.  Parametric 

synthesis of  the algorithms considered below requires only knowledge of the constants %, Kin, KM, CO, and the parameters 

can be chosen in the course of  the experiment if these constants are unknown. 

In what follows, the neighborhood 1o] < % of the constraint manifold is called a "linear Zone" (because of approxi- 
mate linearity of  0 in control). 

We finally state our problem: construct algorithms of ideal and real 2nd order sliding on the constraint a = 0. 

3.2. Relaxat ion of  Smoothness  Condit ions.  Control systems are often designed using functional elements with 

nonsmooth characteristics. We accordingly give modified conditions that relax the smoothness requirements: 

3(X) 



3.1') the vector function f is locally Lipschitzian, and the constraint function a has locally Lipschitzian partial 

derivatives; in all other respects condition 3.1 remains valid; 

3.2') this condition is identical with condition 3.2; 

3.3') condition 3.3 remains unchanged; 

3.4') for Io(t, x)[ < o 0, lul -< x for any t, x, u and sufficiently small Au we have the inequality 

K,~lzaul < [~(t ,z ,u + z~u) - ~( t ,=,u)]signAu < g u l A u l  ; 

3.5') there exist an atlas of local charts on the manifold X and positive functions ll(t,  x,  u), 12(t, x.  u) that serve as 

local Lipschitz constants of the function 6(t, x, u) by the variables t and x respectively at the point (t, x, u) such that for Iol 
< '~0, lul -< x we have the following inequality in local coordinates: 

h(~,~,u) + l~(t ,z ,u)l l f ( t ,~,u)l  I < Co. 

Smoothness o f f ,  o and conditions 3.1 '-3.5 '  obviously lead to conditions 3.1-3.5. 

3.3. Compar ison with Tradit ional Sliding Problem. The theory of variable structure systems [2, 3] and the 

traditional theory of binary systems [4-11] deal with dynamic systems linear in control: 

:i: = a(t,z) + b( t , z )u ,  (3.2) 

Here x E R n. We only consider the case when u E R, and a, b are smooth functions. Let a(t, x) be a smooth constraint 

function, a: R n+t -+ R. Usually, the right-hand side of  (3.2) and the constraint function o increase linearly in the variable x. 

In this case, conditions 3.1-3.5 in general are satisfied only in a bounded neighborhood of the point x = 0. 

Assume that for some smooth positive function `i(x) with uniformly bounded ,I x' and ,Ixx",I (an example of such a 

function is ,I = (xtI~x + h) t/2, where "/~ is a positive semidefinite matrix, h = const > 0) we have the following condi- 

tions: 

a) for all t, x and some 6 > 0, ~ > 0, ax'b >_ 6; 

b) ax', at'/~b, Crtx", Oxx",I, ax', a/ ,I ,  at ' / , I ,  b, bx' ,I ,  b t' are uniformly bounded in t, x. 
Let 

:, = ~k. ~(z) ,  (3.3) 

where p. is an operator variable, k = const > 0. 

Proposition 3.1. Assume that conditions a and b are satisfied. Then the differential equation 

= .(t ,  ~) + uk-  ~t ,  =). +(~), 

where/z is regarded as a new control, I/z I < x, x > I, and the constraint function ,p(t, x) = a(t, x) / , I (x)  satisfy conditions 

3. t-3.5 for sufficiently large k. 

If a, b are locally Lipschitzian functions, and a and ,I are functions with a Lipschitzian derivative, then We formu- 

late an analogue of condition 3.4, in which all the nonexisting variables are replaced with local Lipschitz constants. The 

condition of boundedness of ,Ixx",I is similarly modified, and analogue of Proposition 3.1 is formulated. 

Proof  is by direct evaluation of ~b, (a/a~,)~, and L~,L~,~o. Conditions 3.3-3.4 are usually satisfied in the theory of 

variable structure systems. Their physical meaning is the existence of a locally bounded equivalent control [3] with a locally 

bounded rate of change. The standard algorithm of the theory of variable structure systems is defined by the feedback 

u = - k  sign,7 ~(~.) . 

4. EXISTENCE OF H I G H  ORDER SLIDING MODES OF S~-SYSTEM 

4.1. Assume that the controlled plant is defined by the equation 

i: = f ( t , = , u ) .  (4.1) 

The vector function f and the constraint function o satisfy conditions 3.1', 3.3', 3.5'. Then within the limits of the linear 

zone I ol < % there exists a unique function Ueq(l, x) that satisfies the equation O(t, x ,  Ueq(l, X)) ----= 0. The function Ueq iS 

locally Lipschitzian and uniformly bounded in absolute value by the constant u o (by condition 3.3", u 0 @ (0, I)). it is easy 
to see that condition 3.5' leads to the following proposition. 
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Proposition 4.1. Assume that conditions 3.1 ' ,  3 .3 ' ,  3.5'  are satisfied and some control u(t) tracks the constant value 

of  the constraint function a(t, x) = o I, lol l  < a o on the solution x(t) of  Eq. (4.1). Then u(t) = Ueq(t, x(t)) and u(t) is a 

Lipschitzian function with the Lipschitz constant Co/K m. 
Note that if the inequality in condition 3.4'  is replaced with the inequality 

tt(t, zu) + t~(t,z,u)Uf(t,~,v)ll < 00,  

where v is not necessarily identical with I vl -< x, then the function Ueq(t, x(t)) evaluated on the solution x(t) of  Eq. (4.1) 

corresponding to an arbitrary continuous control u(t) has the Lipschitz constant Co/K m. Hence we see the relationship of  this 
problem with the problem posed in [14, 17-19]. 

Suppose that the control algorithm is defined by the equation 

a = ~'(t, x, u ) ,  (4.2) 

where 'Is is a bounded measurable function. The closed system (4.1), (4.2) is understood in the form described in Sec. 2. 

Existence of  solutions of  system (4.1), (4.2) has been proved in [12]. 

T H E O R E M  4.1. Assume that in any neighborhood of  each point of  the 2nd order sliding set for the constraint a = 

0 (i.e.,  the set a = # = 0) the function if' takes on sets of  nonzero measure both values that are not less than Co/K,n and 

values that are not greater than - C o / K  m. Then system (4.1), (4.2) has a 2nd order sliding mode on the constraint a = 0. The 

operation of  the controlled plant in this mode is described by the equation 

= f ( t ,  x , u , f ( t , x ) ) .  (4.3) 

Proof .  The 2nd order sliding set is defined by the equalities a(t, x) = O, u = Ueq(t, x). This set is nonempty. It 

remains to show that this is an integral set for system (4. i), (4.2). Through an arbitrary point of  the set a = 0, u =  Ueq pass 

a curve ~(t) = (t, x(t), u(t)) that satisfies Eq. (4.3). Then u(t) = Ueq(t, x(t)). Such a curve is contained entirely in the set a = 

a = 0 .  

From the definition of  Sec. 2, the system (4.1), (4.2) is equivalent to a differential inclusion. By the condition of the 

theorem, the right-hand side of  this inclusion at points of  the set a = # = 0 contains vectors whose t and x components are 

equal to 1 and f ( t ,  x, Ueq(t, x)), while the u component is contained in the interval [-Co/Km, Co/Km]. By Proposition 4.1, the 

velocity vector of  the curve 3' at the differentiability points of  the curve is contained in this subset of  the right-hand side of  

the differential inclusion. Since the curve -,/is obviously absolutely continuous, it is a solution of system (4.1), (4.2). Q.E.D.  

Note that the method proposed by the theorem replacing the control u with the equivalent control Ueq for the descrip- 

tion of  the control system dynamics in the sliding mode is known as the "equivalent control method" in the literature [3]. It 

has been proved for ordinary sliding modes and equations (4. I) linear in control. 

We now give sufficient conditions for the existence of  a sliding mode of an arbitrary order r (where r is an integer, 
r_> 2). 

Suppose that conditions 3.1-3.3 are satisfied. Consider the system 

= f ( t , ~ , , , ) ,  
,i = ~1, 

¢, - -¢2 ,  
. , .  

~r-2 = ~(t,  ~,,, ,~),  

where ~ = (~l, ~2 . . . . .  ~r-2)  E R r -2 .  For local existence of an r-th order sliding mode in the neighborhood of  the point 

M(to ' Xo ' ~o) from the set a = o- = ... = a ( r - l )  = 0 ,  it is sufficient that in any ne ighborhoodof  the point M the function 

takes on a set of  nonzero measure both values not less t h a n  Ueq(r-l)(M) 4- [i I and values not greater t h a n  Ueq(r-l)(M) - ~1 
Here 61 = const > 0 ,  Ueq(r-l)(M ) is the (r - l)-th successive derivative on the system of the smooth function Ueq (t, X) at 
the point M. 

The proof  of  this proposition is similar to the proof of  Theorem 4.1. The r-th order sliding set for o is nonempty, 

because the parameter  ~j_ t can be expressed from the equation #s~ = 0, j _> 2 in terms of t, x, u, ,~ l . . . . .  ~j-2 (we assume 
that /;o = u). 

4.2. Consider the algorithm 
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,i = [ - u  ti,r lul > 1 , 
t -asigna lbr lul _< 1,  (4.4) 

where oe > 0. It is called Au-algorithm, and system (4.1), (4.4) is called St,-system [5-7]. The example of  the St,-system 

from Sec. I reduces to this case by the substitution described in subsec. 3.3. 

By Theorem 4.1, system (4.2), (4.4) under conditions 3 .1 ' ,  3 .3 ' ,  3 .4 ' ,  3.5 '  has a 2nd order sliding mode on a. In 

general, however, this mode is unstable. Application of  algorithm (4.4) is based on the fact that it is a real sliding algorithm 

on o of  1st order in o~ - I .  Consider a more general algorithm 

{ - ~ ,  tor lul > i ,  (4.5) 
i~ = -a(t,x,u)signa(t,~) for M -< 1,  ,~ > ,~o, 

where oe is a measurable locally bounded function, c~ 0 = const > 0. 

Proposi t ion 4.2. Assume that Eq. (4.1) and the constraint function o satisfy assumptions 3.1 ' -3 .4 '  and for almost all 

t and all x, u such that o(t, x)o(t ,  x, u) > 0, we have the inequality 

a ( - t ,  ~, u) > 4 K u / ~  , (4 .6)  

where 0 < ( _< %. Then for any initial conditions to, X(to), U(to) the solution of  system (4.1), (4.5) reaches in finite time the 

region i;+ = {(t, x, u) t Io(t, x)[ < /~} and subsequently remains there. 

Proof .  For any initial conditions t 0, x(t0), U(to), a(t, x(t)) vanishes after a finite time with control taking a value 

lu(t) l _< 1. Indeed, otherwise the control u stabilizes on the value u = - s i g n  a, and we obtain a contradiction with assump- 

tion 3.2 ' .  

Let o(t o, X(to)) = 0, l u(t0) I _< 1. We will show that the point (t, x(O) never leaves the set (h for t _> t 0. Assume 

the contrary: suppose that t t _> t o is the first instant when we have the equality a(t t)x( t l )  (the case a = - (  is analyzed 

similarly). Then obviously ~r(t t, X(tl)) = 0. Let t ,  be the nearest previous instant when a(t . ,  x( t , ) )  = 0. For t .  < t < t l, a 

> 0 and therefore during the time t 1 - t, the control u was decreasing or stabilized at the value u = - 1 .  

Note that by condition 3.4 '  

Since ! u l g 1, i tteq I < /tO < 1, we obtain 

I,~(t, x, , , ) l  -< K u ( , ,  - : , , ( t ,  = ) ) .  

Ib'(t, X, U)I < 2 K u  • 

Let T = {t/ t ,  < t <_ t t, a(t, x(t)u(t)) > 0}. Then 

f  at+ f 
T [ t .  ,tt]\T 

~dt < f odt <_ 2 K M ~ ( T ) .  (4.7) 
T 

Here X(t) is the Lebesgue measure of the set T. By (4.7), X(T) _> ( /(2KM).  But by (4.6) in time t] - -  t,  > X(T) the 

control u "runs" over the entire interval [ -  1, 1] and stabilizes at u = - I. By conditions 3.3 ' ,  3.4 ' ,  #(t I, X(tl) ,  - I) < 0, a 

contradiction. Q.E.D.  

Let us consider other simple sliding algorithms. Under conditions 3 .1 ' -3 .4 '  the algorithm u = - s i g n  a is an (ideal) 

1st order sliding algorithm on a. In this case, however, the motion in the sliding mode in general is not described by the 

equivalent control method and, moreover, with some natural definitions of solutions of  discontinuous differential equations 

(see, e.g., [21]) motion in the sliding mode is not necessarily single-valued. In this connection note that the description of  the 

2nd order sliding mode in Theorem 4.1 does not depend on the choice of  definition [21]. 

Under conditions 3 .1 ' -3 .4 ' ,  the algorithm u(t) = -signo~(t - -  r, x(t  - -  r)), where r = const > 0, is a real 1st order 

sliding algorithm for r --,. 0. Under the same conditions, the high-gain algorithm 

{ -sign~ tbr kl,71>1, 
u =  - k a  for klo" I < 1  

(4.8) 
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is a real sliding algorithm on e of  first order in k - I .  It is interesting that under conditions 3 .1 ' -3 .5 '  the same algorithm 

produces 1st order sliding on o. The equivalent control method is thus applicable for large k. 

5. W I N D I N G  A L G O R I T H M :  I D E A L  AND R E A L  S L I D I N G  O F  2ND O R D E R  

5.1. Consider a controlled plant described by the differential equation 

= f ( t ,  x , , , ) .  

Equation (5. l) and the constraint function e satisfy assumptions 3 .1 ' -3 .5 ' .  Let 

- u  for [u[ > 1 , 
tt ~-- --OtM s i g n  a 

- a m  sign a 

Here the constants a M > c% > 0. We stipulate that 

(5.1) 

for ,r& > 0 ,  lu[ _< 1, (5.2) 

for ,re < 0 ,  lul < 1. 

,~,,, > co / K,,,, (5.3) 

(KMa= + Co) / (K, .aM -- 6'0) < 1 ,  ( 5 . 4 )  

aM" > min { 4KM K~f(1 + uo) 2 Ca 
~ ' 2K,,,.o + ~--2}. (5.5) 

T H E O R E M  5.1. Assume that conditions 3 .1 ' -3 .5 '  (or 3. I-3.5) and inequalities (5.3)-(5.5) are satisfied. Then (5.2) 

defines a 2nd order sliding algorithm on the constraint ~r = 0 for the dynamic system (5.1). 

By Theorem 4.1, the system is described in the sliding mode by an equation that follows from the equivalent control 

method. If  assumption 3.2 '  (or 3.2) is not satisfied, the image point should be driven to the neighborhood ie[ < c5, 5 < o 0 

of  the constraint manifold by a different algorithm, subsequently switching to algorithm (5.2). In this case, replacement of  

(5.5) with the inequality 

K ~  (1 + ~,o) 2 Co 
aM > 2Kra (ao - 8) + KM ( 5 . 6 )  

guarantees convergence of  the algorithm, and the phase curve does not go outside the linear zone [~r I < %.  Inequalities 

(5.3)-(5.6) are always satisfied for sufficiently large %n and aM/O %. 

Algorithm (5.2) is called a "winding algorithm" [13, 20]. This name is attributable to the fact that the phase path of  

system (5.1), (5.2) turns around the 2nd order sliding set (Fig. 6) and winds around it in a finite time. 

5.2. Let us give the characteristics of  the transient process. Let 

, /  K,,,am -_Co = , /KMa= + Co (5.7) 
qm =" V K M a  M + Co  ' q M  VK,~aM - Co " 

By (5.4), qm < qM < 1. For an arbitrary path (x(t), u(t)) of system (5.1), (5.2), let t 0' = sup{tlu(t)[ > 1, t >__ to}. Clearly, 

t o ' - - t  o < × - -  l, and in practice we naturally specify [U(to) I < 1, t o ' = t o. L e t t  1 = in f{ t le( t ,x( t ) )  = 0, t >_ to' } , t  2 = 

sup{tie(t,  x(t)) # 0}. Using Theorem 5.1 we state the following proposition. - -  

Proposi t ion 5.1. Under the conditions of Theorem 5.1, for all solutions of (5.1), (5.2) we have the following bound 

on the transient time: 

t2 -- tt < ¢ 1 qu" KM_(1 + uo)  
"- ' K , . a M - - C o  + K , , ~ - C a  ) 1 - -  To - qM ' 

where T O = 0 for qM < [Km(l - -  Uo)]/Km(l + u0)]" Otherwise, 

To=  o'o 1 
K M ( 1  -- uo)  1 -- q~¢ " 
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Fig. 6 Fig. 7 

For simplicity, let 

r , , O  - ,,,) 
qu < Ku(1 + ~ )  " (5.8)  

Proposi t ion 5.2. Under the conditions of  Theorem 5.1, if inequality (5.8) is satisfied and t I _< t _< t 2, then we have 

the inequalities 

and 8. 

(1 - q u ) a ( K . a .  - Cop 
r . a . - c ,  '2 

2(Ku~u + c ,  xr-r ~ - - 6 ;  +qu~ 

I~(,', ~(r))l ( r u ~ .  + C, PO - ~..)" 
< s u p  - < . . . . . .  

- ,Eft,,,,] ( r  -- t 2 p  - ~ ( X . ~ , U  - C0) ' ( 5 . 9 )  

i,~(,, =(,'),,,(r))! 
0 - ~ u ) ( K , . , ~ .  - c , )  < rat, - 't " < ( x u o , , .  + c , ) 0 - -  q") (5 .10)  
' /4,,,,';~ - Co + qu - ,'elh a,I t 2 - r) - q .  

K~au - Co " 

If  (5.8) does not hold, then the bounds (5.9), (5.10) are valid on some time interval t E [t t ', /2], where t 1' > t 1. 

Given these bounds, the graphs of a(t) and #(t) in the neighborhood of the point t = t 2 can be shown as in Figs. 7 

5.3. The winding algorithm (5.2) assumes differentiation of  the observed variable a(t,  x( t ))  in real time. In practice, 

this differentiation is often undesirable. Below we propose an algorithm free from this weakness. 

In what follows we often omit the arguments x(t)  and u(t) of  the function evaluated at the point (t, x( t ) ,  u(t)) of the 

phase path, and write simply a(t).  

Assume that the constraint function a(t, x( t ))  is observed at discrete time instants t 0, q ,  t 2 . . . .  with the increment r i 

= ti+ l - -  t i >- r m = const > 0. Also assume that at the current instant t E [t i, ti+l). Denote 

~i~= { 0 for i = 0 ,  
¢(td-~(t~_l) fo~ i _> 1,  

where ~ is an arbitrary function of  t, x, u. 

A discrete-increment winding algorithm is an algorithm of the form 

{ -u ( td  for lu(tdl > x,  (5.11) 

a = - a u s i g n v ( t l )  for a( t~ )~v  > O, lu(ti)l < I ,  
-a,, ,signa(ti) for a(t~)61a ~ O, [u(ti)[ _< 1, 

where a u  > a,, > 0, t e [ t ,  h+d, r~ <_ ( x  - 1 ) / a u .  

Let r i = 7- = const > 0, 7" is a small parameter. 

T H E O R E M  5.2. Under the conditions of  Theorem 5, 1, the algorithm (5. l 1) for r i = 7- = const is a real 2nd order 

sliding algorithm on the constraint o = 0. The algorithm converges uniformly on the set of  initial conditions from some 

neighborhood Io] < e, [b[ < e I of  the 2rid order sliding set o = b = 0 

6. P R O O F  O F  T H E O R E M  5.1 ON W I N D I N G  A L G O R I T H M .  IDEAL SLIDING 

6 . 1 .  I .emmas on Major iz ing  and Minorizing Curves .  We formalize a number of  arguments, dmt will be often 

repeated m what follows. 
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Fig. 8 Fig. 9 

Suppose that in the half-plane o >_ 0 of the o, e plane we have an upper semicontinuous [12] field r io,  e) of non- 

empty closed bounded convex sets, and let a piecewise-smooth curve without self-intersections F: r --, 0r(r), e(r)), r @ [0, 1] 

be given, where o(0) = 0, a(r) > 0 for r E (0, 1), o( l )  = 0, e( l )  ;a e(0). The curve P partitions the half-plane a > 0 into 

two closed regions fit and f12, whose intersection is F. Let fl t be a bounded region, and ft 2 an unbounded region. 

Def'mition 6.1. The curve is called majorizing in the half-plane a > 0 for the differential inclusion 

(8,~) e F(~,  e ) ,  

if every solution of this inclusion originating from an arbitrary point of  the region Ql at time t = 0 is either entirely con- 

mined in fit for all t > 0 or can be continued forward in time until its intersection with the boundary of  fi1 along the straight 

line a = 0. The curve F is called minorizing if the same invariance conditions apply to the region ~2. 

These concepts are basically used in the case shown in Fig. 9. The half-plane {(a, e ) l a  _> 0} is partitioned into 

nonintersecting open regions O1, O 2 , . . . ,  O~ with finitely many smooth curves 7 j ,  j = 1, 2, ..., m, which include the ray 

e = 0, a _> 0 and the straight line a = 0. To each region O~ we associate two numbers: Rmi and RMi, Rmi <_ RMi. Also 

given is the number h" > 0. We consider the differential inclusion 

(~,~) e F(a,e)  , (6.1) 

defined in the interior points of the regions 0,  by the set 

/"(,r, e) = {(Re, -R)  I _,2 E [P..,,,, RM,]}. (6.2) 

In common boundary points of  the regions O, the field of sets F is defined by upper semicontinuity. 

In each region O, we consider twovec tor  fields 

K(~', ~) = ( ~ ' ~ , - _ ~ . ) ,  ~,~(~, ~) = (g , : , - -R . . , )  

where 

R . ~ = ( R , ~ ,  for e>O,  . R . . = { R u ,  t o r e > O ,  
• RM~ tot e < 0, R,,~, for e _< 0. 

= 0 .  

Tile vector fields v i, V i generate discontinuous piecewise-smooth vector fields v, V in the entire half-plane (r _> 0. 

Assume that the following conditions A, B, and C are satisfied. 

A. The intersections of the boundary curves -yj are pairwise transversal if tile intersection is not at the origin o = e 

B. Each field V i may touch tile boundary of tile region O, only at isolated points, which are not the intersection 

points of  the boundary curves. All the contact points of the phase curves of the field V i with the boundary of the region Oi 
are of  1st order. 

C. The numbers Rmi, RMi satisfy the inequalities 
R,~t, > 0 .  i = . 1 , 2 , . . .  ,g ; 

t~.,, > 0 t~,,- O, C { (o.,e) le >_ 0}. 

306 



L E M M A  6 . l .  Assume that conditions A, B, C are satisfied. Then from each point e > 0, o = 0 originates a 

majorizing curve in the half-plane a >_ 0 of  the differential inclusion (6.1), (6.2), and this curve is a phase curve of  the 

differential equation 

(~, ~) = v(,,, ~). 

Assume that condition B refers to the field v (and not V), and condition C is augmented with the condition 

R,., > 0 for O~ n { (~, E) le .>_ -e~, o > 0 } ¢ ~, 

where Q > 0 is a constant. Then we have the following lemma. 

L E M M A  6.2. Assume that condition A and the modified conditions B and C are satisfied. Then from each point e > 

0, a = 0 originates a minorizing curve in the half-plane a _> 0 of the inclusion (6.1), (6.2), and this curve is a phase curve 

of the differential equation 

(~, ~) = ~(~, ~). 

Proo f  is the same for both lemmas. It geometrically follows from the fact that at each point of  the majorizing 

(minorizing) curve the tangent vectors of  all the phase curves of  the inclusion (6.1), (6.2) point into the corresponding region 

fit 022) f rom the definition of  the majorizing (minorizing) curve. 

6.2. Let us prove Theorem 5. I. Consider the closed-loop dynamic system 

= f(t ,  z, u ) ,  (6.3) 

- u  for [u[ > 1 , 

Ti = --aM si~zo" for o'b > 0, [u I < I , 
--a.,, sign a for 0"6- < 0, [u[ < 1 , 

(6.4) 

where Eq. (6.3), the constraint function a, and the constants C~M, C~rn satisfy the conditions of  Theorem 5.1. By (6.4), after a 

time interval not exceeding x - 1 we permanently have l ul -< I 

If  a does not vanish for a sufficiently long time, then because of sign constancy of a we obtain the equality u = 

- s i g n  a after a time not exceeding × - -  1 + 2/~ m. After that, this equality is satisfied in Ist order sliding mode. By assump- 

tion 3.2, a changes its sign after a finite time. Thus, for any initial conditions, a(t) crosses the zero after a finite time for u 

E [ - 1 ,  11. 

Now consider the dynamics of  sys tem(6.1) ,  (6.2) within the linear zone [a[ < o o for u E [ - 1 ,  1]. If  conditions 

3.1-3.5 hold, we have the equality 

0dr  
= L , L :  + ~ u ,  (6.5) 

where [LuLua [ < C o, Oo/Ou E [K m, KM]. If conditions 3 .1 ' -3 .5 '  hold with the relaxed smoothness requirements, #(t, x, u) 

is a locally Lipschitzian function and thus by 3 .3 ' -3 .5 '  the absolutely continuous function #(t, x(t), u(t)) satisfies at its points 

of  differentiability the differential inclusion 

6" 6 [-Co,Col + [K,,,,KM]i~ . (6.6) 

Here and in what follows, a numerical operation between numerical sets is defined as the set of all possible results of  

the corresponding operations over  all possible elements taken in the order of  the corresponding sets. 

Equation (6.5) and differential inclusion (6.6) are called respectively the real sliding equation and the real sliding 

differential inclusion. 

Consider the dynamics of  system (6.3), (6.4) in the linear zone [o[ < o o for [u[ < 1. In this case, the paths of  the 

differential inclusion (6.6) are the paths of  the following inclusion defined by upper semicontinuity: 

[-Go, Co] - [Kin, K~]aM signa 
[ -Co ,  Col - [K,,,, KM]rZ. ,  sign a 

[-Co, Co] + [K,~, KMI l--a,,,, 1] sign c~ 

for ~ -  > 0 , 

tot - K m ( l  - u )  < d'sign o" < 0 , 
tbr &signa L:_- -K, , , ( I  - uo) . 

(6.7) 

307 



Fig. 10 

In (6.7) we use the condition that the equality u = 1 for a ;e 0 (and with initial conditions a = 0, ]u I < 1) may be 

reached only when b-signa _< -Kin(1 --  Uo). This follows from the inequality lUeql < u 0 < 1 and the inclusion 

ft'(t, z, u) e [Km, KM](U -- Ue,(t, z)) (6.8) 

established by conditions 3 .3 ' -3 .4 ' .  By Lemma 6.1 the majorizing curves of  inclusion (6.7) in the half-planes o _> 0, a < 0 

have the form 

I,~1 + ½, :  / ( K , ~ M  - Co) 

M + ~6 "2 / (KM•m + Co) 

= const for o-b- > 0 ,  

=cons t  for o - b < 0 .  (6.9) 

Suppose that the constraint function a vanishes for the first time when the point (t, x, u) is represented in the a, o- 

plane by the point M0(0, %) (Fig. 10), where for definiteness ~ > 0. Then the maximum possible deviation of  ,r f rom zero 

during the motion in the half-plane a > 0 corresponds to the point MI(aM, 0). Issuing a majorizing curve (6.9) f rom the 

point M 0, we obtain a sufficient condition for the inequality a M < %: 

1 .  2 
~'o / (K,, , ,~ - Co) < ,,o (6.10) 

By inequality (6.8), the inequalities [u[ < 1, ]Ueq [ < /t0, and one of the conditions of  the theorem (inequality 
(5.5)), we have either (6.10) or 

O~M > 4KM / a'o • 

The last inequality, by Proposition 4.2, is also sufficient for invariance of the linear zone. We may thus assume that all 
subsequent motion is in the linear zone. 

Suppose that the next intersection of the majorizing curve (6.9) with the axis cr = 0 is at the point (0, #IM), hiM < 

0. Then, setting %M = %,  we have 

= + co  

I'rou V ~  6'0 = qu  • 

By the condition of  the theorem, qM < 1. Hence, the actual successive intersection points 6 0, b-i, O 2 . . . .  where the 
projections of  the solution of (6.3), (6.4) on the plane o, 6- cross the axis o = 0 satisfy the inequality 

lai I- 
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Fig. I 1 Fig. 12 

Thus, the path (a(t), dr(t)) is "clamped" inside the majorizing curve (6.9) that winds into the point o = o- = 0. 

We will show that the algorithm converges in finite time. After a finite number of  turns of  the curve (off), dr(t)) 

around the origin, we get permanently Idrl -< gm(l - -  u0) .  This means that tul < 1. Under these conditions, dr varies 

monotonically on sign-constancy sections of  a, and 

g,,,a,,, - 6"0 < I~l < K u a u  + Co.  

The convergence time of  the algorithm for 10o [ < Kin(1 - -  Uo) is thus bounded by 

2 =la.ol 
g , . ,~=  - 6'o (l&01 + I&x[ + . . .  ) _< (1 - q M ) ( K ,  n a ~  - Co)  " 

The existence of a uniform convergence-time bound for initial conditions in some neighborhood of the sliding set a 

= o- = 0 is obvious. The convergence time bound in subsec. 5.2 has been obtained by the same technique, allowing the 

different values of  5- for odr > 0 and adr < 0. The constant T O is the time to reach the inequality {dr[ __ Kin(1 - -  uo). To 

complete the proof,  it remains to show that the system path cannot leave the 2rid order sliding mode. 

Assume the contrary. Take two arbitrarily close points P and Pl of  the path (a(t), b(t)). Let 

P = (,,(t),,~(t)) = (0, 0) ,  P1 = (,,(t + ,-), ~(t + ~-)) # P ,  ,- > 0 .  

Reverse the time in differential inclusion (6.6), (6.4). The family of  curves (6.9) is now a family of  minorizing curves in 

relation to the new reverse-t ime differential inclusion. Issuing the curve (6.9) from the point Pl ,  we verify that the point P 

cannot be at the origin o = dr = 0. Q.E.D.  

6.3. P r o o f  of  Bounds  (5.9), (5.10). Like the proof  of  the upper bound of convergence time in the theorem, we can 

prove the lower bound of  convergence time. In this case, we also form the sum of a geometrical progression, but now with 

a common factor qm" Since the first term of the progression is proportional to %,  denoting the convergence time by T we 

obtain an inequality of  the form 

C~ < IaoI / T < C2 , 

where C l, C 2 are constants. The bound (5.9) gives the specific form of these constants. 

Using the lemma on majorizing curves, we obtain that the maximum value [aMI of the variable {al attained 

between successive crossings of  the axis a = 0 by the phase curve of the differential inclusion (6.6), (6.4) at the points %, 
drl satisfies the inequality 

1 1 
2(gMot M + Co) °'o = -< I~,MI -< 2(KmotM -- Co)& ° 2 

This and bound (5.9) give the bound (5.10). 

7. P R O O F  O F  T H E O R E M  5 . 2  O N  W I N D I N G  A L G O R I T H M .  R E A L  S L I D I N G  

The proof  of  Theorem 5.2 consists of  several lemmas. 
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7.1. Assume that the half-plane o ___ 0 of  the a. e plane is partitioned into a finite number of  closed regions O I, O+ 

by a finite number o f  smooth curves y/. As in subsec. 6. l, the differential inclusion 

(~,~) e F(,~,e) ,  

r (~ ,e)  = { ( R . , - R ) I R  e [1L,,i,aui] for (a, .)  e intO/} 

is defined in the half-plane a > 0, and at the boundary points the field o f  sets F is defined by upper semicontinuity. Here/(" 

> 0, Rmi < RMi are some constants, i = 1 . . . . .  g. 

The linear operator 

gj, : (cr,~) ~ (vle, vt), 

where v > 0, takes the partition O 1 . . . . .  Ot into the partition 9,,O1,... ,g,,Ot.-:. The partition g v O i  and the same constants 

K, Rmi, RMi, i = 1 . . . . .  e define a new differential inclusion F I. 
L E M M A  7.1. The operator g~ establishes orbital equivalence of  the differential inclusions F and F 1 . I f  the conditions 

of  Lemmas 6.1 and 6.2 hold for F, then these conditions also hold for F 1 , and the operator gv takes majorizing curves into 

majorizing curves, and minorifing curves into minorizing curves. 

Proof .  The operator g,, takes the field of  sets F into the field g, , .F ,  where 

g .F( , , ,  ~) = g,FCgz~C~,e)). 

The lemma follows from the easily verified identity g v . F  = vF1. 

7.2. Suppose that the half-plane a > 0 in the a, o- plane is partitioned into three regions (Fig. 11), 

o~ ={(,,,,~) I a > ;~, ,, -> o ) ,  
o ,  ={(,,,~)1,~ < x; ,, > o ) ,  

o ,  ={(,,,,~)1 e < -;~, * -> o } ,  

(7.1) 

where ~, = const > 0, and the following differential inclusion is given: 

~ e [P,=, Rud for0r, ~') e Oi, i = 1, 2, a; 

P~* =K=clt, t - Co , R u l  = K M a M  + Oc , (7.2) 
P~= =K..~= - Co, Ru2 = Kuaa~ + Co : 

P~, =K.a= - Co , au, = K.aM + Co • 

Here K m, K M, C O are defined in condition 3.3 ' ,  c~ m, o~ M are the parameters of the winding algorithm (subsec. 5.3). 

L E M M A  7 . 2 / U n d e r  the conditions of  Theorem 5.2 there exist c~ > 0 and q0 E (0, 1) such that the majorizing 

curve of  the differential inclusion (7.2) in the half-plane a > 0 issuing according to Lemma 6.1 from the point a = 0, o- = 

% > a returns to the axis o = 0 at a point b 1 < 0 such that 

1~ / ~01 < qo • 

To prove the lemma, we have to fix an arbitrary point a '  on the axis o = 0, issue from this point a majorizing curve 

P,, that corresponds to the partition gv Oi, and then start reducing v. 

The partition g ,  Oi differs from the partition 0 i only by the parameter ~.' = vk. For sufficiently small u 0 > 0, the 

majorizing curve P~ crosses the axis o = 0 at the point {a"/a'  I = go < 1. Then we set a = Uo- la ' .  

7.3. Set ), = 2(KMO~ M + C o) in Lemma 7.2 and choose the corresponding values q0 E (0, 1) and a > 0. From the 

point (r = 0, 0 = a in the o, o plane issue the phase curve of the differential equation 

b = Kuc~u + Co 

and continue it to the intersection with the straight line o = a + KMot M + C O at the point with the coordinate 0 = b (Fig. 

12). From the point (o, b) = (a + KM~ M + C O, b) issue a majorizing curve of inclusion (7.2) with the same c o n s t a n t s  Rmi, 

RMi as in Lemma 7.2, h. = 2(KMO: M + Co). and continue it to the next intersection with the straight line o = a + KMo: M + 
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C O at the point with the coordinate O = - b  I and onward to the intersection with the axis a = 0 at the point with the 

coordinate # = - a  I . 

Clearly, b > a, a I > b I. It is easy to show that for large a, both b - a and a I - b I are bounded. Hence, by 

Lemma 7.2, for large a we have 

al  [ a < qo < l . (7.3) 

Fix this value o f  a. Denote by t2+ (a) the bounded closed set of  points in the a, o" plane that are trapped between the 

constructed curve and the axis a = 0 (Fig. 12). Let f/_(a) be the set obtained from f~+ (a) by central symmetry about the 

point a = 6 = 0. Let 

Denote 

~(,,) = n+(,,) u a_(,,). 

Assume that 7- is sufficiently small, so that 

br < . K ~ ( 1 - u o - r )  r <  1 - u o  . 

a . ( . )={  (t, . , .)l(¢, ~) eu.n(~) }. 

(7.4) 

Note that the projections o f  the set grfl(a) on the axes a and # are of  order z 2 and r, respectively. 

L E M M A  7.3. Assume that conditions (7,3), (7.4) are satisfied. Then under the conditions of  Theorem 5.2, every 

system path for which cr(t') = 0, 16(t')l -< a r  at some instant t' does not leave the set Gr(a) for all t > t ' .  

Proof .  The incorrect switching zone is the set of  points P in the a, # plane where sign aO and sign o .  5 i o, or sign a 

and sign c/(t i ) may be unequal for some path (~r, 6(t)) o f  the control system passing through P. Switching errors arise when 

the path crosses the axes a = 0 and 6 = 0. It is easy to prove that the incorrect switching zone is a priori contained in the 

set o f  points reachable as a result of  incorrect switchings in time r from the axis a = 0 and in time 2r  from the axis o = 0. 

For paths originating from the interval o = 0, 161 < a r  in the a, # plane, the incorrect switching zone is covered by 

the union S of  sets defined by the inequalities [ a[ < (a + KM~ M + Co)~ and 161 < 2(KM~ M + Co)7.. The partition of  the 

a, o plane into S and its complement S corresponds to an upper semicontinuous differential inclusions, whose solutions are a 

priori the paths of  the system (a, a) starting from the instant t' when they reach the interval a = 0, 0 E l-aT., aT.]. The 

boundary curves of  the set grfl(a) are majorizing curves of  this differential inclusion in the half-planes a _> 0 and cr < 0, 

respectively. 

Inequality (7.4) guarantees that the path (a(t), 6(0) does not reach Gr(a) in the process of  real 1st order sliding on 

the constraint u = I or u = - 1 ,  and does not go into this sliding mode from G~ (a). 

7.4. Fix the value a 0 o f  the parameter a when (7.3) is satisfied. To prove the theorem, it remains to show that any 

system path reaches in finite time the manifold a = 0 for I 61 < aoT., and that this time can be upper bounded by a constant 

independent of  r, and in some neighborhood of  the set o6 = 0 by a constant independent of  both 7. and the initial conditions. 

L E M M A  7.4. Let 3" E (0, Kin(1 --  %)). Then there exists a constant T such that for sufficiently small r any path 

(o(t), 6(t))thatcrosses at the instant t '  the interval a = 0, J6[ < g will cross by the time t '  + T the interval# = 0, I#t -< %7.. 

Proof.  Let a = 3"/r. Then for small 7. we have (7,3), (7.4), and the set G r (3,/7") is invariant in the sense of  Lemma 

7.3. All the paths lying in gr~(3,/7.) have the following property: the ratio of  the absolute values of the ordinates #j of  

successive crossing points o f  the path with the axis a = 0 does not exceed q0 < l as long as [#J --- ao7.. Therefore, the 

intersection of  16jo ! < aoT. is observed after finitely many turns of  the path around the origin ~r = 6 = 0. The existence of  

a uniform bound (for small 7.) of  the time to reach the interval a = 0, ]61 _< a0r is proved exactly like finiteness of  the 

convergence time of  the ideal sliding algorithm in subsec. 6.2. Q.E.D. 

L E M M A  7.5. Let 3' > 0. Then there exists a constant T l such that for sufficiently small r any path of  the system 

(cr(t), 6(t)) in time T 1 after crossing the set ~r = 0, 161 -> 7 will cross the interval o = 0, JOJ < % 

Proof.  As in subsec. 6.2 we show that for small 7- the system path does not leave the linear zone ]ol < %. As 7- 

0, the integral funnels of  the real sliding differential inclusions corresponding to the discrete switching algorithm (subsec. 5.3) 

and the ideal winding algorithm (subsec. 5.1) are close to each other [12]. Therefore, the functions of  the successive cross- 

ings of  the majorizing curves with the axis a = 0 are also close to one another. Thus, since the set o = 0, 161 > "t,, J61 < 

2K M is compact for sufficiently small r there exists a uniform bound qo < I of  the ratio [a t [/[ %[ of  the absolute values of  

the ordinates of the intersection points of the system path with the axis o = 0 for 16ol _> 3'. Q.E.D.  
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Since Lemmas 7.3-7.5 are true, it remains to prove uniform convergence of the algorithm on the set of  initial 

conditions in the neighborhood of a 2nd order sliding set. As an appropriate set we may take the set Iol -< a, l u I ~ 1 for 

a sufficiently small 6 > 0. 

8. A D D I T I O N A L  R E S U L T S  A B O U T  T H E  W I N D I N G  A L G O R I T H M  

We introduce some notation that will simplify subsequent statements. Let ~: A t x A 2 ~ R s be a locally Lipschitzian 

function, A 1 , A 2 smooth manifolds. Denote by ext/~(x 1, x 2) the local Lipschitz constant of  the function ~ by the coordinate X: 

in some local coordinates (in the Euclidean metric). We assume that the expression containing the notation gx~'~ satisfies some 

inequality, implying the existence of an atlas of  local charts on A 1 × A 2 and choice of  local Lipschitz constants of  the 

function ~ at the points (X 1, X2) E A: × A 2 ensuring that this inequality is satisfied. 

8.1. Assume that the equation 

/: = / ( t , = , u )  (8.1) 

and the constraint functions o(t, x) satisfy assumptions 3.1 ' -3 .5 ' .  The following condition is assumed to hold for some locally 

Lipschitzian real function ~(t, x): 
c0/~(t, x) > 0 for all/~(t, x) > 0. There exists a positive constant ~ so that for all u/u < × and (t, x) such that 

I o(t, x) I < a 0 we have the inequality 

l,~(t, x) + l,~(t, =)llf(t, =, u)ll _< ~ ( t ,  =).  

If  the function ~ is smooth, then condition o~ implies boundedness of  {/~. 

Let al(t, x) = o(t, x)~(t, x). By (8.1) the derivative o- t exists almost everywhere.  Let 

- u  for lu] > 1 , 
fi = --aM signaa for o'lbl > 0, lu[ < 1 , 

--am sign trx for u, ,h  _< 0, lul < 1. 

(8.2) 

T H E O R E M  8.1. Assume that Eq. (8. i) and the constraint function a satisfy assumptions 3.1 ' -3 .5 ' ,  and the function 

~(t, x) is positive and has a bounded logarithmic derivative ~/( by (8.1) or, if it is nondifferentiable, then satisfies property c~. 

Let a 1 = a(t, x)'((t ,  x). Then for sufficiently large a m > 0 and ~a,ttcz m > 1 algorithm (8.2) is a 2nd order sliding 

algorithm on the constraint o = 0. 

Out l ine  of  Proof .  It is easy to show that within the linear zone Ja I < a 0 the absolutely continuous function at(t, 
x(t)) satisfies the differential inclusion 

~, e ~(~ + l-V, Vl~). 

Then we apply Lemma 6. I on majorizing curves. The proof compares the winding algorithm with observations of the 
constraint cr and algorithm (8.2). The incorrect switching zone is covered by the interior of the parabola 161 --- Xv' lo l ,  
which is invariant under the transformations g(v) (see subsec. 7. I). A detailed proof leading to the same result is given in 

[22]. 
We can also show that replacement of  b 1 with 6iCr and of sign o t with sign C~l(tl) in (8.2) reduces it to a real 2nd 

order sliding algorithm on o [22]. 

The theorem shows that there is a whole family of winding algorithms. It is easy to show that the set of  functions 

satisfying condition o~ is closed under the operations of addition, multiplication, division, and a number of  other transforma- 

tions. 

8.2. Consider the dynamic system linear in control 

= a ( t , z )  + b ( t , x ) u ,  (8.3) 

where x E R n, a, b are locally Lipschitzian functions, u E R. Assume that the constraint function o(t, x) has locally 

Lipschitzian partial derivatives. Suppose that we have found a function ,I,(x) such that for all x we have ,l,(x) _> const I > 0, 

ex,l,(x) _< const I, and the following conditions A and B hold. 
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A. ~,; t,a,: ~, t , u  t,~ t,a,; al/t~ , ttai/l~, a/~,  t ta/~,  l ,a,  b: ltb, Gb • t~. are bounded uniformly in t, x. 

B. There exists a constant 6 o > 0 such that ax'b > 8 o for all t, x. 

Let 

u = tJk. ~(z), (8.4) 

where k > 0. 

Assume that ,Ih(x) is a positive locally Lipsehitzian function separated from zero, and the ratio ex,~ l .,t/,~ I is uniform- 

ly bounded. Then for sufficiently large k the binary algorithm formed by the feedback (8.4) and the equation 

- u  for lul> I ,  

# = - a u  sign# for #. (#~)" > 0 ,  [t~l -< 1 ,  

- - = .  ,ign ~, fo~ , , .  ( , , i h )  _< 0 ,  It, I _< 1 .  

is a 2nd order sliding algorithm on the constraint a = 0 for sufficiently large a m > 0 and a M / a  m > 1. 

The set of  functions ,I, 1 is closed under addition, multiplication, division, and positive exponentiation. 

In many practically important cases of  ,I, and ~1, this result can be obtained as a consequence of  Theorem 8.1. In 

general, it is proved in [23], where parameter  bounds are also given. The fact that [23] deals with directionally differentiable, 

and not locally Lipschitzian, functions does not affect the proof. 

Discretized observations transform all the algorithms of  this section into real sliding algorithms that track relation- 

ships of  the form I o i < c~(x) r2, where c = const > 0, and r is the interval between observations. 

8.3. Stabil i ty of  the Algor i thm to Nonidealit ies.  Consider the case when the controlled plant is described by the 

equation 

= f(t ,  x, ~) + zV(~, x, ~ ) ,  (8.5) 

where the small continuous "noise" Afviolates assumptions 3 .3 ' -3 .5 '  (but does not violate 3 .2 ' ) ,  although all the assumptions 

3. ! ' - 3 .5 '  are satisfied for the unperturbed equation (8. I) and the constraint function ~r. 

Recall that the operator L u is defined by the equality 

Assume that in the linear zone we have 

0 0 
L,( . )  = ~ ( . )  + -~z ( . ) f ( t , z ,u )  . 

I~r~Af] ~ dz , tfL,w-[[zafl I < d~, 

where d l, d 2 are positive constants, and the conditions of  Theorem 5.1 hold. Then for sufficiently small d 1, d 2 the winding 

algorithm 

--u for lul > 1,  
li = --otM s i g n e r  for o-~- > 0, lu[ < 1 , 

-ae,, slgn ~ for a8. < 0, lul_< 1 . 

takes in a finite time the point (t, x, u) into a set of  the form {(t, x, u ) / Io  [ < Cl(d2)(dl2, 161 < C2(d2)dl} and holds it 

there. For ~x 2 --, 0, C 1 and C 2 tend to constants: 

~2 

lim C'i = ( l+qM)  
d,--o 2(K,~a,,, -- C0)(1 - qM) 2 ' 

lira Ca -- I+t /M 
~ 1 2 ~ o  1 - q M  ' 

where qu = ~/(KMa~n + Co) / (KmaM - Co). 

This assertion is true for arbitrary oq > 0, oe 2 > 0 (specific formulas exist for C 1 and C2). but in this case the 

restrictions on tile parameters  ce M. o% should be satisfied with a "safety margin". The corresponding formulas are quite 
cumbersome and are not given here. 
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Another form of  nonideality to which the winding algorithm is sensitive are observation errors in o(t). Such errors 

may render the sign of  cr totally unreliable. As a result, the accuracy of  the algorithm becomes equal to the accuracy of  the 

Ate-algorithm: the inequality [ol < 4 KM/Ot m is ensured. For a fixed observation increment r, small observation errors do 

not interfere with the operation of  the discrete-observation algorithm. The set covering the incorrect switching zone (subsec. 

7.3) does not change. 

We can show that the use of  an adaptive observation increment that depends on observations (for instance, in the 

simplest form ti+ 1 = t i = ~k Iio%)11 for Xl~ti)  I E ['rm, 7"M] , ~k > 0, "rm, r M is the minimum and the maximum increment) 

ensures accuracy of  the same order as the observation error accuracy or of  orde r  "rm 2 with exact observations. 

9. O T H E R  S L I D I N G  A L G O R I T H M S  

The controlled plant is described by Eq. (8.1), cr is the constraint function, and assumptions 3 .1 ' -3 .5 '  are satisfied. 

9.1. Drif t  Algor i thm.  Assume that the constraint function o(t) is observed at discrete time instants to, t 1, t 2 . . . . .  

Using the notation of  subsec. 5.3, let 

where a u  > a,, ,  t e [ti, q+x). 

{ -,,(t,) 
u = o~z,,t sign~i~ 

oq., sign 6~o 

for r, ,( t ,) l  > l ,  

rot s ,~ .  o-(t~) > o, t,.,(t~)l _< a ,  

for ~ , , .  ,~(t,) < o, I,.,(t,)l < 1 , 

{ ~-~ for ~,1,,(~,)1 ~ > , -~, ,  
t ,+ :  - t~ = , , I o%) ]  0 for .,-., _< , , Io ' ( t , ) l "  _< , - u ,  

",-., for vl , ' , ( t , ) l "  < , ' , . ,  

(9.1) 

(9.2) 

where r M > 7" m > 0, "rM, r m are constants, v > 0, 0.5 _< p < l, r m is a small parameter. 

Assume that the initial conditions are within the linear zone, and 

[o-(~o,=(to)) l  _< ,50 < o-o ,5o = cons t  > 0 .  

Then for sufficiently large ~x m , (XM/O{ m and sufficiently small v the drift algorithm (9.1) with a variable increment 
(9.2) is a real 2nd order sliding algorithm on o. 

Figure 13 is a typical path (a(t) ,  6 (0 )  of the drift algorithm. An important feature of  the algorithm is that it converges 
without overshooting on ~. The corresponding theorems are proved in [19]. 

9.2. Algor i thm with Specified Variat ion of  the Constra int  Funct ion.  This algorithm has the form 

- u  tbr ]ul > 1 , 

/~ = -agi~a( ,~-g(=))  for lul < I ,  (9.3) 
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where a > 0. The function g is chosen so that the solution of the equation 0 = g(a) reaches in finite time the point o = 0, 

and ga'g(o) is bounded. For instance, we may take 

u = -Xsign~. I~rl "f ,where A > O, 0,1i < "y < 1 

Algorithm (9.3) for sufficiently large o~ is a 2nd order sliding algorithm on a (with O(to) < 6 < %).  Replacement of  # - -  

g(a) with ~i o --  g(a(ti))(t i - -  t i_ I) reduces (9.3) to a real sliding algorithm on a of  order not higher than 2. Real sliding is of  

2rid order, in particular, when g(o) = - h s i g n c r .  Iol : - .  The introduction of  a variable increment (9.2) endows the real 

sliding algorithm with stability to observation errors. Figure 14 shows a typical curve (o(t), #(t)). 

9.3. Asympto t ic  Wind ing  Algor i thm.  Let 

u =u ° + u I ; (9.4) 

uO = /  - x l  signer tbr Olo'[ > xl , 

t -r/u for ql~rl < ~,~ ; (9.5) 

~i 1 = [ - u  I for lu I ] > 1 ,  

t -as igno ' ( t ,z )  for lu~[ < 1. (9.6) 

Here ~, 77, x I are positive constants, 1 + ×1 < ×. 

T H E O R E M  9.1. Let assumptions 3.1-3.4 be true and assume that within the linear zone I~rl < a 0 the quantities 

LuLva; LuLvLva, (O/OU)LuLua, Lu(O/Ou)Lu o, (02/Ou2)Lua are bounded uniformly in t, x, I u t ~ K, I v l < ×. Then for suffi- 

ciently large oe and ~7/~, algorithm (9.4)-(9.6) ensures exponential convergence  of o(t) and 6(t) to zero. 

By increasing ot and r//c~, the damping ratio can be made arbitrarily large. If the controlled system is linear in 

control, i.e., (02/Ou2)Lua = 0, the assertion of the theorem is true for all sufficiently large o~ and r/. The control component 

(9.5) ensures asymptotic stability (in the deviation metric l al + [d'l) of  the 2nd order sliding mode that arises, according to 

Theorem 4.1, when we apply the A u-algorithm (9.6). 

The asymptotic winding algorithm, denoted as .A~,~ -algorithm, is applied in the theory of  binary systems for control 

of  homogeneous dynamic systems linear in x and u with a linear constraint function a = cx [9]. 

P roo f  is by choosing a Lyapunov function in the form 

1 . 

H = ( a 6 - ~ ,  - signa [L,r,,,]l,,=:. )It, I + ~(,~ + .~)z ; 

where h > 0. At the same time, we derive sufficient stability conditions for the sliding mode of the Su-system. We also use 

Lemma 6.1. 

A system linear in control is controlled by the same technique as in subsec. 3.3, and to satisfy the conditions of  the 

theorem we have to  augment conditions a and b of  Sec. 3 with additional condition c, given below: 

c) for some constant '¢0 > 0 the inequality I o/,I,I < ~o 0 implies uniform boundedness in t, x of  the quantities 
x," v z z .  

Here, as in condition a of  Sec. 3, the function ,I,(x) satisfies the conditions of  boundedness of  ¢'z' and ,I, xx",I,, and in 

addition it also ensures boundedness of  ,I,xO(3)¢1,2. An example of  such a function is 

• (x) = , /~ 'V~ '+  ho, 

where D is a positive semidefinite matrix, h 0 = const > 0. 

9.4. All the algorithms described in this paper can be applied to control the smooth dynamic system 

=/(t, ~, u) , 

whose state space is a Banach space. The proofs remain unchanged. The theorems are restated either by modifying the 

concept of  2nd order sliding mode for the infinite dimensional case or by simply assuming that the proposed algorithms 

ensure that the functions a and 6 are exactly zero or satisfy the following inequalities: 

I,r[ _< C, ~.2 , laf _< C2r . 
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10. C O M P U T E R  S I M U L A T I O N  R E S U L T S  

Let us demonstrate the application of  the various algorithms to a randomly chosen controlled dynamic system. 

Simulation results for the winding algorithm are also given in [14]. Simulation of  the drift algorithm is reported in [19]. 

10.1. We used the dynamic system 

xl  = - 5 z l  + 10z2 + 4 z s  + z l  s ins  , 

~2 = 6z t  - 3z2 - 2z3 + 3 ( z l  + z2 + z s ) c o s t  , 

z s  = z l  + 3z~ + 4z2  cos 5t + 4 sin 5t + 10(1 + 0, 5 cos 1 0 t ) # ( u ) ~ ( z )  (lO.l) 

where 

# ( u ) = 3 u  - cos30t.sinu - u Z / 4 .  (10.2) 

Here u is the control, ~(x) = [xtl + Ix21 + Ix31. The constraint function is the coordinate x 3. All the assumptions of  

subsec. 8.2 are satisfied, and we may thus take 

{ -~,(t~) 
[.i = --OeMsignz3(tl) 

-or,. sign zs(ti) 

for #(tl) > 1 , 

for zs(ti). 6i(xs/t~l) > O, lu(ti)l < 1,  
for zs(ti)./~i(zn/~l) < 0, lu(t~)l < 1,  

(10.3) 

where aM > c,,, > 0, 1~1 = ~2 _ ~ + 1 + Izt - z~[. 

We used the initial values t o = 0, Xl(0) = 2, x2(0) = - 2 ,  x3(0) = 10, u(0) = 0 and the parameter values c~ M = 40, 

0% = 8. The spacing between observations r = 5 • 10 -4,  the integration increment At = 10 -4.  Integration was by Euler's 

method. 

Solving the equation x 3 = 0 for #, we obtain the function 

zl + 3zs  + 4z2 cos5t + 4sin5t 
~"q = 10(1 + O, 5 cos lOt)~(z) 

We can show that for almost all t 

~, e [ t . ,  Ru] 0,(*,(0) - ~,,(t,~(0)) + ,~1[-:~, :q, 

where 0 < /era < /~M, ~. > 0 are some constants. Thus, for small a t, the difference e = / z  - -  t%q approximately characteriz- 

es the derivative #l- 

For these parameter values the constraint was tracked with accuracy tot i = [x3/,b I < 6.61.10 -4.  Then the 

observation spacing r and the integration increment At were reduced to 1/100, and the algorithm tracked the constraint with 

accuracy I otl _< 7.04.10 -8. For comparison note that the ordinary 1st order sliding algorithm u = - s i g n  ol(ti) tracked the 

constraint in these simulations with accuracy Jail _< 1.20.10 -2,  and increment reduction to 1/100 improved the tracking 

accuracy to lot [ < 1.04-10 -4. While ensuring exact tracking of  the constraint 01 = 0, the relay algorithm u = - s i g n  x 3 in 

general does not produce a single-valued description of  system operation in the sliding mode for vanishingly small switching 

nonidealities because the system (1), (2) is nonlinear in the control u [3, 21]. 

10.2. Now let 

~/i(z) = ¢~:~ + z~ + z I + 1 . (10.4) 

When the function ~(x) is chosen in the form (4), the system (1), (2) and the constraint function o = x3/~(x) satisfy assump- 

tions 3.1-3.5 (see Proposition 3.1) and the conditions of Theorem 9. I. 

Simulation results for the winding algorithm in its basic form. i.e., with ~1 = ,I, (see Sec. 5), are similar to the 

results described in subsec. 10.1. The initial values and the constants of  the algorithm are the same as in subsec. 10.1. 
Drift  Algor i thm 

Let 
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= 
- , , (t , )  
aM sign 6,or 
a,,, sign ,~iv 

t,,r lu(t,)l > 1, 

for 6,~-~(t,) > 0, lu(t,)l _< 1, 

tot 6ia- ~r(ti) _< 0, lu(t,)l < 1, 

w t m e a  m > % > 0, t 6 It;, ti+~]; rMfor ~ / ~  > ~u,  t~+t - t, = 0 ~  for ,',..<_ ,vffJ~t~)l _< ,u ,  , . . f o r  , 7 ~ / ~  < ,'=, 
where ru  > r~ > 0, ~ > 0. 

We used the same initial values and the same values for the parameters c~ M, c% as previously. We took rl = 0.02, 

r M = 0.05, r m = 0.0005 integration increment At = 0.0001. 

Sliding was tracked with accuracy Iol -< 1.30' 10 -3, and after reducing r m and At to 1/100 the accuracy improved 

to la[ _< 7.12-10 -8 . 

Algorithm with Specified Variation of the Constraint Function 

Let 

{ -~,(t,) for I,,(t,)l > 1, 
'~ = -o, s i ~ ( , ~ . -  10l,,(tdlt, -) for I,,(tdl _< 1, 

where ~x > O, t E [t i, ti+l), t i - -  t i_  l = r > 0. We used the same initial conditions: ,~ = 16, r = 0.0005. Tracking was 

accurate to within [al -< 1.32"10 -3, and after reduction of r and At to 1/100 the accuracy improved to lal -< 1.10"10 -7. 

Asymptotic Winding Algorithm 

Le tu  = u  ° + U  1,where 

u 0 = [  -signa(ti) for r/Iv(tall> 1, 
t -r/~'(ti) for: rlla(ti) I <_ 1 , 

r/>0, t E [ t l ,  ti+l), t i + 1 - t i = r > O ;  

61 =~" -ul(ti)  for I~,l(tdl > ! ,  
t -as~gn~(t d for [ul(t01 < 1, 

c ~ > 0 .  

The same initial conditions were used: cx = 16, 7/ = 2, r = 0.0005, At = 0.0001. The achieved accuracy was lal 

-< 1.37:10 -3 . 
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