
CHAPTER 1 

BASIC CONCEPTS OF NONLINEAR SPECTROSCOPY AND RESONANT NONLINEAR 

OPTICS FOR TRANSITIONS BETWEEN DISCRETE LEVELS 

The methods of high- and ultrahigh-resolution nonlinear laser spectroscopy is the in- 
vestigation of the shapes of the narrow nonlinear resonances that appear on the Doppler 
contour of a spectral gain or absorption line of a weak probing(or spontaneous-emission) 
field acted upon by strong quasimonochromatic laser radiation. The theory of nonlinear optical 
processes in which transitions to the continuous spectrum participate, while having a number 
of specific features, is a development and generalization of the corresponding results for 
the discrete spectrum. We consider therefore briefly the basic premises of nonlinear spec- 
troscopy and of resonant nonlinear optics for transitions solely between discrete levels. 

i. Classification of Nonlinear Effects in Spontaneous-Emission, Amplification, 

and Absorption Spectra in Three-Level Quantum Systems 

The investigation of interactions between two radiation fields and three-level quantum 
systems played an important role in laying the foundations of nonlinear spectroscopy. This 
question is elucidated in sufficient detail in a number of reviews and monographs (see, e.g., 
[i, 2]). In the usual formulation of the problem of resonant interaction between two radia- 
tion fields and a three-level quantum system one radiation is perturbing ("strong") while the 
other is probing ("weak"). In this formulation of the problem the absorption (gain) of the 
probing radiation on an adjacent transition plays the role of an observation process that 
determines the changes introduced by the field into the quantum system. It is precisely 
this case, by virtue of its simplicity, that was investigated in most theoretical and experi- 
mental studies. 

The usual classification of radiative processes (spontaneous emission, scattering, two- 
photon absorption, etc., see, e.g., [3]) is based on perturbation theory, i.e., the energy 
of the interaction between the atom and the electromagnetic field is assumed low. It is in 
this approach that the notions of stepwise and two-photon transitions, of virtual states, etc., 
arise. This classification is connected with the existence of certain correlation properties, 
whereby the emitted photon "remembers" the absorbed one. Thus, the demarcation between step- 
wise and multiphoton processes is based in essence on their frequency-correlation properties. 
The notion of the stepwise and two-photon processes was developed in [4]. It was shown that 
if the energy of the interaction between the atom and the field is on the order of or larger 
than the level width, an if perturbation theory in its usual variant is not applicable, then 
the aforementioned fundamental concepts must be altered. It turns out that with increasing 
field (or with decreasing deviation of the strong field from resonance) the frequency--correla- 
tion properties of radiative processes undergo substantial changes. As a result, certain 
differences between stepwise and two-photon processes decrease with increasing field intens- 
ity, and in sufficiently strong fields these processes become utterly indistinguishable. 
As a result, the manifestation of Doppler broadening is also substantially changed in strong 
fields. The ensuing phenomena can be tracked in the emission spectra. The subdivision of 
radiative processes into stepwise and multiphoton ones has thus little meaning in strong 
resonant fields. 

In such cases it is convenient to classify the influence of a strong resonant field 
on the emission spectrum of a weak one as consisting of three effects [5]. Each of them can 
in principle, under certain conditions, manifest itself independently of the others. If the 
levels with which the strong radiation interacts are not populated or have equal populations, 
the change of the line shape of the adjacent transition is due only to the splitting effect. 
The first effect manifests itself in a deformation or splitting of the line contour on the 
adjacent transition; this is interpreted as the appearance of two quasilevels in the strong 
field. It turns out that in this case those adjacent-transition characteristics which are 
not integral with respect to frequency remain unchanged. 



The second (population-dependent) effect is connected with the redistribution of the 
level populations under the influence of the strong radiation. The adjacent-transition 
characteristics that are integral with respect to frequency are altered only by this effect. 

The third effect constitutes interference between processes that proceed via different 
sublevels. It manifests itself in the fact that the absorption or emission probability 
depends not only on the level populations but also on the polarization of the medium, induced 
by the transition that is resonant to the strong field. This nonlinear interference effect 
likewise leaves the integral absorption (the gain on the adjacent transition) unchanged, but 
may cause even reversal of the sign of the gain (absorption) as a function of the probing- 
radiation frequency. With increasing deviation of the strong radiation from resonance and 
with decrease of its intensity, the conjunction of the indicated phenomena can be interpreted 
on the basis of the concepts of stepwise and two-photon processes. 

Nonlinear processes manifest themselves in gases usually under conditions of Doppler 
broadening of the transitions on account of the thermal motion of the atoms. Monochromatic 
radiation of not too high intensity and resonant within the confines of the Doppler emission 
line interacts in this case only with those atoms whose deviation from resonance is offset 
by the Doppler shift. In this case resonant nonlinear processes take the form of abrupt 
nonlinear structures on the Doppler emission or absorption contour of the probing field [i- 
8]. Let us consider the expressions that describe the phenomena listed above. 

2. Emission and Absorption of Radiation on Discrete Transitions 

in the Presence of a Strong Field on an Adjacent Transition 

2.1. General Expressions for the Probing-Field Emission and Absorption Power in the 
Presence of a Strong Field. Consider the photon emission of two monochromatic fields that 
interact with an atom whose term system is shown in Fig. i.i. One of the fields with ampli- 
tude E is assumed strong and at resonance with the transition n~n; the corresponding matrix 
element in the ease of a traveling wave is 

h-~V,.,~ exp {im.,~t} = G* exp { - i ( ~ t  - kr)}, ( 1 . 1 )  

where G =-d~Elih; ~ = o - -  ~m~; o and k are the frequency and wave vector of the radiation; 

~mn and dmn are the frequency and matrix element of the electric dipole moment of the mn 
transition. 

We shall be interested in emission (or absorption) of photons of the "weak" interaction, 

which is at resonance with one of the four transitions n § j, m § ~, f + m, g § n (see Fig. 
i.i). We consider first the case n § j. The weak field with amplitude Ep will also be 
regarded as a traveling plane wave 

~- IV, .  iexp {i~njt} = G~ exp { - -  i ( ~ t - -  k~r)}, Gr, . . . .  d jnE/ ih ,  ~ = ~ - -  ~ j .  ( 1 . 2 )  

It follows directly from the equations below for the diagonal elements of the density matrix 
that the power of the absorption or of the stimulated emission by a single atom or in a unit 
volume (depending on the normalization of the density matrix) is given by 

w~j = ~co~jiRe (iG~ exp{ - -  i(fii~t--k~r)} pj~>, (1.3) 

where the angle brackets denote averaging over the atom velocities v. In the situation 
described, stationary solutions are possible. We start out, therefore, from the equations for 
the density matrix average over the excitation moments of the atomic levels, assuming that 

the atoms move with velocity v: 

"1 ] rl* (]-- "~ n~i "[/ Lh, o;, - -  ih- l[rm, ,o~(~m~' tDjm=ih,  I n j  " '~ ~ ) n n - - [ l j j ) ,  

L j ~ n [ ) ; m  " ~ - ' ] , z *  ~--~'C~ i ~ - 1 / / *  --i~ t . 

(1.4) 



F rn 

Fig. i. Transition scheme for the investiga- 
tion of resonant nonlinear processes in dis- 

crete spectra. 

Lm,.9 ..... + 2Re  [ih-'V,.,~o "~~ p,,,,,] = q .... 

L,,,,9,,,, - 2Re [ i h - '  V,,,,~e~'~'~tp,,,~] = q + 7,~,,9 ...... ( I. 5 ) 

L,,,,, 9 ..... = i h  - ~ I'~,,, o %, .~ t  (9 . , ,  - P.,,,. ), L~, = 8 / O t  + v V -I- 1'~. 

The equation systems are written in the "relaxation-constants" model, where Fik is the transi- 
tion width, Fii=Fi; qidenotes the rate of excitation of the level i- j, m, n and does not 
depend on r and t. Equations (1.4) and (1.5) already take into acount the "weakness" of the 
field Vjn , i.e., it is assumed that the field hardly alters the populations. This is precisely 
why the complete system of equations for the density matrix turned out to consist of two 

systems: Eqs. (1.5) include only Pmm, Pnm, Pnm and the solution of this system is the start- 

ing point for the calculations of Pjm, Pin from (1.4). 

The solution of the system of equations entails no difficulty. The diagonal elements 
are independent of r and t, and the off-diagonal elements satisfy a simple exponential rela- 
tion : 

9 . = r ~ ( v ) ,  i = m , n , ] ;  

9.,. .(r,  v,  t)  = r=m(V) exp  { i ( ~ 2 t -  k r ) ] ;  

9j , .(r ,  v,  t)  = h ~ ( v )  e x p  {i[ (f2. + f2)t  - -  ( k ,  + k ) r ]  }, 

,9~.(r, v, t) = r~.(v) e x p  { i f~  - k.r}. 

( l . 6 )  

Substituting (1.6) in (1.4) and (1.5) and equating the coefficients of like exponentials, 

we obtain for ri, rnm , rjn , rjm a system of algebraic equations, whose solution is of the 

form 

r j = n j +  . r . ;  r , , = n , ~  ~- r ~ v l + •  

2~ I C I ~ (,,,,,---- ,,,) I~"E (v); 
r,,, = 'U,, I '  %/1 - - - 7 ~  

i~; (,.,,, - . - , . )  

r , ,  = l' ! o,<_) -Z '5 ,,,,m 
[J'~,, + ,:g,J IF~ + ~ (~<I  ~ )] -I i c 12" 

(1.7) 

We have introduced in these expressions the notation 

II i = :  - -  
q~(v) Yh~ % ( v )  

Fi ~ l, i F h 

WB (v) - F l ; / Z ~  
(1.8) 

2 ( v  m + %,  - v,,~,O I a I". 
j ' l ~ m ] ' n  

~2' = ~ - -  kv;  
! 

f4~ = Q~ - -  k . v .  



The function ni(v ) is the distribution of the atoms in velocity on the level i in the 
absence of a strong field (at G =0); this distribution is determined by the excitation rate 

qi(v). We assume that qi(v) is at equilibrium: 

q~:O~W~,(v), l'V:,,(v)~ (7a~) -~exp{  v-/v-~, 
(1 .9 )  

7i 2 = 21d'lm. 

If W(V) is regarded as a ~ function, we have a one-velocity beam. With the aid of (1.2), 
(1.6), and (1,7) we obtain the following expression for the emission (absorption) power: 

,,,,,, ~ ~o,,,~ I<, I ~ ~<, \ l ~ ,  ' -l-< 0 ~ , ; - - 7 k  [7;7, :-7 ;~,717 I-~, L~/  (1.10) 

We turn now to the other transitions in which the levels m and n perturbed by the ex- 
ternal field can take part (see Fig. i.i). The emission and absorption power is calculated 
in all these cases in accord with a single scheme, and we present only the calculation results: 

(1.11) 

,<,,,,, = 2~,,~,,,~ 1 < ,  i~ R . (  ' [~-' +~ (<*-- F)_] !'-,-'_,)_ + "~,,~' ' 5  ~"' t , . V ) r  Z ~ ~ r 

\Iv, , , ,  + ~%,] i~,,~ + `  (%,,_ ~ )1+l  c i / ,,  : ~, -I- ,,.; 
(1.12) 

'"s,,, = 2ho~s,,. ] G,, 1 ~ Be///]  r'~s + i(~ 9 - y  +-- ~-)l ("s---7-,_. )_~+ ,:,-,~,~_C 
\ l r , , . i  + ~,,1 [r,,s +~ 0~,,-l-~") ] + I.c,' r  ,v - ,,~- 

(1.13) 

Equations (1.11)-(1.13) are of the same type as (i.i0) and can be replaced by simply interchanging the 

subscripts and the signs. For example, (1.12) is obtained by making the substitutions m ++ n, 

j -~l, ~' +-42 ' 

Equations (1.10)-(1.13) enable us to analyze not only stimulated emission and absorption 
of the weak field, but also spontaneous emission. To this end it suffices to discard from the 
expressions for Wik those terms that correspond to absorption, and introduce in lieu of IG~I 2 
a quantity corresponding to the interaction of the atoms with the zero-point oscillations 

of the field: IG~I 2 = TikA~A0/8~ 2 . 

2.2. Classification of Strong-Field Effect t Equation (i.i0) is a clear reflection of 
the classification of the effects of the external field. 

i. The denominator is quadratic in ~Z and contains therefore resonances at two fre- 
quencies. This circumstance can be interpreted as splitting of the atomic levels in the 

external field. 

2. The numerator in (l.lO) contains two terms with substantially different properties. 
The first is proportional to the population level r n -- rj, which has a nonequilibrium part 
due to the selectivity of the interaction of the atoms wzth the external field (Bennett 
"holes"). This selectivity is reflected in the factor WB(V) , which we shall henceforth call 

the Bennett distribution. 

3. The second term, proportional to rnm and also due to the presence of the external 
field, makes in a certain sense an unusual contribution to the radiation at the transition 
n § j. It is easily seen that the integral of wnj with respect to ~V is determined only by 

r n -- rj : 



o o  

.f rt;'~-idP~"' = 2~rli(,~ni [ (;I,. J~' <r,~ - -  rj>. ( 1 . 1 4 )  

Actually the two roots of the denominator of (i.i0) lie in the upper complex-frequency half- 
plane. Choosing the integration contour along the real axis and an infinite semicircle in 
the lower half-plane we verify that the integral of the second term of (l.10) with respect 
to ~V is identically zero. The term with rnm alters therefore only the shape of the line 
but not its integrated intensity. The very presence of this term and its indicated property 
are in no way restricted to the particular problem considered. Indeed, it can be seen from 
(1.4) that, at any composition of the strong field, the "sources" that "excite" Djm, ajn 
are both the population difference Pnn -- Pjj of the combining levels and the off-diagonal ele- 
ment Pnm induced by the external field. Therefore Wnj will containgnmalso inageneralcase, 
not only when the external field is monochromatic. It can be stated that this term reflects 
the "coherence" introduced into the state of the atom by the strong field, and as a result 
the weak field "intermixes" not only the states n and j, but also m and j. The latter leads 
to the onset of oscillations at the frequency ~+~D (see Pjm in (1.6)). These properties of the 

term with rnm allow us to refer to the effects that it produces as nonlinear interferenoe 
effects. 

Expression (I.i0) can be regarded as the difference between the number of acts of emis- 
sion and absorption of a photon h~,. If rj = O, only emission is possible in the system. 
Therefore all the terms in wnj except rj determine emission processes. On the contrary, 
whatever is connected with rj specifies the rate of absorption of the weak-field energy. 

If follows thus from (i. I0) that the change of the absorption is due only to the splitting 
of the level, since the absorption corresponds to a transition from an unperturbed level j to 
a perturbed level n. The nonlinear interference effects are connected with the reverse 
transition from the perturbed state into the unperturbed, i.e., in the case of the n § j 
transition they are contained only in the emission. 

The energies emitted and absorbed are, naturally, positive. The difference Wnj between 
them, however, can be either positive or negative. Moreover, the sign of wnj can vary with 
the frequency ~. This is also an interference effect: it can be seen from (i. I0) that the 
difference between the absorption and emission contours is due only to the term with rnm, 
which can alter quite substantially the emission line shape. 

The level-splitting effect is separated in pure form for a transition from an unperturbed 

level (j, g, f, l) to a perturbed one (m, n). In the case j § n this corresponds to absorp- 

tion. If n m and nn are small enough compared with nj, we have 

< v > 
= - a , , I  K ' ( 1 . 1 5 )  

The phenomena considered above can be analyzed also on the basis of the method of probabil- 
ity amplitudes, as is done, e.g., in [4]. The density-matrix method, however, is in our 
case more compact, universal, and lucid. Equations (1.10)-(1.13) allow us to investigate 
the shapes of the nonlinear resonances that appear on the spectral-line contour under the 
influence of a strong field and serve as the basis for the nonlinear-spectroscopy method. 
A more detailed treatment of this question is contained in [1-8]. 

3. Frequency Mixing in Resonant Nonlinear Media 

The nonlinear processes considered above, such as multistep and multipboron absorption 
and scattering, are not coherent, since their contribution to the polarization of the medium 
at the investigated frequency is determined by the squared modulus of the strong-field in- 
tensity. Among the processes that are coherent are those in which harmonics and combination 
frequencies are generated, since the source of the emission at these frequencies is the non- 
linear polarization of the medium, proportional to the product of the intensities of the in- 
teracting fields. The frequency and phase os this polarization are determined by the sums of 
the frequencies and phases of the interacting waves. The most important condition for ef- 
fective conversion of radiation on the basis of coherent processes is matching of Lhe phases 
of the nonlinear polarization and of the radiation it emits. 



The aggregate of the coherent and incoherent processes is the basis of the methods of nonlinear 
spectroscopy of matter, as well as of the methods of nonlinear optics, which help solve the most im- 
portant problem of quantum electronics -- the broadening of the frequency band of coherent radiation. 

3.1. Distinguishing Features of Resonant Nonlinear Optics of Atomic-i.~olecular Media. 
Among the tasks of increasing the bandwidth of the generated radiation are, in particular, 
making coherent radiation feasible in the far UV and far IR bands, conversion of the weak-IR 
frequencies into more easily recorded frequencies, as well as conversion of cw and quasi-cw 
radiation in the case of strong irradiation of a nonlinear medium. A promising approach to 
the solution of these problems is the use of nonlinear processes in gaseous media. Among 
the advantages of this class of nonlinear media are transparency in a large spectral interval 
from the far infrared to the ultrasoft x-rays, high radiation endurance and self-recovery 
after breakdown, possibility of controlling the length of the wave phase matching by contin- 
uously varying the concentration and composition of the medium, as well as the possibility 
of ensuring large lengths and apertures of the nonlinear medium. 

In view of the central symmetry, the free atoms have nonlinearites of odd order in the 
field amplitudes, starting with cubic. This favors management of the short-wave bands. Thus, 
in contrast to anisotropic crystals, gaseous systems have a higher order of nonlinearity and 
a lower concentration of active particles. This necessitates the use of relatively strong 
pumping to obtain high conversion coefficients. The last requirement, however, is possibly 
not so stringent, because resonant and quasiresonant nonlinear processes are used, since the 
nonlinear susceptibilities are strongly increased thereby. In addition, synchronism condi- 
tions can be controlled by tuning some of the frequencies of the interacting fields near 
resonance. Prerequisites are thus met for increasing the conversion coefficient and lowering 
the required pump intensities. Under resonance conditions, however, a much greater role is 
assumed by restrictive processes such as single- and multiphoton absorption and ionization, 
saturation, saturation and level-shift effects, nonmonochromaticity of the radiation, self- 
action of the radiation, and others. Thus, the prospects indicated require clarification 
and selection ~f the optimal conversion conditions such that the advantages of the resonant 
interactions are still in effect before the restrictive processes managed to evolve. All 
this calls for detailed investigation of the nonlinear processes in a nonresonant medium. 

Substantial progress towards obtaining short-wave coherent vacuum ultraviolet and ultrasoft 
xrayswas indeed made in recent years by using nonlinear processes of mixing frequencies of third, 
fifth, and seventh order in atomic-molecular media. The advantage of this approach is that 
it is based on the use of available visible and ultraviolet lasers, which require no cavities 
for short-wave radiation~ and that the generated line width is determined by the corresponding 
pump-radiation characteristics. By retuning the pump radiation frequency it is possible to 
retune the lasing frequency in a sufficiently wide interval, 

A survey of some of the progress in resonant nonlinear optics is contained in [9, i0]. We shall 
dwell briefly on the physical principle of radiation-frequency mixing inresonant gaseous media. 

3.2. Conversion Coefficient. Consider frequency-mixing processes of the type~z +~2 +~ =ws. 
We represent the radiation fields and the polarization of the medium at each of the frequencies in 

the form 

i [ E j  ( r )  e {~ /  * (r)  e{~ Ej (r, t) = -f + Ej 

t) = [pj 0- ~ ' + 

(1.16) 

Following [11-13], we assume each of the fields to be a TEMoo Gaussian mode focused at 
a point z= f with confocal parameter b (f is the focal length of the lens): 

E j r )  = E0j ( l  - i~) - I  exp  {ik~z --  k~(x 2 + g 2 ) / b ( l  + i~)}.  (1.17) 

Here kj =2~j/lj : 2~jvj; nj is the refractive index at the frequency w~; vj =I/lj; lj the wave- 
. 2"'V length in vacuum; b = 2~wo3 j; Woj the cross-sectional radius of the light beam; and ~ =2(z -- 

f)/b. We assume all waves to be focused with the same coufocal parameter. 

Thus, at the points z = f • the area of the light spot is doubled compared with its 

area at the focus. Calculating the radiation intensity at the point (x, y) with the .aid of 
(1.17) and integrating with respect to (x, y) we can obtain an expression for the total radia- 

tionpowerWj in a Gaussian beam: 



Wi = cE~jAjI8r~, Ai = b)~14. (1.18) 

Aj is the effective area of the Gaussian beam. 

Assuming a radiation source having a frequency m s and a nonlinear polarization 

t3(3) s (r) = N <• E1 (r) E.e (r)/X 3 (r)f; ,  ( 2 . 1 9 )  

where ~=o~+~z+oa, and <~(a~> is the atomic nonlinear susceptibility averaged over the 
atom velocities, we can obtain from Maxwell's equations in the approximation with given fields 
E~, Ei, Ea, [ii] 

E~(r) = iabks4 { t s ( z~+  ~) } b  ('l -p i~) ' (i N <• fo~fo i fo  J (Ak, ~, ~) (1 + i~) -1 exp iksz -- .2~)  

I n  ( 1 . 1 9 )  and  ( 1 . 2 0 ) ,  N i s  t h e  d e n s i t y  o f  t h e  a t o m s ;  ~ = i f / b ;  h k = k s  -- kz -- k2 -- k s ;  t h e  
integral l(hk, ~, ~) reflects the degree of synchronization of the nonlinear polarization 
and of the radiation it emits under the focusing conditions 

dT' o~j, l(-f/2) i b A k ( ~  - -  ~')] . (1.21) I (A~,, ~) d (' -I-i~') ~ 

< z ( a ) >  i s  t h e  c u b i c  n o n l i n e a r  s u s c e p t i b i l i t y  o f  t h e  a toms  o r  m o l e c u l e s ,  a v e r a g e d  o v e r  t h e i r  
v e l o c i t i e s  a n d  a l s o  o v e r  t h e  s p e c t r u m  of  t h e  pump i f  t h e  l a t t e r  i s  n o t  m o n o c h r o m a t i c .  

The s p a t i a l  s t r u c t u r e  of  t h e  n o n l i n e a r  p o l a r i z a t i o n  a n d  t h e  f o c u s i n g  i n t e g r a l ,  w h i c h  
f o l l o w  f rom an  a n a l o g o u s  c o n s i d e r a t i o n  o f  m i x i n g s  o f  t h e  t y p e  Us = ml + ma -- ma a nd  Us = m~ --  
m2 -- m3, a r e  somewhat  d i f f e r e n t  i n  form [ 1 3 ] .  W i t h  t h e  a i d  of  ( 1 . 1 8 )  and  ( 1 . 2 0 )  we c a n  f i n d  
e x p r e s s i o n s  f o r  t h e  c o n v e r s i o n  of  r a d i a t i o n  h a v i n g  a f r e q u e n c y  ma, w i t h  r e s p e c t  to  power  
np and  t h e  n u m b e r  of  p h o t o n s  Gq, i n t o  r a d i a t i o n  of  f r e q u e n c y  u s i n  t h e  g i v e n - p u m p - f i e l d s  
a p p r o x i m a t i o n .  T h i s  e x p r e s s i o n  i s  c o n s e q u e n t l y  v a l i d  f o r  n o t  t o o  h i g h  c o e f f i c i e n t s  o f  
c o n v e r s i o n  and  a b s o r p t i o n  o v e r  t h e  l e n g t h  o f  t h e  medium,  

Ws vs [ t6n  2 . (a~.. "Ffi,Vi14,. ~ WaX, s W~ W~ (1.22) 

Equation (1.22) is valid not only for frequency addition but also for frequency subtraction. 
Here Fj is a function determined by the degree of phase matching of the nonlinear polariza- 
tion and of the generated radiation in Gaussian beams having identical confocal parameters, 
and depends on the type of the nonlinear process j. 

3.3. Phase Matching, Nonlinear Susceptibility, and Optical Resonant-Conversion Condi- 
tions. The form of the function Fj was investigated in detail in [13]. In the general case, 
for a nonlinear medium of length L, this function depends on the location of the focal point 
relative to the center of the medium (f/L), on the ratio of the confocal parameter to the 
length of the medium (b/L), on the phase mismatch over the length b (Akb), as well as on the 
type of the process(k"/k'). Herek "=kl +ki+k3, andk' =k1+k2 • respectively, at j =I and 
2; Ak=ks--k'; k!,a,s,a are the lengths of the radiation wave vectors. 

In certain limiting cases Fj can be expressed analytically. Thus, for all process j 
in a plane wave (b >> L) we have 

2L sin (AkL/2) ]2 AkoprL = {-- 4L/b, ] : 1 ,  
F = [ l, A k L I 2  O, ] 2; 

F : iOL~/~b at L = L~ = ~/AI< 

In the other limiting case k ' =k'' (which holds for j = I, and corresponds at j =2 to the case 
k3 ~ ki,2), and for strong focusing (b~L) at the center of the medium (f/L =0.5) we have 



I(nbAk)2 exp (/.\/,:), Ak ~ O, 1,"/1,:' ~ l ,  
F~ =-- ( O, A] , .~  O, 

F, .... ~ (n/1.:~6)" at bAk = --2; 

F2 = ~ exp ( -  b lhk[) ,  Ak ~> 0, hk  < 0 ,  k " / k '  ~ L 

(1.23) 

In the general case the plot of F is a curve with a maximum. For processes with sub- 
traction (j =2) this maximum decreases with increasing ratio k"/k'. It is easiest to ensure 
svnchronism in stron~ focusinE (at small b), especially for the process with subtraction 
v~(j =2), for in this case synchronism is obtained at any sign of At. Synchronism for addi- 
tion processes is possible only at Ak < 0. It is important that the magnitude and sign of 
k can be controlled by using an additional synchronizing gas additive. 

The maximum value of ~ is thus detennined by the maximum values of the factors contained 
in (1.22). In the general cases these parameters are interdependent and cannot be chosen 
arbitrarily. Let us consider some of these dependences. 

For a one-component medium in which phase matching is achieved by varying the density 
�9 2 0 N, we must maximize not the function Fj but ~N=Fj ~G=G(Akb) Fj. Consequently a maximum 

of ~ is reached only when Akb satisfies conditions that differ somewhat from (1.23). Besides 
the synchronism condition, N is subject to restrictions that stem from the condition that 
the single-photon and multiphoton absorptions be small. The latter, with allowance for the 
pressure dependence of the transition widths, can depend nonlinearly on the pressure. The 
dependence of the transition widths on N leads also to a dependence of the limiting values of 
Wi on N. 

The pump powers Wi cannot be arbitrary. Given b and N, the radiation intensity at the 
focus must be such as not to lead to multiphoton absorption over the length b. Another 
important restriction on W/A is imposed by saturation effects. A decrease in the level- 
population difference causes a decrease Of the nonlinear susceptibility. In addition, satura- 
tion effects alter the synchronism conditions. If the pulses are substantially shorter or 
substantially longer than the population lifetimes, it is possible in principle to set before- 
hand the pump intensity so that synchronism takes place during the greater part of the pulse 
duration, with allowance for the change of the level population. It is much more difficult 
to compensate for the inhomogeneity of the change of the population over the beam cross sec- 
tion and along the focusing region. In a number of cases effective interaction is possible 
also in a strongly perturbed medium. It is preferable, however, to choose for effective 
conversion conditions wherein saturation is avoided. As already mentioned, these conditions 
are also pressure dependent via the transition widths. 

An important parameter in (1.22) is the nonlinear susceptibility e(3) If all the 
frequencies and their sum are substantially less than the frequency of the transition to 
the continuum, and if the contribution of the latter can be neglected, the formula for z(~) 
can be easily obtained in third-order perturbation theory, under conditions of two-photon 
resonance with the transition ng, by using the density-matrix method and Eq. (1.19): 

• ~-3 (o 1 @ (o 2 __ O)ng (k 1 @ k2) v @ iFng)-I dzmdmn dn~dtg % = -- ~j __ ~g _ ohg % + %-------~ �9 (i. 24) 

j= l ,2  

Here dik is the projection of the matrix elements of the electric dipole moments of the 
transitions on the direction of the electric field vectors, and Ung is the Lorentz half-width 
of the two-photon transition line. 

Thus, in the quasiresonant case ~(3) is proportional to the product of the matrix ele- 
ments of the dipole moments of the transitions that take part in the conversion process. If 
only the lower level is populated, it is inversely proportional to the product of the single- 
photon, and three-photon detunings of the interacting fields relative to the corresponding 
transitions coupled to the lower populated level. As already mentioned, each of these res- 
onances increases the nonlinear susceptibility and is simultaneously accompanied by competing 
limiting absorption and saturation processes. The most stringent restrictions are imposed 
by resonances with the strongest single-photon transitions. The three-photon resonance cor- 
responds to resonance between the generated frequency and an allowed transition. The latter 
corresponds frequently to weak transitions with a small jump of the principal quantum number. 
In these cases, when the conversion scheme is chosen, it is necessary to seek media and transi- 
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tions such that the generated frequency is close to that of the aforementioned transitions. 
The least stringent requirements occur in two-photon resonance between the pump and a forbid- 
den transition. Two-photon pumping is therefore used most frequently in nonlinear-optics 
experiments. 

If the pump is monochromatic, at exact two-photon resonance the corresponding detuning 
in the denominator ~(3) is replaced, after averaging over the atom velocities, by the two- 
photon transition width, the Doppler width 2k~ at low pressure and the impact width F wherever 
F~2kV. The conversion coefficient therefore turns out to be inversely proportional to the 
width of the forbidden (two-photon) transitions. This leads to one more pressure dependence 
of the conversion coefficient. 

The pumps frequently used in experiments, however, have a spectral width larger than 
that of the transitions. It was shown [14, 15] that in those cases when the spectral width 
is determined by independent modes, the conversion coefficient is inversely proportional 
to the product of the spectral widths of the two-photon transition and emission of the pump, 
and is proportional to the product of the pump powers averaged over the spectrum. From this 
follows a possibility of broadening the forbidden transitions in experiments on resonant 
nonlinear conversion of the radiation even with fields having a spectral width larger 
than that of the transitions. Another important conclusion is that if the lasing-line narrow- 
ing entails a power loss, such a procedure is unsuitable from the point of view of obtaining 
high conversion coefficients. The reason is that ~ decreases quadratically and the lasing 
power cubically with decreasing pump power, and increases linearly with decreasing pump line 
width. 

The frequencies of the generated vacuum-ultraviolet and soft x-rays correspond most fre- 
quently to single-photon transitions from the ground state into a photoionization or dis- 
sociation continuum, which exerts a substantial influence on the nonlinear processes. In 
a number of cases the absorption of radiation generated via transitions into the continuum 
imposes a substantial restriction on the admissible densities N and hence on the maximum 
admissible values of ~. Ways of surmounting this difficulty will be considered in Chaps. 
3 and 4. It will be shown that nonlinear transmission resonances on a transition from the 
ground state into the continuum, with simultaneous increase of the nonlinear susceptibility, 
can be induced with the sJd of an additional optical or infrared electromagnetic field. If 
the generated radiation is resonant with an autoionizing level, the increase of the nonlinear 
susceptibility can be accompanied by narrowing of this resonance. It becomes simultaneously 
possible to measure the radiative widths of the autoionizing levels. 

We shall consider radiative processes on transitions into the continuum and into auto- 
ionizing states. 
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